首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Feng XL  Liu QT  Cao RB  Zhou B  Zhang YP  Liu K  Liu XD  Wei JC  Li XF  Chen PY 《Peptides》2012,33(2):258-264
The bursa of Fabricius (BF) is the acknowledged central immune organ, which is important to the B cell differentiation and antibody production. However, due to difficult purification, the immunomodulatory peptides from BF were little reported. In this study, the extract samples of BF were taken to a chromatographic analysis by RP-HPLC. Five novel low molecular weight peptides were isolated from BF, with amino acid sequences of YEYAY, RMYEE, GPPAT, AGCCNG, and RRL, and named as Bursal pentapeptide (BPP)-III, -IV, -V, and Bursal hexapeptide (BHP), and Bursal tripeptide (BTP), respectively. BSP-I, BSP-II, BPP-I and BPP-II are recently reported to be the bursal-derived bioactive peptides. In this paper, we analyzed the chemical formula and characteristics of these nine bursal-derived peptides. The immunization comparative experiment verified the different immunomodulatory activity of these nine bursal peptides on antibody and cytokine productions. Furthermore, the results showed that at reachable concentrations, BPP-II and BPP-I induced antibody productions, lymphocyte viabilities and cytokine responses in different dose-dependent manner in the immunized mice model, respectively. These results provided important orientations for the comprehensively understanding and study of the humoral central immune system of human, and provided a novel insight on the treatment of serious disease and immune improvement of human.  相似文献   

2.
Feng X  Liu T  Wang F  Cao R  Zhou B  Zhang Y  Mao X  Chen P  Zhang H 《Peptides》2011,32(6):1103-1109
The bursa of Fabricius (BF) is acknowledged as central humoral immune organ unique to birds. Our purpose was to identify the potential function of a novel bursal-derived bioactive peptide. A bursal septpeptide (BSP-I), EPASGMM, first isolated from BF, reduced MCF and Hela tumor cells proliferation, and enhanced antitumor factor p53 luciferase activity and protein expression. Further, we found the significantly immune inducing function of BSP-I on antigen-specific immune response in BALB/c mice intraperitoneally immunized with inactivated avian influence virus (AIV, H9N2 subtype) vaccine, including of enhancing the antibody (IgG, the isotypes IgG1 and IgG2a) production, and stimulating cytokines IL-4 and IFN-γ level, and inducing T cell immunophenotyping and lymphocyte proliferation. These results suggested that as the bioactive peptide from avian humoral immune system, various biological function of BSP-I may have far-reaching implication on immune system significance, which might provide novel insight on linking between humoral immune system and development of effective immunotherapeutic strategies for treating human cancers diseases.  相似文献   

3.
Bursa of Fabricius is the acknowledged vital humoral immune system for B cell differentiation and antibody production. To study the molecular mechanism underlying the effect of bursal-derived BP5, we used gene microarray to analyze the genomic expression profiling of BP5-treated hybridoma cells. BP5 exhibited an immunomodulatory effect on antibody production in hybridoma cells and induced alterations in the gene expression profiles related to the immune-related biological processes, such as T cell activation and proliferation, B cell activation, B cell-mediated immunity, and cytokines cytokine production involved in immune response. In addition, 26 biological pathways associated with immunomodulatory functions were regulated in BP5-treated hybridoma cells, in which p53 signal pathway played an important role in antitumor. Among these regulated genes, 12 differentially expressed genes were verified by qRT-PCR. The activation of p53 activity by BP5 was further confirmed by p53 luciferase reporter assay and p53 expression. Our data revealed that bursal-derived BP5 could regulate various immune-related cellular processes, including antitumor factor p53 signal pathway, perhaps partially accounting for the reported immunomodulatory roles and novel antiproliferation on tumor cells functions of bursal-derived bioactive factor BP5.  相似文献   

4.
The bursa of Fabricius, the acknowledged central humoral immune organ, plays a vital role in B lymphocyte differentiation. However, there are few reports of the molecular basis of the mechanism on immune induction and potential antitumor activity of bursal-derived peptides. In this paper, a novel bursal-derived pentapeptide-II (BPP-II, MTLTG) was isolated and exerted immunomodulatory functions on antibody responses in vitro. Gene microarray analyses demonstrated that BPP-II regulated expression of 2478 genes in a mouse-derived hybridoma cell line. Immune-related gene ontology functional procedures were employed for further functional analysis. Furthermore, the majority of BPP-II-regulated pathways were associated with immune responses and tumor processes. Moreover, BPP-II exhibited immunomodulatory effects on antigen-specific immune responses in vivo, including enhancement of avian influenza virus (H9N2 subtype)-specific antibody and cytokine production and modification of T cell immunophenotypes and lymphocyte proliferation. Finally, BPP-II triggered p53 expression and stabilization and selectively inhibited tumor cell proliferation. These data identified the multifunctional factor, BPP-II, as a novel biomaterial representing an important linking between the humoral central immune system and immune induction, including antitumor. Information generated in this study elucidates further the mechanisms involved in humoral immune system and represents the potential basis of effective immunotherapeutic strategies for treating human tumors and immune improvement.  相似文献   

5.
EphA2 is a receptor tyrosine kinase and can be acted as an attractive antigen for glioma vaccines. In addition, LIGHT plays an important role on enhancing T cell proliferation and cytokine production. To improve the CTL mediated immune response against glioma cells, we prepared the novel vaccine containing EphA2883–891 peptide (TLADFDPRV) and LIGHT plasmid and utilized it to immunize the HLA-A2 transgenic HHD mice. In addition, trimera mice were immunized with the novel vaccine to elicit the antitumor immune response. The results demonstrated that the novel vaccine could induce robust cellular immunity against glioma U251 cells without lysing autologous lymphocytes. Moreover, the novel vaccine could significantly inhibit the tumor growth and prolong the life span of tumor bearing mice. These findings suggested that the novel vaccine containing EphA2 epitope and LIGHT plasmid could induce anti-tumor immunity against U251 cells expressing EphA2, and provided a promising strategy for glioma immunotherapy.  相似文献   

6.
Intranasally administered influenza vaccines could be more effective than injected vaccines, because intranasal vaccination can induce virus-specific immunoglobulin A (IgA) antibodies in the upper respiratory tract, which is the initial site of infection. In this study, immune responses elicited by an intranasal inactivated vaccine of influenza A(H5N1) virus were evaluated in healthy individuals naive for influenza A(H5N1) virus. Three doses of intranasal inactivated whole-virion H5 influenza vaccine induced strong neutralizing nasal IgA and serum IgG antibodies. In addition, a mucoadhesive excipient, carboxy vinyl polymer, had a notable impact on the induction of nasal IgA antibody responses but not on serum IgG antibody responses. The nasal hemagglutinin (HA)-specific IgA antibody responses clearly correlated with mucosal neutralizing antibody responses, indicating that measurement of nasal HA-specific IgA titers could be used as a surrogate for the mucosal antibody response. Furthermore, increased numbers of plasma cells and vaccine antigen-specific Th cells in the peripheral blood were observed after vaccination, suggesting that peripheral blood biomarkers may also be used to evaluate the intranasal vaccine-induced immune response. However, peripheral blood immune cell responses correlated with neutralizing antibody titers in serum samples but not in nasal wash samples. Thus, analysis of the peripheral blood immune response could be a surrogate for the systemic immune response to intranasal vaccination but not for the mucosal immune response. The current study suggests the clinical potential of intranasal inactivated vaccines against influenza A(H5N1) viruses and highlights the need to develop novel means to evaluate intranasal vaccine-induced mucosal immune responses.  相似文献   

7.
Tumors exhibit a variety of strategies to dampen antitumor immune responses. With an aim to identify factors that are secreted from tumor cells, we performed an unbiased mass spectrometry-based secretome analysis in lung cancer cells. Interleukin-6 (IL-6) has been identified as a prominent factor secreted by tumor cells and cancer-associated fibroblasts isolated from cancer patients. Incubation of dendritic cell (DC) cultures with tumor cell supernatants inhibited the production of IL-12p70 in DCs but not the surface expression of other activation markers which is reversed by treatment with IL-6 antibody. Defects in IL-12p70 production in the DCs inhibited the differentiation of Th1 but not Th2 and Th17 cells from naïve CD4+ T cells. We also demonstrate that the classical mitogen-activated protein kinase, ERK5/MAPK7, is required for IL-6 production in tumor cells. Inhibition of ERK5 activity or depletion of ERK5 prevented IL-6 production in tumor cells, which could be exploited for enhancing antitumor immune responses.Subject terms: Cancer microenvironment, Extracellular signalling molecules  相似文献   

8.
Despite advances in surgery, radiotherapy, and chemotherapy, the overall survival rates for patients with squamous cell carcinoma of the head and neck (SCCHN) have not changed over the last decades. Clearly, novel therapeutic strategies are needed for this cancer, which is highly immunosuppressive. Therefore, biologic therapies able to induce and/or up-regulate antitumor immune responses could represent a complementary approach to conventional treatments. Because patients with SCCHN are frequently immunocompromised due to the elimination or dysfunction of critical effector cells of the immune system, it might be necessary to restore these immune functions to allow for the generation of more effective antitumor host responses. Simultaneously, to prevent tumor escape, it might be necessary to alter attributes of the malignant cells. The present review summarizes recent advances in the field of immunotherapy of SCCHN, including techniques of nonspecific immune stimulation, the use of monoclonal antibodies, advances in adoptive immunotherapy and genetic engineering, as well as anticancer vaccines. These biologic therapies, alone or in combination with conventional treatment, are likely to develop into useful future treatment options for patients with SCCHN.  相似文献   

9.
10.
Liu XD  Feng XL  Zhou B  Cao RB  Li XF  Ma ZY  Chen PY 《Peptides》2012,35(1):107-113
The bursa of Fabricius (BF) is the central humoral immune organ unique to birds which plays important roles in B lymphocyte differentiation. Here, a new bursal peptide (BP11) with the amino acid sequence DVAGKLPDNRT was identified and characterized from BF. It was proved that BP11 promoted CFU pre-B formation, and regulated B cell differentiation, including increase the percentage of immature and mature B cells in BM cells co-cultured with IL-7. BP11 also exerted immunomodulatory function on antigen-specific immune responses in BALB/c mice immunized with inactivated influence virus (AIV, H9N2 subtype) vaccine, including enhancing AIV-specific antibody and cytokine production. Furthermore, it was noteworthy that BP11 stimulated antibody productions and potentiates the Th1 and Th2-type immune responses in dose-dependent manner in chicken. These results suggested that BP11 might be highly relevant for the development of avian immune system.  相似文献   

11.
The interferons are known to induce the expression of cell surface determinants. Gamma interferon, in particular, has been shown to enhance class II antigens (DR) on the cell surface. We used this gamma interferon to induce beta 2-microglobulin (beta 2 mu) and a minor, sex related transplantation antigen called H-Y on the surface of B lymphoma cells. The antitumor effect of interferon could thus be at least twofold: an antiviral effect already known and an increase of intercellular recognition (by cell surface marker enhancement); allowing the tumor cells to be "seen" better by cells of the immune system.  相似文献   

12.
HM1.24 antigen (CD317) was originally identified as a cell surface protein that is preferentially overexpressed on multiple myeloma cells. Immunotherapy using anti-HM1.24 antibody has been performed in patients with multiple myeloma as a phase I study. We examined the expression of HM1.24 antigen in lung cancer cells and the possibility of immunotherapy with anti-HM1.24 antibody which can induce antibody-dependent cellular cytotoxicity (ADCC). The expression of HM1.24 antigen in lung cancer cells was examined by flow cytometry as well as immunohistochemistry using anti-HM1.24 antibody. ADCC was evaluated using a 6-h 51Cr release assay. Effects of various cytokines on the expression of HM1.24 and the ADCC were examined. The antitumor activity of anti-HM1.24 antibody in vivo was examined in SCID mice. HM1.24 antigen was detected in 11 of 26 non-small cell lung cancer cell lines (42%) and four of seven (57%) of small cell lung cancer cells, and also expressed in the tissues of lung cancer. Anti-HM1.24 antibody effectively induced ADCC in HM1.24-positive lung cancer cells. Interferon-β and -γ increased the levels of HM1.24 antigen and the susceptibility of lung cancer cells to ADCC. Treatment with anti-HM1.24 antibody inhibited the growth of lung cancer cells expressing HM1.24 antigen in SCID mice. The combined therapy with IFN-β and anti-HM1.24 antibody showed the enhanced antitumor effects even in the delayed treatment schedule. HM1.24 antigen is a novel immunological target for the treatment of lung cancer with anti-HM1.24 antibody.  相似文献   

13.
Tryptophan-2,3-dioxygenase (TDO) is an immune checkpoint enzyme expressed in human tumors and involved in immune evasion and tumor tolerance. While glutathione S-transferases (GSTs) are pharmacological targets for several cancer. Here we demonstrated the utility of NBDHEX (GSTs inhibitor) and TDO inhibitor by the combinatorial linker design. Two novel conjugates with different linkers were prepared to reverse tumor immune suppression. The conjugates displayed significant antitumor activity against TDO and GSTs expression of HepG2 cancer cells. Further study indicated that compound 4 could induce higher apoptotic effect than its mother compounds via a mitochondrial-dependent pathway, simultaneously more effective to inhibit TDO and GSTs protein expression. Further study indicated that 4 could decrease the production of kynurenine and deactivate aryl hydrocarbon receptor (AHR), leading to CD3+ T-cell activation and proliferation to involve in antitumor immune response.  相似文献   

14.
Previous studies have shown that there are profuse lymphatic tissues under the intestinal mucous membrane. Moreover, vaccine administered orally can elicit both mucous membrane and system immune response simultaneously, accordingly induce tumor-specific cytotoxic T lymphocyte. As a result, the oral route is constituted the preferred immune route for vaccine delivery theoretically. However, numerous vaccines especially protein/peptide vaccines remain poorly available when administered by this route. Nanoemulsion has been shown as a useful vehicle can be developed to enhance the antitumor immune response against antigens encapsulated in it and it is good for the different administration routes. Of particular interest is whether the protein vaccine following peroral route using nanoemulsion as delivery carrier can induce the same, so much as stronger antitumor immune response to following conventional ways such as subcutaneous (sc.) or not. Hence, in the present study, we encapsulated the MAGE1-HSP70 and SEA complex protein in nanoemulsion as nanovaccine NE (MHS) using magnetic ultrasound method. We then immuned C57BL/6 mice with NE (MHS), MHS alone or NE (-) via po. or sc. route and detected the cellular immunocompetence by using ELISpot assay and LDH release assay. The therapeutic and tumor challenge assay were examined then. The results showed that compared with vaccination with MHS or NE (-), the cellular immune responses against MAGE-1 could be elicited fiercely by vaccination with NE (MHS) nanoemulsion. Furthermore, encapsulating MHS in nanoemulsion could delay tumor growth and defer tumor occurrence of mice challenged with B16-MAGE-1 tumor cells. Especially, the peroral administration of NE (MHS) could induce approximately similar antitumor immune responses to the sc. administration, but the MHS unencapsulated with nanoemulsion via po. could induce significantly weaker antitumor immune responses than that via sc., suggesting nanoemulsion as a promising carrier can exert potent antitumor immunity against antigen encapsulated in it and make the tumor protein vaccine immunizing via po. route feasible and effective. It may have a broad application in tumor protein vaccine.  相似文献   

15.
16.
In this study the tumor-specific immuneresponse induced by irradiated tumor cells (L1210/GZL) and by anti-idiotype antibodies was analyzed. The anti-idiotype antibodies (Ab2) were made against the paratope of a monoclonal antitumor antibody (11C1) that recognizes a tumor-associated antigen which cross-reacts with the mouse mammary tumor virus-encoded envelope glycoprotein 52. Two Ab2, 2F10 and 3A4, induced idiotypes expressed by the monoclonal antitumor antibodies 11C1 and 2B2. Cytotoxic T cells, generated by immunization with irradiated tumor cells, lyse 2F10 and 3A4 hybridoma cells. Furthermore, immunization with Ab2 induces tumor-specific cytotoxic T lymphocytes. The frequency of tumor-reactive cytotoxic T lymphocyte was found to be similar in mice immunized with Ab2 or irradiated tumor cells when examined at the precursor level. However, only 2F10 induces protective immunity against the growth of L1210/GZL tumor cells. The depletion of a L3T4+ T cell population from 2F10 immune mice was found to increase the effectiveness of transferred T cells to induce inhibition of tumor growth. The inability of 3A4 to induce antitumor immunity could be correlated with the presence of a population of Lyt2+ regulatory T cells. Collectively, these results demonstrate the existence of a regulatory network controlling the expression of effective tumor immunity. Our results demonstrate that selection of binding site-related Ab2 may not be a sufficient criteria for the development of an idiotype vaccine. A better understanding of the regulatory interactions induced by anti-idiotypes is needed for the design of effective antitumor immunotherapy.  相似文献   

17.
In order to search for a new therapy that would maximize the effect of interleukin-2 (IL-2) in evoking antitumor immunity in vivo, the therapeutic effect of a combination of mitomycin-C(MMC)-treated tumor cells and recombinant IL-2 was examined for its induction of antitumor activity against established melanoma metastasis. In C57BL/6 mice intravenously (i. v.) injected with B16 melanoma cells on day 0, the combined treatment with an intraperitoneal (i. p.) injection of MMC-treated melanoma cells on day 6 and 2500 U rIL-2 (twice daily) on days 7 and 8 markedly reduced the number of pulmonary metastases. This antitumor activity was more effective than that in untreated controls and mice that were injected with MMC-treated melanoma cells alone or rIL-2 alone. When the i. p. injection of MMC-treated tumor cells was replaced by other syngeneic tumor cells, antitumor activity against metastatic melanoma was not induced. The antitumor activity induced by this treatment increased in parallel with an increase in the dose of rIL-2 injected. In contrast, an i. p. injection of soluble tumor-specific antigens alone could induce only a marginal level of antitumor activity, and this activity was not augmented by subsequent i. p. injections of rIL-2. In vivo treatment with anti-CD8 monoclonal antibody (mAb), but not with anti-CD4 mAb or anti-asialo-GM1 antibody, abrogated the antitumor activity induced by this combined therapy. This suggests that the antitumor effect was dependent on CD8+ T cells. Lung-infiltrating lymphocytes from mice that had been i. v. injected with melanoma cells 11 days before and were treated with this combined therapy, showed melanoma-specific cytolytic activity. This combined therapy also showed significant antitumor activity against subcutaneously inoculated melanoma cells. These results demonstrate that the combined therapy of an i. p. injection of MMC-treated tumor cells and subsequent and consecutive i. p. administration of rIL-2 increases antitumor activity against established metastatic melanoma by generating tumor-specific CD8+ CTL in vivo.  相似文献   

18.
A cellfree extract prepared from the spleen cells of C3H mice is capable of suppressing antibody responses to SRBC when extract material is exposed to alloantigens. The observed immunosuppression was attributed to a soluble factor in the extract. This allogeneic suppressive factor (ASF) was detected in extracts prepared from the spleen cells of unirradiated mice as well as those of irradiated mice repopulated with thymocytes, provided that mice were previously immunized with SRBC. Donors of actively suppressive ASF preparations did not need to be previously exposed to alloantigens. Extracts from thymus and marrow cells of unirradiated mice and the spleen cells of irradiated mice repopulated with marrow cells (or no cells) did not contain ASF. C3H thymocytes stimulated with SRBC generated more ASF activity in spleens of C3BF1 hosts than in those of C3H hosts, indicating that alloantigenic stimulation enhances the production or activity of ASF. Once produced, C3H ASF was able to suppress antibody responses in cell transfer experiments only if exposed to C3BF alloantigens of either donor lymphoid cells or irradiated hosts. Once exposed to alloantigens, ASF appears to be capable of suppressing antibody responses of syngeneic C3H or semi-allogeneic C3BF cells. When both donor lymphoid cells and hosts were syngeneic with the donor of the ASF, there was enhancement of antibody formation in cell transfer experiments. C3H ASF did not interfere with education of C3BF thymocytes to SRBC or with the generation of precursors of anti-SRBC antibody-forming cells by C3BF1 marrow cells. ASF may interfere with cellular cooperative events necessary for humoral immune responses or with terminal differentiation of B cells. Production of ASF could partially account for the suppression of antibody responses observed during graft-vs-host reactions.  相似文献   

19.
BACKGROUND: The study of new substances capable of counteracting tumor development has focused, in recent years, on several of the steps in a cell's initiation of the process of apoptosis. One of the crucial events is the activation of p53, leading to a cell cycle G1/S block or to programmed cell death. METHODS: We report here a parallel flow cytometric method for semiquantitative detection of p53 protein and apoptosis (percent of apoptotic cells) in a pre-B leukemic cell line (NALM-6) exposed to various antitumor agents (2.35 microg/ml etoposide; 0.175 microg/ml FCE296; 0.4 microg/ml FCE624; and 1.5 microg/ml L-PAM). RESULTS: All of the substances proved to be capable of inducing an increase of p53 after 16 or 24 h of incubation. In all experiments with antitumor agents we also found an onset of apoptosis after 24 h of incubation with the substance, as determined by the annexin V flow cytometric assay and by DNA fragmentation. CONCLUSIONS: This technique, based on flow cytometric data of both p53 intracellular content and percentage of apoptotic cells, is suitable to determine the amount of antitumor agent needed to induce p53, and thus to dose the drug in relation to the sensitivity of a defined tumor as well as choose the more efficacious drug, depending on cell responsiveness. The study of antitumor substances that induce apoptosis, bypassing p53, could also be evaluated by this method, in view of the development of substances for the treatment of p53-mutated tumors.  相似文献   

20.
The use of chimeric virus-like particles represents a new strategy for delivering tumor antigens to the immune system for the initiation of antitumor immune responses. Immunization of DBA/2 mice with the P1A peptide derived from the P815 tumor-associated antigen P1A induced specific T-cell tolerance, resulting in progression of a regressor P815 cell line in all animals. However, immunization with a human papillomavirus type 16 L1 virus-like particle containing the P1A peptide in the absence of adjuvant induced a protective immune response in mice against a lethal tumor challenge with a progressor P815 tumor cell line. Additionally, we demonstrated that these chimeric virus-like particles could be used therapeutically to suppress the growth of established tumors, resulting in a significant survival advantage for chimeric virus-like particle-treated mice compared with untreated control mice. Chimeric virus-like particles can thus be used as a universal delivery vehicle for both tolerizing and antigenic peptides to induce a strong protective and therapeutic antigen-specific antitumor immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号