首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
L A Phebus  J A Clemens 《Life sciences》1989,44(19):1335-1342
Rat striatal extracellular fluid levels of dopamine, serotonin, 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were measured before, during and after transient, global cerebral ischemia in awake rats using in vivo brain microdialysis. Before ischemia, extracellular levels of dopamine, DOPAC, HVA and 5-HIAA were detectable and consistent from sample to sample. During cerebral ischemia, there was a large increase in extracellular dopamine levels and a decrease in the extracellular levels of DOPAC, HVA, and 5-HIAA. During reperfusion, dopamine levels returned to normal as did those of DOPAC, HVA and 5-HIAA. Dialysate serotonin and 3-methoxytyramine concentrations were below detection limits except for samples collected during ischemia and early reperfusion.  相似文献   

2.
Concentrations of acetylcholine and the monoaminergic neurotransmitters dopamine, serotonin and their respective metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA), 5-hydroxyindolacetic acid (5-HIAA) and choline were simultaneously determined in the corpus striatum of rats after 15 min. complete cerebral ischemia (CCI) and in different intervals (1, 24, 48, 72, 96 hours) of postischemic cerebral reperfusion. Results were compared to respective sham-operated control animals. After 15 min. CCI acetylcholine concentration decreased to 15%, and dopamine concentration to 56% of the control values. The metabolite levels of DOPAC decreased to 40% and HVA to 64% of the control values. Acetylcholine, dopamine, serotonin and choline concentrations were not changed significantly after reperfusion. The metabolites HVA and 5-HIAA showed their maximum increases after 1 and 24 hours of reperfusion, additionally HVA was decreased both, after 72 and 96 hours of reperfusion. The data indicate that surprisingly little permanent damage could be caused by a 15 min. ischemia in the striatum. Tissue levels of the neurotransmitters appeared differentially altered but similarly regulated during ischemia and subsequent recirculation. Acetylcholine and dopamin levels decreased profoundly during ischemia. However, acetylcholine levels could be compensated rapidly during reperfusion, whereas the dopaminergic system showed a long-lasting change in its turnover rate. Although serotonin levels were unaffected by CCI, there was an increase of its presumed turnover rate during reperfusion.  相似文献   

3.
Regional extracellular release of dopamine (DA) and its metabolites, 3,4-dihydroxy-phenylacetic acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT) was measured in gerbils (with or without pargyline pretreatment) subjected to bilateral carotid artery occlusion (15 min) and various periods of recirculation (up to 6 hr), utilizing intracerebral microdialysis and high-performance liquid chromatography (HPLC) with electrochemical detection. Mitochondrial monoamine oxidase (MAO) and superoxide dismutase (SOD) activities andin vitro stimulated lipid peroxidation (TBARM) were determined in separate experimental groups of animals. The ischemically induced DA release, decrease of MAO-derived DA metabolites DOPAC and HVA, and accumulation of 3-MT were potentiated and prolonged by pargyline pretreatment. Mitochondrial MAO and SOD activities were significantly reduced during ischemia alone and up to 1 hr of reperfusion, whereas TBARM was enhanced during reflow only. The data suggest that reduced activity of mitochondrial antioxidative enzyme(s) but not DA metabolism by MAO may contribute to free radical-mediated injury of (mitochondrial) membranes.  相似文献   

4.
In vivo microdialysis was employed in order to characterize the steady-state kinetics of the turnover of specific dopamine and serotonin metabolites in the rat striatum 48 h after surgery. Inhibitors of monoamine oxidase (MAO; pargyline) and catechol-O-methyltransferase (COMT; Ro 40-7592) were administered, either separately or in conjunction, at doses sufficient to block these enzymes in the CNS. In some experiments, the acid metabolite carrier was blocked with probenecid. Temporal changes were then observed in the efflux of interstitial dopamine, 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA). The fractional rate constants for the accumulation or disappearance of the metabolites could be determined after pharmacological blockade of catabolic enzymes or the acid metabolite carrier. Interstitial 5-HIAA was found to be cleared with a half-life of approximately 2 h. After blockade of either MAO or COMT, HVA disappeared with a half-life of 17 min. Experiments employing probenecid suggested that some of the interstitial HVA was cleared by the acid metabolite carrier, the remainder being cleared by a probenecid-insensitive process, possibly conjugation. After MAO inhibition, DOPAC disappeared with an apparent half-life of 11.3 min. The rate of 3-MT accumulation after pargyline indicated that the majority of interstitial HVA (> 95%) is formed from DOPAC rather than 3-MT. The formation of 3-MT from interstitial dopamine, calculated from the accumulation rate of 3-MT after pargyline, appeared to follow first-order kinetics (k = 0.1 min-1).  相似文献   

5.
Severe cerebral ischaemia has been repeatedly shown to provoke a massive increase in striatal extracellular dopamine (DA). These experiments were undertaken to determine the duration of the DA increase produced by transient ischaemia, and the fate of the released DA during recirculation. Experiments were performed in anaesthetised rats subjected to 20 min of cerebral ischaemia, followed by 80 min of reperfusion, before cardiac arrest. Measurements of catechols were made in the striatum using in vivo differential pulse voltammetry (DPV), each 4 min, throughout the experiment and for 60 min after cardiac arrest. DPV data were substantiated with intracerebral dialysis; 20-min dialysate samples were analysed for DA and homovanillic acid (HVA) using HPLC. In 6 of 11 rats, ischaemia induced a massive DA release in the striatum, resulting in a marked increase in extracellular levels (350-1,200%), which persisted throughout ischaemia. DPV and intracerebral dialysis demonstrated that DA was totally cleared from the extracellular space within minutes of reperfusion, whereas both its acidic metabolites (3,4-dihydroxyphenylacetic acid and HVA) increased slightly. These results indicate that DA released during 20-min ischaemia is rapidly cleared during reperfusion, mainly via reuptake. In the five other rats, only a relatively small and transient increase in the DPV catechol peak was detectable, cleared before the end of ischaemia, probably reflecting less severe ischaemia; small or no changes were detectable in the corresponding dialysate. The latter data suggest that different change(s) in the nigrostriatal dopaminergic system may occur, according to the severity of ischaemia.  相似文献   

6.
Although considerable evidence supports a role for excitatory amino acids in the pathogenesis of ischemic neuronal injury, few in vivo studies have examined the effect of increasing durations of ischemia on the extracellular concentrations of these agents. Recently, other neurotransmitters (e.g., glycine and dopamine) have been implicated in the mechanism of ischemic neuronal injury. Accordingly, this study was undertaken to examine the patterns of changes of extracellular glutamate, aspartate, glycine concentrations in the hippocampus, and dopamine, serotonin, and dopamine metabolites in the caudate nucleus with varying durations (5, 10, or 15 minutes) of transient global cerebral ischemia as evidence to support their pathogenetic roles. Microdialysis was used to sample the brain's extracellular space before, during, and after the ischemic period. Glutamate and aspartate concentrations in the dialysate increased from baseline by 1-, 5-, and 13-fold and by 4-, 9-, and 31-fold, respectively, for the three ischemic durations. The concentrations returned to baseline rapidly after reperfusion. The peak concentrations of glutamate and aspartate were significantly higher with increasing ischemic duration. Dopamine concentrations increased by approximately 700-fold in response to all three ischemic durations and returned to baseline within 10 min of reperfusion. Glycine, in contrast, increased during ischemia by a mean of 4-fold, but remained elevated throughout the 80-min period of reperfusion. The final concentrations of glycine were significantly higher than baseline levels (p = 0.0002, Mann-Whitney test). That glutamate and aspartate concentrations in the hippocampus co-vary with the duration of global ischemia is taken as supportive evidence of their pathogenetic role in ischemic neuronal injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

8.
Intracerebral dialysis was used to monitor the in vivo efflux of striatal dopamine (DA), homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC) and 3-methoxytyramine (3-MT) in the pentobarbital anesthetized rat. In untreated rats, there were low levels of extra-cellular DA and 3-MT which were increased 15-fold by treatment with amphetamine. Under basal and drug-stimulated conditions, 3-MT concentrations were maintained at approximately 30% of the extracellular DA levels. These data agree with in vivo turnover estimates which indicate that 20 to 30% of DA turnover is through the 3-MT pool in the striatum. In contrast, extracellular DOPAC and HVA levels were reduced only slightly by amphetamine and with a delayed onset. Our data support the hypothesis that striatal DOPAC is an accurate index of intraneuronal DA metabolism and that 3-MT is an index of the extracellular concentration of DA.  相似文献   

9.
Abstract: Changes in the tissue levels of 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and dopamine in the frontal cortex, hypothalamus, nucleus accumbens, and striatum were evaluated after 0.5-4 h of footshock (2 mA, for 3 s every 30 ± 5 s) in Fischer rats. 3-MT, DOPAC, and HVA levels in the four brain areas peaked at 0.5 h and in most cases returned to baseline values within 4 h. No changes were found in dopamine levels. Repeated footshock stress was evaluated by administering 10 footshock sessions (0.5 h, two per day for 5 days). At the end of the 10th footshock session, 3-MT levels were higher than at the end of the first footshock session in three of the four brain regions, indicating sensitization of dopamine release. No differences were found between the first and 10th footshock sessions in DOPAC and HVA levels. Fourteen days after the 10th footshock session, the levels of 3-MT, DOPAC, and HVA were the same as in control rats in all four brain regions. A 0.5-h footshock challenge presented 14 days after the 10th footshock session attenuated DOPAC levels in the hypothalamus and nucleus accumbens. In contrast, DOPAC and HVA levels in the frontal cortex showed sensitization after footshock challenge, and a similar trend was apparent for 3-MT levels. These results indicate that repeated footshock stress induces generalized sensitization of dopamine release and turnover in some areas of the brain of Fischer rats. This sensitization may persist in the cortical but not subcortical dopamine neurons after discontinuation of the treatment.  相似文献   

10.
We have previously described a marked attenuation of postischemic striatal neuronal death by prior substantia nigra (SN) lesioning. The present study was carried out to evaluate whether the protective effect of the lesion involves changes in the degree of local cerebral blood flow (ICBF) reduction, energy metabolite depletion, or alterations in the extracellular release of striatal dopamine (DA), glutamate (Glu), or gamma-aminobutyric acid (GABA). Control and SN-lesioned rats were subjected to 20 min of forebrain ischemia by four-vessel occlusion combined with systemic hypotension. Levels of ICBF, as measured by the autoradiographic method, and energy metabolites were uniformly reduced in both the ipsi- and contralateral striata at the end of the ischemic period, a finding implying that the lesion did not affect the severity of the ischemic insult itself. Extracellular neurotransmitter levels were measured by microdialysis; the perfusate was collected before, during, and after ischemia. An approximately 500-fold increase in DA content, a 7-fold increase in Glu content, and a 5-fold increase in GABA content were observed during ischemia in nonlesioned animals. These levels gradually returned to baseline by 30 min of reperfusion. In SN-lesioned rats, the release of DA was completely prevented, the release of GABA was not affected, and the release of Glu was partially attenuated. However, excessive extracellular Glu concentrations were still attained, which are potentially toxic. This, taken together with the previous neuropathological findings, suggests that excessive release of DA is important for the development of ischemic cell damage in the striatum.  相似文献   

11.
Microdialysis probes were inserted bilaterally into the striatum of 7-day-old rat pups (n = 30) to examine extracellular fluid levels of dopamine, its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). The dialysis samples were assayed by HPLC with electrochemical detection. Baseline levels, measured after a 2-h stabilization period, were as follows: dopamine, not detected; DOPAC, 617 +/- 33 fmol/min; HVA, 974 +/- 42 fmol/min; and 5-HIAA, 276 +/- 15 fmol/min. After a 40-min baseline sampling period, 12 animals were exposed to 8% oxygen for 120 min. Hypoxia produced marked reductions in the striatal extracellular fluid levels of both dopamine metabolites (p less than 0.001 by analysis of variance) and a more gradual and less prominent reduction in 5-HIAA levels (p less than 0.02 by analysis of variance), compared with controls (n = 12) sampled in room air. In the first hour after hypoxia, DOPAC and HVA levels rose quickly, whereas 5-HIAA levels remained suppressed. The magnitude of depolarization-evoked release of dopamine (elicited by infusion of potassium or veratrine through the microdialysis probes for 20 min) was evaluated in control and hypoxic animals. Depolarization-evoked dopamine efflux was considerably higher in hypoxic pups than in controls: hypoxic (n = 7), 257 +/- 32 fmol/min; control (n = 12), 75 +/- 14 fmol/min (p less than 0.001 by analysis of variance). These data demonstrate that a brief exposure to moderate hypoxia markedly disrupts striatal catecholamine metabolism in the immature rodent brain.  相似文献   

12.
Biochemical changes in the rat brain cholinergic system during and after 60 min of ischemia were studied using a four-vessel occlusion model. Extracellular acetylcholine (ACh) concentrations in the unanesthetized rat hippocampus markedly increased during ischemia and reached a peak (about 13.5 times baseline levels) at 5-10 min after the onset of ischemia. At 2-5 h after reperfusion, extracellular ACh concentrations were reduced to 64-72% of the levels of controls. ACh levels in the hippocampus, striatum, and cortex decreased significantly during ischemia and exceeded their control values just after reperfusion. A significant increase in hippocampal ACh level after 2 days of reperfusion and a decrease in [14C]ACh synthesis from [14C]glucose in hippocampal slices excised at 2 days after reperfusion were observed. The extracellular concentrations and tissue levels of choline markedly increased after ischemia. These results show that ACh is markedly released into the extracellular space in the hippocampus during ischemia, and they suggest that ACh synthesis is activated just after reperfusion and that cholinergic activity is reduced after 2-48 h of reperfusion in the hippocampus.  相似文献   

13.
The effects of 20-min transient, global, forebrain ischaemia and cardiac arrest on extracellular concentrations of dopamine (DA), serotonin (5-HT), and their respective metabolites, homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), were measured in vivo by dialysis of rat striatum and hippocampus. During the ischaemic period, striatal DA content increased (250-fold basal concentrations) with parallel but much less marked increases of both striatal and hippocampal 5-HT content (eight- to 10-fold). Baseline values were restored during reperfusion. Subsequent increases of DA and 5-HT levels on cardiac arrest were comparable after both sham operation and ischaemia. Significant decreases of HVA and 5-HIAA levels were observed following ischaemia or cardiac arrest. The differential effects of ischaemia on DA and 5-HT suggest selective alterations in disposition or metabolism of the two transmitters and that dopaminergic neurones may be more vulnerable to ischaemic insults.  相似文献   

14.
CSF was continuously withdrawn from the third ventricle of anesthetized rats. CSF 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid concentrations were determined every 15 min by liquid chromatography coupled with electrochemical detection. Acute tyrosine hydroxylase inhibition [with alpha-methyl-p-tyrosine (alpha-MPT)] induced an exponential decline in levels of DOPAC and HVA in CSF. The decline in DOPAC and HVA concentrations was identical in CSF and forebrain but was much slower in the striatum, suggesting that CSF metabolites of 3,4-dihydroxyphenylethylamine (dopamine) reflect whole forebrain metabolites. The decay in CSF DOPAC and HVA levels after dopamine synthesis inhibition was also used as an in vivo index of forebrain dopamine turnover after various pharmacological treatments. Haloperidol pretreatment accelerated this decay, confirming the increase in brain dopamine turnover induced by neuroleptics. After reserpine pretreatment (15 h before), alpha-MPT produced a very sharp decay in levels of DOPAC and HVA. This result indicates that the residual dopamine that cannot be stored after reserpine treatment is very rapidly renewed and metabolized. Nomifensine strongly diminished the slope of DOPAC and HVA level decreases after alpha-MPT, a result which can be explained either by a slower dopamine turnover or by the involvement of storage dopamine pools. These results exemplify the use of monitoring the decay of dopamine metabolites after alpha-MPT administration in the study of the pharmacological action of drugs on the central nervous system of the rat.  相似文献   

15.
Alterations in neostriatal dopamine metabolism, release, and biosynthesis were determined 3, 5, or 18 days following partial, unilateral destruction of the rat nigrostriatal dopamine projection. Concentrations of dopamine and each of its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine (3-MT) were markedly decreased in the lesioned striata at 3, 5, or 18 days postoperation. The decline in striatal high-affinity [3H]dopamine uptake closely matched the depletion of dopamine at 3 and 18 days postoperation. However, neither DOPAC, HVA, nor 3-MT concentrations were decreased to as great an extent as dopamine at any time following lesions that depleted the dopamine innervation of the striatum by greater than 80%. In these more severely lesioned animals, dopamine metabolism, estimated from the ratio of DOPAC or HVA to dopamine, was increased two- to four-fold in the injured hemisphere compared with the intact hemisphere. Dopamine release, estimated by the ratio of 3-MT to dopamine, was more increased, by five- to sixfold. Importantly, the HVA/dopamine, DOPAC/dopamine, and 3-MT/dopamine ratios did not differ between 3 and 18 days postlesioning. The rate of in vivo dopamine biosynthesis, as estimated by striatal DOPA accumulation following 3,4-dihydroxyphenylalanine (DOPA) decarboxylase inhibition with NSD 1015, was increased by 2.6- to 2.7-fold in the surviving dopamine terminals but again equally at 3 and 18 days postoperation. Thus, maximal increases in dopamine metabolism, release, and biosynthesis occur rapidly within neostriatal terminals that survive a lesion. This mobilization of dopaminergic function could contribute to the recovery from the behavioral deficits of partial denervation by increasing the availability of dopamine to neostriatal dopamine receptors. However, these presynaptic compensations are not sufficient to account for the protracted (at least 3-week) time course of sensorimotor recovery that has been observed following partial nigrostriatal lesion.  相似文献   

16.
Phenelzine [2-phenylethylhydrazine] (PLZ), a potent inhibitor of monoamine oxidase (MAO)-A and-B, is used widely in psychiatry. We have studied the effects of PLZ administration on urinary excretion of several bioactive amines and their metabolites in psychiatric patients. Urine samples (24-hour) were collected prior to treatment and again at 2 and 4 weeks of treatment with PLZ (30–90 mg daily in divided doses). Amines and metabolites analyzed included 2-phenylethylamine (PEA), m-and p-tyramine (m-and p-TA), phenylacetic acid (PAA), m-and p-hydroxyphenylacetic acid (m-and p-OH-PAA), tryptamine (T), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), normetanephrine (NME), 3-methoxy-4-hydroxyphenylglycol (MHPG), 3-methoxytyramine (3-MT), and homovanillic acid (HVA). Levels of PEA, p-TA, 5-HT, and T were elevated during treatment with PLZ, but no significant changes in urinary excretion of the acid metabolites PAA, p-OH-PAA, and 5-HIAA were observed. Urinary levels of the noradrenaline metabolites NME and MHPG were increased and decreased, respectively; a similar pattern was observed with the dopamine metabolites 3-MT and HVA. There was an elevation in levels of m-TA and a decrease in its acid metabolite m-OH-PAA during the treatment with PLZ.  相似文献   

17.
Phencyclidine (PCP; 20 micrograms in 0.5 microliter) was tested by local brain injection for neurochemical effects in the nucleus accumbens and striatum of rats. Changes in dopamine turnover could not be detected in postmortem tissue assays. In contrast, extracellular levels of dopamine significantly increased as measured by microdialysis in freely moving animals. PCP also increased extracellular levels of serotonin and decreased 3,4-dihydroxyphenylacetic acid (DOPAC), but did not change homovanillic acid (HVA) or 5-hydroxyindoleacetic acid (5HIAA). Microdialysis suggests that PCP acts in some dopamine terminal regions to increase extracellular dopamine and serotonin.  相似文献   

18.
Rat brain monoamine and serotonin S2 receptor changes during pregnancy   总被引:1,自引:0,他引:1  
The concentrations of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites were determined in 5 brain areas of non-pregnant, 15 and 20 day pregnant and 4 day post-partum rats. Striatal 5-HT content was significantly lower in 15 and 20 day pregnant rats than in estrous controls. A significant decrease in striatal and frontal cortex 5-hydroxyindole-3-acetic acid (5-HIAA) concentration was observed in 15 day pregnant rats. Significant increases in hypothalamic and hippocampal NA levels were observed at 4 days post-partum. Frontal cortex serotonin S2 receptorKd was reduced in 4 day post-partum rats. There was no significant change in S2 receptorB max during pregnancy. Levels of progesterone were negatively correlated with striatal DA, homovanillic acid (HVA), 5-HT, and 5-HIAA levels, hypothalamic DA, hippocampal 5-HT, and frontal cortex 5-HIAA values as well as striatal HVA to DA, and HVA to 3,4-dihydroxyphenylacetic acid (DOPAC) ratios and amygdaloid HVA to DOPAC ratios. The limbic neurotransmitter changes might possibly contribute to mood changes which occur during pregnancy and post-partum.  相似文献   

19.
Lin JY  Chung SY  Lin MC  Cheng FC 《Life sciences》2002,71(7):803-811
Previous studies have demonstrated that magnesium sulfate has cytoprotective properties for treating experimental rat brain injuries. The aim of this study is to evaluate changes in energy-related metabolites and glutamate in the cortex of gerbils subjected to focal cerebral ischemia with the pretreatment of magnesium sulfate. The focal cerebral ischemia was produced by the occlusion of the right common carotid artery and the right middle cerebral artery for 60 mins. A significant decrease in infarct size was found in the magnesium sulfate treated group when compared to the controls. Two microdialysis probes were inserted bilaterally into the cortex to monitor extracellular glucose, lactate, pyruvate and glutamate during cerebral ischemia and reperfusion periods. The present study showed a dynamic decrease of glucose (10% of the baseline), pyruvate (15% of the baseline), and an increase of lactate (200% of the baseline) and glutamate (1400% of the baseline) on the ipsilateral side during ischemia in the control group. Magnesium sulfate significantly preserved glucose (up to 50% of the baseline) and pyruvate (70% of the baseline) levels in the ipsilateral side during ischemia. There was significant attenuation in the elevation of glutamate and lactate (500% and 150% of the baseline, respectively) when treatments of magnesium sulfate were administered. No significant influence on these neurochemicals in the contralateral side was observed in either group. These results suggest that both the preservation of cellular energy metabolism, and the attenuation of glutamate release during cerebral ischemia and after restoration of reperfusion may contribute to the neuroprotective effects of magnesium sulfate.  相似文献   

20.
Abstract: By using a new technique, intracerebral dialysis, in combination with high performance liquid chromatography and electrochemical detection, it was possible to recover and measure endogenous extracellular dopamine, together with its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) from the striatum and nucleus accumbens of anaesthetized or freely moving rats. In addition, measurements of extracellular 5-hydroxyindoleacetic acid, ascorbic acid, and uric acid were made. Basal extracellular concentrations of dopamine and DOPAC in the striatum were estimated to be 5 × 10−8 M and 5 × 10−6 M , respectively. d -Amphetamine (2 mg/kg s.c.) increased dopamine levels in the striatum perfusates by 14-fold, whereas levels of DOPAC and HVA decreased by 77% and 66%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号