首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider global properties of compartment SIR and SEIR models of infectious diseases, where there are several parallel infective stages. For instance, such a situation may arise if a fraction of the infected are detected and treated, while the rest of the infected remains undetected and untreated. We assume that the horizontal transmission is governed by the standard bilinear incidence rate. The direct Lyapunov method enables us to prove that the considered models are globally stable: There is always a globally asymptotically stable equilibrium state. Depending on the value of the basic reproduction number R 0, this state can be either endemic (R 0>1), or infection-free (R 0≤1).  相似文献   

2.
In this paper the optimal control strategies of an SIR (susceptible–infected–recovered) epidemic model with time delay are introduced. In order to do this, we consider an optimally controlled SIR epidemic model with time delay where a control means treatment for infectious hosts. We use optimal control approach to minimize the probability that the infected individuals spread and to maximize the total number of susceptible and recovered individuals. We first derive the basic reproduction number and investigate the dynamical behavior of the controlled SIR epidemic model. We also show the existence of an optimal control for the control system and present numerical simulations on real data regarding the course of Ebola virus in Congo. Our results indicate that a small contact rate(probability of infection) is suitable for eradication of the disease (Ebola virus) and this is one way of optimal treatment strategies for infectious hosts.  相似文献   

3.
In this paper we analyze the dynamics of two families of epidemiological models which correspond to transitions from the SIR (susceptible-infectious-resistant) to the SIS (susceptible-infectious-susceptible) frameworks. In these models we assume that the force of infection is a nonlinear function of density of infectious individuals, I. Conditions for the existence of backwards bifurcations, oscillations and Bogdanov-Takens points are given.  相似文献   

4.
In a previous paper, we discussed the bifurcation structure of SEIR equations subject to seasonality. There, the focus was on parameters that affect transmission: the mean contact rate, β0, and the magnitude of seasonality, ? B . Using numerical continuation and brute force simulation, we characterized a global pattern of parametric dependence in terms of subharmonic resonances and period-doublings of the annual cycle. In the present paper, we extend this analysis and consider the effects of varying non-contact-related parameters: periods of latency, infection and immunity, and rates of mortality and reproduction, which, following the usual practice, are assumed to be equal. The emergence of several new forms of dynamical complexity notwithstanding, the pattern previously reported is preserved. More precisely, the principal effect of varying non-contact related parameters is to displace bifurcation curves in the β0?? B parameter plane and to expand or contract the regions of resonance and period-doubling they delimit. Implications of this observation with respect to modeling real-world epidemics are considered.  相似文献   

5.
Competitive exclusion in a vector-host model for the dengue fever   总被引:4,自引:0,他引:4  
 We study a system of differential equations that models the population dynamics of an SIR vector transmitted disease with two pathogen strains. This model arose from our study of the population dynamics of dengue fever. The dengue virus presents four serotypes each induces host immunity but only certain degree of cross-immunity to heterologous serotypes. Our model has been constructed to study both the epidemiological trends of the disease and conditions that permit coexistence in competing strains. Dengue is in the Americas an epidemic disease and our model reproduces this kind of dynamics. We consider two viral strains and temporary cross-immunity. Our analysis shows the existence of an unstable endemic state (‘saddle’ point) that produces a long transient behavior where both dengue serotypes cocirculate. Conditions for asymptotic stability of equilibria are discussed supported by numerical simulations. We argue that the existence of competitive exclusion in this system is product of the interplay between the host superinfection process and frequency-dependent (vector to host) contact rates. Received 4 December 1995; received in revised form 5 March 1996  相似文献   

6.
To understand joint effects of logistic growth in target cells and intracellular delay on viral dynamics in vivo, we carry out two-parameter bifurcation analysis of an in-host model that describes infections of many viruses including HIV-I, HBV and HTLV-I. The bifurcation parameters are the mitosis rate r of the target cells and an intracellular delay τ in the incidence of viral infection. We describe the stability region of the chronic-infection equilibrium E* in the two-dimensional (r, τ) parameter space, as well as the global Hopf bifurcation curves as each of τ and r varies. Our analysis shows that, while both τ and r can destabilize E* and cause Hopf bifurcations, they do behave differently. The intracellular delay τ can cause Hopf bifurcations only when r is positive and sufficiently large, while r can cause Hopf bifurcations even when τ = 0. Intracellular delay τ can cause stability switches in E* while r does not.  相似文献   

7.
When the traditional assumption that the incidence rate is proportional to the product of the numbers of infectives and susceptibles is dropped, the SIRS model can exhibit qualitatively different dynamical behaviors, including Hopf bifurcations, saddle-node bifurcations, and homoclinic loop bifurcations. These may be important epidemiologically in that they demonstrate the possibility of infection outbreak and collapse, or autonomous periodic coexistence of disease and host. The possible mechanisms leading to nonlinear incidence rates are discussed. Finally, a modified general criterion for supercritical or subcritical Hopf bifurcation of 2-dimensional systems is presented.  相似文献   

8.
 The structured coalescent is used to calculate some quantities relating to the genealogy of a pair of homologous genes and to the degree of subpopulation differentiation, under a range of models of subdivided populations and assuming the infinite alleles model of neutral mutation. The classical island and stepping-stone models of population structure are considered, as well as two less symmetric models. For each model, we calculate the Laplace transform of the distribution of the coalescence time of a pair of genes from specified locations and the corresponding mean and variance. These results are then used to calculate the values of Wright’s coefficient F ST , its limit as the mutation rate tends to zero and the limit of its derivative with respect to the mutation rate as the mutation rate tends to zero. From this derivative it is seen that F ST can depend strongly on the mutation rate, for example in the case of an essentially one-dimensional habitat with many subpopulations where gene flow is restricted to neighbouring subpopulations. Received: 1 October 1997 / Revised version: 15 March 1998  相似文献   

9.
 The Hodgkin-Huxley equations (HH) are parameterized by a number of parameters and shows a variety of qualitatively different behaviors depending on the parameter values. We explored the dynamics of the HH for a wide range of parameter values in the multiple-parameter space, that is, we examined the global structure of bifurcations of the HH. Results are summarized in various two-parameter bifurcation diagrams with I ext (externally applied DC current) as the abscissa and one of the other parameters as the ordinate. In each diagram, the parameter plane was divided into several regions according to the qualitative behavior of the equations. In particular, we focused on periodic solutions emerging via Hopf bifurcations and identified parameter regions in which either two stable periodic solutions with different amplitudes and periods and a stable equilibrium point or two stable periodic solutions coexist. Global analysis of the bifurcation structure suggested that generation of these regions is associated with degenerate Hopf bifurcations. Received: 23 April 1999 / Accepted in revised form: 24 September 1999  相似文献   

10.
A histology-based methodology was developed and used to determine whether intramural stress and combined monocyte/macrophage density positively correlate within hypertensive bifurcations. Hypertension was induced in Sprague–Dawley rats using Angiotensin II pumps. Analysis focused on mesenteric bifurcations harvested 7 days (n = 4) post implant, but also included normotensive (n = 2) and 21-day hypertensive (n = 1) samples. Mesentery was processed in a manner that preserves morphology, corrects for histology-related distortions and results in reconstructions suitable for finite element analysis. Peaks in intramural stress and monocyte/macrophage density occurred near bifurcations after the onset of hypertension. Cell density peaks occurred in regions where surface curvature is complex and tends to heighten intramural stress. Also, a strong positive correlation between mean stress and mean cell density suggests that they are related phenomena. A point-by-point comparison of stress and cell density throughout each bifurcation did not exhibit a consistent pattern. We offer reasons why this most stringent test did not corroborate our other findings that high intramural stress is correlated with increased inflammation near the center of the bifurcation.  相似文献   

11.
A numerical method is implemented for computing unsteady blood flow through a branching capillary network. The evolution of the discharge hematocrit along each capillary segment is computed by integrating in time a one-dimensional convection equation using a finite-difference method. The convection velocity is determined by the local and instantaneous effective capillary blood viscosity, while the tube to discharge hematocrit ratio is deduced from available correlations. Boundary conditions for the discharge hematocrit at divergent bifurcations arise from the partitioning law proposed by Klitzman and Johnson involving a dimensionless exponent, q≥1. When q=1, the cells are partitioned in proportion to the flow rate; as q tends to infinity, the cells are channeled into the branch with the highest flow rate. Simulations are performed for a tree-like, perfectly symmetric or randomly perturbed capillary network with m generations. When the tree involves more than a few generations, a supercritical Hopf bifurcation occurs at a critical value of q, yielding spontaneous self-sustained oscillations in the absence of external forcing. A phase diagram in the mq plane is presented to establish conditions for unsteady flow, and the effect of various geometrical and physical parameters is examined. For a given network tree order, m, oscillations can be induced for a sufficiently high value of q by increasing the apparent intrinsic viscosity, decreasing the ratio of the vessel diameter from one generation to the next, or by decreasing the diameter of the terminal vessels. With other parameters fixed, oscillations are inhibited by increasing m. The results of the continuum model are in excellent agreement with the predictions of a discrete model where the motion of individual cells is followed from inlet to outlet.  相似文献   

12.
Lyapunov functions for two-dimension SIR and SIRS compartmental epidemic models with non-linear transmission rate of a very general form f(S,I) constrained by a few biologically feasible conditions are constructed. Global properties of these models including these with vertical and horizontal transmission, are thereby established. It is proved that, under the constant population size assumption, the concavity of the function f(S,I) with respect to the number of the infective hosts I ensures the uniqueness and the global stability of the positive endemic equilibrium state. AMS Classification 92D30 (primary), 34D20 (secondary)  相似文献   

13.
14.
SEIR epidemiological models with the inclusion of quarantine and isolation are used to study the control and intervention of infectious diseases. A simple ordinary differential equation (ODE) model that assumes exponential distribution for the latent and infectious stages is shown to be inadequate for assessing disease control strategies. By assuming arbitrarily distributed disease stages, a general integral equation model is developed, of which the simple ODE model is a special case. Analysis of the general model shows that the qualitative disease dynamics are determined by the reproductive number , which is a function of control measures. The integral equation model is shown to reduce to an ODE model when the disease stages are assumed to have a gamma distribution, which is more realistic than the exponential distribution. Outcomes of these models are compared regarding the effectiveness of various intervention policies. Numerical simulations suggest that models that assume exponential and non-exponential stage distribution assumptions can produce inconsistent predictions.  相似文献   

15.
The density of contacts or the fraction of buried sites in a protein structure is thought to be related to a protein’s designability, and genes encoding more designable proteins should evolve faster than other genes. Several recent studies have tested this hypothesis but have found conflicting results. Here, we investigate how a gene’s evolutionary rate is affected by its protein’s contact density, considering the four species Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. We find for all four species that contact density correlates positively with evolutionary rate, and that these correlations do not seem to be confounded by gene expression level. The strength of this signal, however, varies widely among species. We also study the effect of contact density on domain evolution in multidomain proteins and find that a domain’s contact density influences the domain’s evolutionary rate. Within the same protein, a domain with higher contact density tends to evolve faster than a domain with lower contact density. Our study provides evidence that contact density can increase evolutionary rates, and that it acts similarly on the level of entire proteins and of individual protein domains. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
In this paper, we study the SIS (susceptible–infected–susceptible) and SIR (susceptible–infected–removed) epidemic models on undirected, weighted networks by deriving pairwise-type approximate models coupled with individual-based network simulation. Two different types of theoretical/synthetic weighted network models are considered. Both start from non-weighted networks with fixed topology followed by the allocation of link weights in either (i) random or (ii) fixed/deterministic way. The pairwise models are formulated for a general discrete distribution of weights, and these models are then used in conjunction with stochastic network simulations to evaluate the impact of different weight distributions on epidemic thresholds and dynamics in general. For the SIR model, the basic reproductive ratio R 0 is computed, and we show that (i) for both network models R 0 is maximised if all weights are equal, and (ii) when the two models are ‘equally-matched’, the networks with a random weight distribution give rise to a higher R 0 value. The models with different weight distributions are also used to explore the agreement between the pairwise and simulation models for different parameter combinations.  相似文献   

17.
 The effect of overcompensatory recruitment and the combined effect of overcompensatory recruitment and generation delay in discrete nonlinear age-structured population models is studied. Considering overcompensatory recruitment alone, we present formal proofs of the supercritical nature of bifurcations (both flip and Hopf) as well as an extensive analysis of dynamics in unstable parameter regions. One important finding here is that in case of small and moderate year to year survival probabilities there are large regions in parameter space where the qualitative behaviour found in a general n+1 dimensional model is retained already in a one-dimensional model. Another result is that the dynamics at or near the boundary of parameter space may be very complicated. Generally, generation delay is found to act as a destabilizing effect but its effect on dynamics is by no means unique. The most profound effect occurs in the n-generation delay cases. In these cases there is no stable equilibrium X * at all, but whenever X * small, a stable cycle of period n+1 where the periodic points in the cycle are on a very special form. In other cases generation delay does not alter the dynamics in any substantial way. Received 25 April 1995; received in revised form 21 November 1995  相似文献   

18.
There are some analytical solutions of the Penna model of biological aging; here, we discuss the approach by Coe et al. (Phys. Rev. Lett. 89, 288103, 2002), based on the concept of self-consistent solution of a master equation representing the Penna model. The equation describes transition of the population distribution at time t to next time step (t + 1). For the steady state, the population n(a, l, t) at age a and for given genome length l becomes time-independent. In this paper we discuss the stability of the analytical solution at various ranges of the model parameters—the birth rate b or mutation rate m. The map for the transition from n(a, l, t) to the next time step population distribution n(a + 1, l, t + 1) is constructed. Then the fix point (the steady state solution) brings recovery of Coe et al. results. From the analysis of the stability matrix, the Lyapunov coefficients, indicative of the stability of the solutions, are extracted. The results lead to phase diagram of the stable solutions in the space of model parameters (b, m, h), where h is the hunt rate. With increasing birth rate b, we observe critical b 0 below which population is extinct, followed by non-zero stable single solution. Further increase in b leads to typical series of bifurcations with the cycle doubling until the chaos is reached at some b c. Limiting cases such as those leading to the logistic model are also discussed.  相似文献   

19.
Periodicity in an epidemic model with a generalized non-linear incidence   总被引:7,自引:0,他引:7  
We develop and analyze a simple SIV epidemic model including susceptible, infected and perfectly vaccinated classes, with a generalized non-linear incidence rate subject only to a few general conditions. These conditions are satisfied by many models appearing in the literature. The detailed dynamics analysis of the model, using the Poincaré index theory, shows that non-linearity of the incidence rate leads to vital dynamics, such as bistability and periodicity, without seasonal forcing or being cyclic. Furthermore, it is shown that the basic reproductive number is independent of the functional form of the non-linear incidence rate. Under certain, well-defined conditions, the model undergoes a Hopf bifurcation. Using the normal form of the model, the first Lyapunov coefficient is computed to determine the various types of Hopf bifurcation the model undergoes. These general results are applied to two examples: unbounded and saturated contact rates; in both cases, forward or backward Hopf bifurcations occur for two distinct values of the contact parameter. It is also shown that the model may undergo a subcritical Hopf bifurcation leading to the appearance of two concentric limit cycles. The results are illustrated by numerical simulations with realistic model parameters estimated for some infectious diseases of childhood.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号