首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In yeast, nascent phosphatidylserine (PtdSer) can be transported to the mitochondria and Golgi/vacuole for decarboxylation to synthesize phosphatidylethanolamine (PtdEtn). In strains with a psd1Delta allele for the mitochondrial PtdSer decarboxylase, the conversion of nascent PtdSer to PtdEtn can serve as an indicator of lipid transport to the locus of PtdSer decarboxylase 2 (Psd2p) in the Golgi/vacuole. We have followed the metabolism of [(3)H]serine into PtdSer and PtdEtn to study lipid transport in permeabilized psd1Delta yeast. The permeabilized cells synthesize (3)H-PtdSer and, after a 20-min lag, decarboxylate it to form [(3)H]PtdEtn. Formation of [(3)H]PtdEtn is linear between 20 and 100 min of incubation and does not require ongoing PtdSer synthesis. PtdSer transport can be resolved into a two-component system using washed, permeabilized psd1Delta cells as donors and membranes isolated by ultracentrifugation as acceptors. With this system, the transport-dependent decarboxylation of nascent PtdSer is dependent upon the concentration of acceptor membranes, requires Mn(2+) but not nucleotides, and is inhibited by EDTA. High speed membranes isolated from a previously identified PtdSer transport mutant, pstB2, contain normal Psd2p activity but fail to reconstitute PtdSer transport and decarboxylation. Reconstitution with permutations of wild type and pstB2Delta donors and acceptors identifies the site of the mutant defect as the acceptor side of the transport reaction.  相似文献   

2.
The aminoglycerophospholipids of eukaryotic cells, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), can be synthesized by multiple pathways. The PtdSer pathway encompasses the synthesis of PtdSer, its decarboxylation to PtdEtn and subsequent methylation reactions to form PtdCho. The Kennedy pathways consist of the synthesis of PtdEtn and PtdCho from Etn and Cho precursors via CDP-Etn and CDP-Cho intermediates. The reactions along the PtdSer pathway are spatially segregated with PtdSer synthesis occurring in the endoplasmic reticulum or mitochondria-associated membrane (MAM), PtdEtn formation occurring in the mitochondria and Golgi/vacuole compartments and PtdCho formation occurring in the endoplasmic reticulum or MAM. The organelle-specific metabolism of the different lipids in the PtdSer pathway has provided a convenient biochemical means for defining events in the interorganelle transport of the aminoglycerophospholipids in intact cells, isolated organelles and permeabilized cells. Studies with both mammalian cells and yeast demonstrate many significant similarities in lipid transport processes between the two systems. Genetic experiments in yeast now provide the tools to create new strains with mutations along the PtdSer pathway that can be conditionally rescued by the Kennedy pathway reactions. The genetic studies in yeast indicate that it is now possible to begin to define genes that participate in the interorganelle transport of the aminoglycerophospholipids.  相似文献   

3.
The aminoglycerophospholipids of eukaryotic cells, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), can be synthesized by multiple pathways. The PtdSer pathway encompasses the synthesis of PtdSer, its decarboxylation to PtdEtn and subsequent methylation reactions to form PtdCho. The Kennedy pathways consist of the synthesis of PtdEtn and PtdCho from Etn and Cho precursors via CDP-Etn and CDP-Cho intermediates. The reactions along the PtdSer pathway are spatially segregated with PtdSer synthesis occurring in the endoplasmic reticulum or mitochondria-associated membrane (MAM), PtdEtn formation occurring in the mitochondria and Golgi/vacuole compartments and PtdCho formation occurring in the endoplasmic reticulum or MAM. The organelle-specific metabolism of the different lipids in the PtdSer pathway has provided a convenient biochemical means for defining events in the interorganelle transport of the aminoglycerophospholipids in intact cells, isolated organelles and permeabilized cells. Studies with both mammalian cells and yeast demonstrate many significant similarities in lipid transport processes between the two systems. Genetic experiments in yeast now provide the tools to create new strains with mutations along the PtdSer pathway that can be conditionally rescued by the Kennedy pathway reactions. The genetic studies in yeast indicate that it is now possible to begin to define genes that participate in the interorganelle transport of the aminoglycerophospholipids.  相似文献   

4.
In the yeast Saccharomyces cerevisiae, three pathways lead to the formation of cellular phosphatidylethanolamine (PtdEtn), namely the mitochondrial conversion of phosphatidylserine (PtdSer) to PtdEtn catalyzed by phosphatidylserine decarboxylase 1 (Psd1p), the equivalent reaction catalyzed by phosphatidylserine decarboxylase 2 (Psd2p) in the Golgi, and the CDP-ethanolamine branch of the so-called Kennedy pathway which is located to the microsomal fraction. To investigate the contributions of these three pathways to the cellular pattern of PtdEtn species (fatty acid composition) we subjected lipids of wild-type and yeast mutant strains with distinct defects in the respective pathways to mass spectrometric analysis. We also analyzed species of PtdSer and phosphatidylcholine (PtdCho) of these strains because formation of the three aminoglycerophospholipids is linked through their biosynthetic route. We demonstrate that all three pathways involved in PtdEtn synthesis exhibit a preference for the formation of C34:2 and C32:2 species resulting in a high degree of unsaturation in total cellular PtdEtn. In PtdSer, the ratio of unsaturated to saturated fatty acids is much lower than in PtdEtn, suggesting a high species selectivity of PtdSer decarboxylases. Finally, PtdCho is characterized by its higher ratio of C16 to C18 fatty acids compared to PtdSer and PtdEtn. In contrast to biosynthetic steps, import of all three aminoglycerophospholipids into mitochondria of wild-type and mutant cells is not highly specific with respect to species transported. Thus, the species pattern of aminoglycerophospholipids in mitochondria is mainly the result of enzyme specificities, but not of translocation processes involved. Our results support a model that suggests equilibrium transport of aminoglycerophospholipids between mitochondria and microsomes based on membrane contact between the two compartments.  相似文献   

5.
In eukaryotes, phosphatidylserine (PtdSer) can serve as a precursor of phosphatidylethanolamine (PtdEtn) and phosphatidylcholine (PtdCho), which are the major cellular phospholipids. PtdSer synthesis originates in the endoplasmic reticulum (ER) and its subdomain named the mitochondria-associated membrane (MAM). PtdSer is transported to the mitochondria in mammalian cells and yeast, and decarboxylated by PtdSer decarboxylase 1 (Psd1p) to form PtdEtn. A second decarboxylase, Psd2p, is also found in yeast in the Golgi-vacuole. PtdEtn produced by Psd1p and Psd2p can be transported to the ER, where it is methylated to form PtdCho. Organelle-specific metabolism of the aminoglycerophospholipids is a powerful tool for experimentally following lipid traffic that is now enabling identification of new proteins involved in the regulation of this process. Genetic and biochemical experiments demonstrate that transport of PtdSer between the MAM and mitochondria is regulated by protein ubiquitination, which affects events at both membranes. Similar analyses of PtdSer transport to the locus of Psd2p now indicate that a membrane-bound phosphatidylinositol transfer protein and the C2 domain of Psd2p are both required on the acceptor membrane for efficient transport of PtdSer. Collectively, these recent findings indicate that novel multiprotein assemblies on both donor and acceptor membranes participate in interorganelle phospholipid transport.  相似文献   

6.
Phosphatidylethanolamine (PtdEtn) is synthesized by multiple pathways located in different subcellular compartments in yeast. Strains defective in the synthesis of PtdEtn via phosphatidylserine (PtdSer) synthase/decarboxylase are auxotrophic for ethanolamine, which must be transported into the cell and converted to phospholipid by the cytidinediphosphate-ethanolamine-dependent Kennedy pathway. We now demonstrate that yeast strains with psd1Delta psd2Delta mutations, devoid of PtdSer decarboxylases, import and acylate exogenous 1-acyl-2-hydroxyl-sn-glycero-3-phosphoethanolamine (lyso-PtdEtn). Lyso-PtdEtn supports growth and replaces the mitochondrial pool of PtdEtn much more efficiently than and independently of PtdEtn derived from the Kennedy pathway. Deletion of both the PtdSer decarboxylase and Kennedy pathways yields a strain that is a stringent lyso-PtdEtn auxotroph. Evidence for the specific uptake of lyso-PtdEtn by yeast comes from analysis of strains harboring deletions of the aminophospholipid translocating P-type ATPases (APLTs). Elimination of the APLTs, Dnf1p and Dnf2p, or their noncatalytic beta-subunit, Lem3p, blocked the import of radiolabeled lyso-PtdEtn and resulted in growth inhibition of lyso-PtdEtn auxotrophs. In cell extracts, lyso-PtdEtn is rapidly converted to PtdEtn by an acyl-CoA-dependent acyltransferase. These results now provide 1) an assay for APLT function based on an auxotrophic phenotype, 2) direct demonstration of APLT action on a physiologically relevant substrate, and 3) a genetic screen aimed at finding additional components that mediate the internalization, trafficking, and acylation of exogenous lyso-phospholipids.  相似文献   

7.
Two yeast enzymes, Psd1p and Psd2p, catalyze the decarboxylation of phosphatidylserine to produce phosphatidylethanolamine (PtdEtn). Mitochondrial Psd1p provides approximately 90% of total cellular phosphatidylserine decarboxylase activity. When the PSD1 gene is deleted, the resultant strain (psd1Delta) grows normally at 30 degrees C in glucose and in the absence of exogenous choline or ethanolamine. However, at elevated temperature (37 degrees C) or on the nonfermentable carbon source lactate, the growth of psd1Delta strains is minimal without ethanolamine supplementation. The reduced growth and viability correlate with a PtdEtn content below 4% of total phospholipid. These results suggest that there is a critical level of PtdEtn required to support growth. This theory is supported by growth data revealing that a psd1Delta psd2Delta dpl1Delta strain can only grow in the presence of ethanolamine. In contrast, a psd1Delta psd2Delta strain, which makes low levels of PtdEtn from sphingolipid breakdown, can be rescued by ethanolamine, choline, or the ethanolamine analogue propanolamine. psd1Delta psd2Delta cells grown in 2 mm propanolamine accumulate a novel lipid, which was determined by mass spectrometry to be phosphatidylpropanolamine (PtdPrn). PtdPrn can comprise up to 40% of the total phospholipid content in supplemented cells at the expense of phosphatidylcholine and PtdEtn. The absolute level of PtdEtn required for growth when PtdPrn is present appears to be 1% of the total phospholipid content. The essential function of the PtdEtn in the presence of propanolamine does not appear to be the formation of hexagonal phase lipid, insofar as PtdPrn readily forms hexagonal phase structures detectable by (31)P NMR.  相似文献   

8.
In mammalian cells, phosphatidylethanolamine (PtdEtn) is mainly synthesized via the CDP-ethanolamine (Kennedy) pathway and by decarboxylation of phosphatidylserine (PtdSer). However, the extent to which these two pathways contribute to overall PtdEtn synthesis both quantitatively and qualitatively is still not clear. To assess their contributions, PtdEtn species synthesized by the two routes were labeled with pathway-specific stable isotope precursors, d(3)-serine and d(4)-ethanolamine, and analyzed by high performance liquid chromatography-mass spectrometry. The major conclusions from this study are that (i) in both McA-RH7777 and Chinese hamster ovary K1 cells, the CDP-ethanolamine pathway was favored over PtdSer decarboxylation, and (ii) both pathways for PtdEtn synthesis are able to produce all diacyl-PtdEtn species, but most of these species were preferentially made by one pathway. For example, the CDP-ethanolamine pathway preferentially synthesized phospholipids with mono- or di-unsaturated fatty acids on the sn-2 position (e.g. (16:0-18:2)PtdEtn and (18:1-18:2)PtdEtn), whereas PtdSer decarboxylation generated species with mainly polyunsaturated fatty acids on the sn-2 position (e.g. (18:0-20:4)PtdEtn and (18:0-20:5)PtdEtn in McArdle and (18: 0-20:4)PtdEtn and (18:0-22:6)PtdEtn in Chinese hamster ovary K1 cells). (iii) The main PtdEtn species newly synthesized from the Kennedy pathway in the microsomal fraction appeared to equilibrate rapidly between the endoplasmic reticulum and mitochondria. (iv) Newly synthesized PtdEtn species preferably formed in the mitochondria, which is at least in part due to the substrate specificity of the phosphatidylserine decarboxylase, seemed to be retained in this organelle. Our data suggest a potentially essential role of the PtdSer decarboxylation pathway in mitochondrial functioning.  相似文献   

9.
Phosphatidylserine decarboxylase 2 (Psd2p) is currently being used to study lipid trafficking processes in intact and permeabilized yeast cells. The Psd2p contains a C2 homology domain and a putative Golgi retention/localization (GR) domain. C2 domains play important functions in membrane binding and docking reactions involving phospholipids and proteins. We constructed a C2 domain deletion variant (C2Delta) and a GR deletion variant (GRDelta) of Psd2p and examined their effects on in vivo function and catalysis. Immunoblotting confirmed that the predicted immature and mature forms of Psd2(C2Delta)p, Psd2(GRDelta)p, and wild type Psd2p were produced in vivo and that the proteins localized normally. Enzymology revealed that the Psd2(C2Delta)p and Psd2(GRDelta)p were catalytically active and could readily be expressed at levels 10-fold higher than endogenous Psd2p. Both Psd2p and Psd2(GRDelta)p expression complemented the growth defect of psd1Deltapsd2Delta strains and resulted in normal aminoglycerophospholipid metabolism. In contrast, the Psd2(C2Delta)p failed to complement psd1Deltapsd2Delta strains, and [(3)H]serine labeling revealed a severe defect in the formation of PtdEtn in both intact and permeabilized cells, indicative of disruption of lipid trafficking. These findings identify an essential, non-catalytic function of the C2 domain of Psd2p and raise the possibility that it plays a direct role in membrane docking and/or PtdSer transport to the enzyme.  相似文献   

10.
Over the past two decades, most of the genes specifying lipid synthesis and metabolism in yeast have been identified and characterized. Several of these biosynthetic genes and their encoded enzymes have provided valuable tools for the genetic and biochemical dissection of interorganelle lipid transport processes in yeast. One such pathway involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), and its non‐vesicular transport to the site of phosphatidylserine decarboxylase2 (Psd2p) in membranes of the Golgi and endosomal sorting system. In this review, we summarize the identification and characterization of the yeast phosphatidylserine decarboxylases, and examine their role in studies of the transport‐dependent pathways of de novo synthesis of phosphatidylethanolamine (PtdEtn). The emerging picture of the Psd2p‐specific transport pathway is one in which the enzyme and its non‐catalytic N‐terminal domains act as a hub to nucleate the assembly of a multiprotein complex, which facilitates PtdSer transport at membrane contact sites between the ER and Golgi/endosome membranes. After transport to the catalytic site of Psd2p, PtdSer is decarboxylated to form PtdEtn, which is disseminated throughout the cell to support the structural and functional needs of multiple membranes.   相似文献   

11.
In mammalian cells, phosphatidylserine (PtdSer) is synthesized through the action of the endoplasmic reticulum enzymes, PtdSer synthase 1 and 2, and the decarboxylation of PtdSer accounts for the majority of phosphatidylethanolamine (PtdEtn) synthesis. PtdSer decarboxylation for PtdEtn formation occurs in the mitochondria. In addition, the transport of PtdSer from the endoplasmic reticulum to the mitochondria is probably a rate limiting step for PtdEtn synthesis through the decarboxylation pathway. Therefore, the regulation of PtdSer synthesis and its intracellular transport appear to be essential events for the maintenance of normal cellular PtdSer and PtdEtn levels. Here we describe the current understanding of the regulation of PtdSer biosynthesis and the transport of PtdSer from the ER to the mitochondria in mammalian cells.  相似文献   

12.
The translocation of: (i) phosphatidylserine (PtdSer) from its site of synthesis on microsomal membranes to its site decarboxylation in mitochondrial membranes and (ii) phosphatidylethanolamine (PtdEtn) from the mitochondria to its site of methylation to phosphatidylcholine on microsomal membranes has been reconstituted in cell-free systems consisting of rat liver mitochondria and microsomes. Two types of systems have been reconstituted. In one, the translocation of newly made PtdSer or PtdEtn was examined by incubation of microsomes and mitochondria with [3-3H]serine. In the other, membranes were prelabeled with radioactive PtdSer or PtdEtn, and the transfer of these two lipids between mitochondria and microsomes was monitored. For the transfer of both PtdSer from microsomes to mitochondria and PtdEtn from mitochondria to microsomes, newly made phospholipids were translocated much more readily than pre-existing phospholipids. The data suggest that with respect to their translocation between these two organelles, the pools of newly synthesized PtdSer and PtdEtn were distinct from the pools of "older" phospholipids pre-existing in the membranes. Transfer of neither phospholipid in vitro depended on the presence of cytosolic proteins (i.e. soluble phospholipid transfer proteins) or on the hydrolysis of ATP, although there was some stimulation of PtdSer transfer by ATP and several other nucleoside mono-, di-, and triphosphates. The data are consistent with a collision-based mechanism in which the endoplasmic reticulum and mitochondria come into contact with one another, thereby effecting the transfer of phospholipids. The proposal that there is contact between the endoplasmic reticulum and mitochondria is supported by the recent isolation of a membrane fraction having many, but not all, of the properties of the endoplasmic reticulum, but which was isolated in association with mitochondria (Vance, J. E. (1990) J. Biol. Chem. 265, 7248-7256).  相似文献   

13.
The majority of mitochondrial phosphatidylethanolamine (PtdEtn), a phospholipid essential for aerobic growth of yeast cells, is synthesized by phosphatidylserine decarboxylase 1 (Psd1p) in the inner mitochondrial membrane (IMM). To identify components that become essential when the level of mitochondrial PtdEtn is decreased, we screened for mutants that are synthetically lethal with a temperature-sensitive (ts) allele of PSD1. This screen unveiled mutations in PHB1 and PHB2 encoding the two subunits of the prohibitin complex, which is located to the IMM and required for the stability of mitochondrially encoded proteins. Deletion of PHB1 and PHB2 resulted in an increase of mitochondrial PtdEtn at 30 degrees C. On glucose media, phb1Delta psd1Delta and phb2Delta psd1Delta double mutants were rescued only for a limited number of generations by exogenous ethanolamine, indicating that a decrease of the PtdEtn level is detrimental for prohibitin mutants. Similar to phb mutants, deletion of PSD1 destabilizes polypeptides encoded by the mitochondrial genome. In a phb1Delta phb2Delta psd1(ts) strain the destabilizing effect is dramatically enhanced. In addition, the mitochondrial genome is lost in this triple mutant, and nuclear-encoded proteins of the IMM are assembled at a very low rate. At the nonpermissive temperature mitochondria of phb1Delta phb2Delta psd1(ts) were fragmented and aggregated. In conclusion, destabilizing effects triggered by low levels of mitochondrial PtdEtn seem to account for synthetic lethality of psd1Delta with phb mutants.  相似文献   

14.
Phospholipid synthesis in a membrane fraction associated with mitochondria   总被引:23,自引:0,他引:23  
A crude rat liver mitochondrial fraction that was capable of the rapid, linked synthesis of phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) labeled from [3-3H] serine has been fractionated. PtdSer synthase, PtdEtn methyltransferase, and CDP-choline:diacylglycerol cholinephosphotransferase activities were present in the crude mitochondrial preparation but were absent from highly purified mitochondria and could be attributed to the presence of a membrane fraction, X. Thus, previous claims of the mitochondrial location of some of these enzymes might be explained by the presence of fraction X in the mitochondrial preparation. Fraction X had many similarities to microsomes except that it sedimented with mitochondria (at 10,000 x g). However, the specific activities of PtdSer synthase and glucose-6-phosphate phosphatase in fraction X were almost twice that of microsomes, and the specific activities of CTP:phosphocholine cytidylyltransferase and NADPH:cytochrome c reductase in fraction X were much lower than in microsomes. The marker enzymes for mitochondria, Golgi apparatus, plasma membrane, lysosomes, and peroxisomes all had low activities in fraction X. Polyacrylamide gel electrophoresis revealed distinct differences, as well as similarities, among the proteins of fraction X, microsomes, and rough and smooth endoplasmic reticulum. The combined mitochondria-fraction X membranes can synthesize PtdSer, PtdEtn, and PtdCho from serine. Thus, fraction X in combination with mitochondria might be responsible for the observed compartmentalization of a serine-labeled pool of phospholipids previously identified (Vance, J. E., and Vance, D. E. (1986) J. Biol. Chem. 261, 4486-4491) and might be involved in the transfer of lipids between the endoplasmic reticulum and mitochondria.  相似文献   

15.
The synthesis of phosphatidylserine and its translocation to the mitochondria were examined in permeabilized Chinese hamster ovary (CHO)-K1 cells by following the metabolism of a [3H]serine precursor to [3H] phosphatidylserine (PtdSer) and [3H]phosphatidylethanolamine (PtdEtn). In physiological salt solutions approximating the intracellular ionic composition, both the synthesis of PtdSer and its translocation required ATP. The ATP requirement for PtdSer synthesis could be completely bypassed, and that for translocation could be partially bypassed at Ca2+ concentrations 10(3)-10(4) times the intracellular physiological level (i.e. 1 mM). The ATP-dependent synthesis of PtdSer could be inhibited by chelation of Ca2+ with EGTA, inhibition of Ca2+ sequestration with 2,5-di(tert-butyl)hydroquinone, mobilization of sequestered Ca2+ with ionomycin, and competition for [3H]serine with ethanolamine. The inhibition of the ATP-dependent synthesis of PtdSer by the aforementioned inhibitors provided an efficient method to rapidly arrest the incorporation of [3H]serine into [3H]PtdSer. By pulse-labeling the [3H]PtdSer pool and arresting further synthesis with inhibitors, the translocation of nascent PtdSer could be uncoupled from synthesis. The results of these pulse-labeling-arrest experiments provide unambiguous evidence that PtdSer translocation to the mitochondria is not driven by PtdSer synthesis. The addition of apyrase to ATP-supplemented, permeabilized cells abruptly terminates [3H]serine incorporation into [3H]PtdSer and the decarboxylation of [3H]PtdSer to [3H]PtdEtn, thereby demonstrating that a specific ATP requirement exists for the translocation of nascent PtdSer to the mitochondria in permeabilized cells. The translocation of nascent PtdSer to the mitochondria was unaffected by 45-fold dilution of the standard reaction thus indicating that the translocation intermediate was unlikely to be a freely diffusible complex. The requirements for translocation of nascent phosphatidylserine are different from those for the vesicular movement of proteins insofar as the lipid movement does not require cytosol and is unaffected by the addition of Ca2+, GTP, or GTP gamma S. From these studies, we conclude that: 1) the synthesis and translocation of PtdSer can be readily studied in permeabilized cells, 2) the ATP-dependent synthesis of PtdSer is functionally coupled to the ATP-dependent sequestration of Ca2+ by the endoplasmic reticulum or closely related membranes, 3) PtdSer translocation is independent of its synthesis, and 4) there is a specific requirement for ATP in the translocation of PtdSer to the mitochondria.  相似文献   

16.
A genetic screen for ethanolamine auxotrophs has identified a novel mutant allele of the morphogenesis checkpoint dependent (MCD)-4 gene, designated mcd4-P301L. In the presence of a null allele for the phosphatidylserine (PtdSer) decarboxylase 1 gene (psd1 Delta), the mcd4-P301L mutation confers temperature sensitivity for growth on minimal medium. This growth defect is reversed by either ethanolamine or choline supplementation. Incubation of mutant cells with [(3)H]serine followed by analysis of the aminoglycerophospholipids demonstrated a 60% decrease in phosphatidylethanolamine (PtdEtn) formation compared to parental cells. Chemical analysis of phospholipid content after culture under non-permissive conditions also demonstrated a 60% decrease in the PtdEtn pool compared to the parental strain. Although the morphogenesis checkpoint dependent (MCD)-4 gene and its homologues have been shown to play a role in glycosylphosphatidylinositol (GPI) anchor synthesis, the mcd4-P301L strain displayed normal incorporation of [(3)H]inositol into both proteins and lipids. Thus, a defect in GPI anchor synthesis does not explain either the ethanolamine auxotrophy or biochemical phenotype of this mutant. We also examined the growth characteristics and PtdSer metabolism of a previously described mcd4-174 mutant strain, with defects in GPI anchor synthesis, protein modification and cell wall maintenance. The mcd4-174, psd1 Delta strain is a temperature sensitive ethanolamine auxotroph that requires osmotic support for growth, and displays normal PtdEtn formation compared to parental cells. These results reveal important genetic interactions between PSD1 and MCD4 genes, and provide evidence that Mcd4p can modulate aminoglycerophospholipid metabolism, in a way independent of its role in GPI anchor synthesis.  相似文献   

17.
Mitochondrial membrane biogenesis requires the interorganelle transport of phospholipids. Phosphatidylserine (PtdSer) synthesized in the endoplasmic reticulum and related membranes (mitochondria-associated membrane (MAM)) is transported to the mitochondria by unknown gene products and decarboxylated to form phosphatidylethanolamine at the inner membrane by PtdSer decarboxylase 1 (Psd1p). We have designed a screen for strains defective in PtdSer transport (pstA mutants) between the endoplasmic reticulum and Psd1p that relies on isolating ethanolamine auxotrophs in suitable (psd2Delta) genetic backgrounds. Following chemical mutagenesis, we isolated an ethanolamine auxotroph that we designate pstA1-1. Using in vivo and in vitro phospholipid synthesis/transport measurements, we demonstrate that the pstA1-1 mutant is defective in PtdSer transport between the MAM and mitochondria. The gene that complements the growth defect and PtdSer transport defect of the pstA1-1 mutant is MET30, which encodes a substrate recognition subunit of the SCF (suppressor of kinetochore protein 1, cullin, F-box) ubiquitin ligase complex. Reconstitution of different permutations of MAM and mitochondria from wild type and pstA1-1 strains demonstrates that the MET30 gene product affects both organelles. These data provide compelling evidence that interorganelle PtdSer traffic is regulated by ubiquitination.  相似文献   

18.
Externalization of phosphatidylserine (PtdSer) is a common feature of programmed cell death and plays an important role in the recognition and removal of apoptotic cells. In this study with U937 cells, PtdSer synthesis from [(3)H]serine was stimulated and newly synthesized PtdSer was transferred preferentially to cell-free medium vesicles (CFMV) from cells when apoptosis was induced with a topoisomerase I inhibitor, camptothecin (CAM). When CAM-induced apoptosis was blocked by a caspase inhibitor, z-VAD-fmk, stimulation of PtdSer synthesis and movement to CFMV were abolished. In contrast, changes in synthesis and transport of sphingomyelin (SM) or phosphatidylethanolamine (PtdEtn) were minor; total phosphatidylcholine (PtdCho) synthesis was below control levels. All phospholipids appeared in CFMV but PtdSer displayed a 6-fold increase relative to controls compared to 3-fold for SM, 2-fold for PtdCho and 1.8-fold for PtdEtn. Even greater effects on specificity of PtdSer synthesis, movement to CFMV and inhibition by z-VAD-fmk were observed in apoptotic cells induced by UV irradiation or tumor necrosis factor-alpha/cycloheximide treatment. Thus, PtdSer biosynthesis stimulated during apoptosis in U937 cells was specific for this phospholipid and was correlated with caspase-mediated exposure of PtdSer at the cell surface and preferential movement to vesicles during apoptosis.  相似文献   

19.
The action of adriamycin (an inhibitor of precursor protein import into mitochondria) upon phosphatidylserine (PtdSer) import into mitochondria was examined in permeabilized CHO-K1 cells. The decarboxylation of nascent PtdSer to phosphatidylethanolamine was used as an indicator reaction for the lipid translocation process. Adriamycin was without effect upon new PtdSer synthesis but blocked the time- and translocation-dependent decarboxylation of this lipid at the mitochondrial inner membrane of permeabilized cells. The effect of adriamycin was concentration-dependent with an IC50 of 150 microM and was not due to direct inhibition of PtdSer decarboxylase. To determine at which level of PtdSer transport adriamycin was working, the adriamycin-treated permeabilized cells were incubated with 1-acyl-2-[N-(6-[(7-nitrobenz-2-oxa-1,3-diazo-4-yl)] aminocaproyl)]phosphatidyl[1'-14C] serine (NBD-Ptd[1'-14C]Ser), and its decarboxylation was determined. Since the NBD-Ptd[1'-14C]Ser freely partitions into all cell membranes, it can partition into the outer mitochondrial membrane in an ATP-independent fashion. The NBD-Ptd[1'-14C]Ser was readily decarboxylated in an ATP-independent manner in permeabilized cells. Adriamycin inhibited the decarboxylation of NBD-Ptd[1'-14C]Ser, thereby indicating that it can act upon lipid transport processes between the outer and inner mitochondrial membrane.  相似文献   

20.
Three different pathways lead to the synthesis of phosphatidylethanolamine (PtdEtn) in yeast, one of which is localized to the inner mitochondrial membrane. To study the contribution of each of these pathways, we constructed a series of deletion mutants in which different combinations of the pathways are blocked. Analysis of their growth phenotypes revealed that a minimal level of PtdEtn is essential for growth. On fermentable carbon sources such as glucose, endogenous ethanolaminephosphate provided by sphingolipid catabolism is sufficient to allow synthesis of the essential amount of PtdEtn through the cytidyldiphosphate (CDP)-ethanolamine pathway. On nonfermentable carbon sources, however, a higher level of PtdEtn is required for growth, and the amounts of PtdEtn produced through the CDP-ethanolamine pathway and by extramitochondrial phosphatidylserine decarboxylase 2 are not sufficient to maintain growth unless the action of the former pathway is enhanced by supplementing the growth medium with ethanolamine. Thus, in the absence of such supplementation, production of PtdEtn by mitochondrial phosphatidylserine decarboxylase 1 becomes essential. In psd1Delta strains or cho1Delta strains (defective in phosphatidylserine synthesis), which contain decreased amounts of PtdEtn, the growth rate on nonfermentable carbon sources correlates with the content of PtdEtn in mitochondria, suggesting that import of PtdEtn into this organelle becomes growth limiting. Although morphological and biochemical analysis revealed no obvious defects of PtdEtn-depleted mitochondria, the mutants exhibited an enhanced formation of respiration-deficient cells. Synthesis of glycosylphosphatidylinositol-anchored proteins is also impaired in PtdEtn-depleted cells, as demonstrated by delayed maturation of Gas1p. Carboxypeptidase Y and invertase, on the other hand, were processed with wild-type kinetics. Thus, PtdEtn depletion does not affect protein secretion in general, suggesting that high levels of nonbilayer-forming lipids such as PtdEtn are not essential for membrane vesicle fusion processes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号