首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Pancreatic acini secrete digestive enzymes in response to a variety of secretagogues including CCK and agonists acting via proteinase-activated receptor-2 (PAR2). We employed the CCK analog caerulein and the PAR2-activating peptide SLIGRL-NH(2) to compare and contrast Ca(2+) changes and amylase secretion triggered by CCK receptor and PAR2 stimulation. We found that secretion stimulated by both agonists is dependent on a rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and that this rise in [Ca(2+)](i) reflects both the release of Ca(2+) from intracellular stores and accelerated Ca(2+) influx. Both agonists, at low concentrations, elicit oscillatory [Ca(2+)](i) changes, and both trigger a peak plateau [Ca(2+)](i) change at high concentrations. Although the two agonists elicit similar rates of amylase secretion, the rise in [Ca(2+)](i) elicited by caerulein is greater than that elicited by SLIGRL-NH(2). In Ca(2+)-free medium, the rise in [Ca(2+)](i) elicited by SLIGRL-NH(2) is prevented by the prior addition of a supramaximally stimulating concentration of caerulein, but the reverse is not true; the rise elicited by caerulein is neither prevented nor reduced by prior addition of SLIGRL-NH(2). Both the oscillatory and the peak plateau [Ca(2+)](i) changes that follow PAR2 stimulation are prevented by the phospholipase C (PLC) inhibitor U73122, but U73122 prevents only the oscillatory [Ca(2+)](i) changes triggered by caerulein. We conclude that 1) both PAR2 and CCK stimulation trigger amylase secretion that is dependent on a rise in [Ca(2+)](i) and that [Ca(2+)](i) rise reflects release of calcium from intracellular stores as well as accelerated influx of extracellular calcium; 2) PLC mediates both the oscillatory and the peak plateau rise in [Ca(2+)](i) elicited by PAR2 but only the oscillatory rise in [Ca(2+)](i) elicited by CCK stimulation; and 3) the rate of amylase secretion elicited by agonists acting via different types of receptors may not correlate with the magnitude of the [Ca(2+)](i) rise triggered by those different types of secretagogue.  相似文献   

2.
Ca(2+)/calmodulin-dependent protein (CaM) kinases play an important role in Ca(2+)-mediated secretory mechanisms. Previously, we demonstrated that a CaM kinase II inhibitor KN-62 had a small inhibitory effect on amylase secretion stimulated by CCK. In the present study, we investigated the effects of a myosin light chain kinase (MLCK) inhibitor on amylase secretion and Ca(2+) signaling in rat pancreatic acini. A specific inhibitor of MLCK, wortmannin, inhibited amylase secretion stimulated by CCK-8 (30 pM) in a concentration-dependent manner. Wortmannin (10 microM) had no effects on basal secretion but reduced amylase secretion stimulated by CCK-8 (30 pM) by 67 +/- 3%. Wortmannin inhibited amylase secretion stimulated by calcium ionophore (A23187) and phorbol ester (TPA). Wortmannin also inhibited amylase response to thapsigargin by 76 +/- 8% and to both thapsigargin and TPA by 52 +/- 10%. Ca(2+) oscillations evoked by CCK-8 (10 pM) were inhibited by wortmannin (10 microM). Wortmannin had a little inhibitory effect on an initial rise in [Ca(2+)](i), and abolished a subsequent sustained elevation of [Ca(2+)](i) evoked by 1 nM CCK-8. In conclusion, MLCK plays a crucial role in amylase secretion from pancreatic acini and regulates Ca(2+) entry from the extracellular space.  相似文献   

3.
Bile acids are known to induce Ca(2+) signals in pancreatic acinar cells. We have recently shown that phosphatidylinositol 3-kinase (PI3K) regulates changes in free cytosolic Ca(2+) concentration ([Ca(2+)](i)) elicited by CCK by inhibiting sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). The present study sought to determine whether PI3K regulates bile acid-induced [Ca(2+)](i) responses. In pancreatic acinar cells, pharmacological inhibition of PI3K with LY-294002 or wortmannin inhibited [Ca(2+)](i) responses to taurolithocholic acid 3-sulfate (TLC-S) and taurochenodeoxycholate (TCDC). Furthermore, genetic deletion of the PI3K gamma-isoform also decreased [Ca(2+)](i) responses to bile acids. Depletion of CCK-sensitive intracellular Ca(2+) pools or application of caffeine inhibited bile acid-induced [Ca(2+)](i) signals, indicating that bile acids release Ca(2+) from agonist-sensitive endoplasmic reticulum (ER) stores via an inositol (1,4,5)-trisphosphate-dependent mechanism. PI3K inhibitors increased the amount of Ca(2+) in intracellular stores during the exposure of acinar cells to bile acids, suggesting that PI3K negatively regulates SERCA-dependent Ca(2+) reloading into the ER. Bile acids inhibited Ca(2+) reloading into ER in permeabilized acinar cells. This effect was augmented by phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), suggesting that both bile acids and PI3K act synergistically to inhibit SERCA. Furthermore, inhibition of PI3K by LY-294002 completely inhibited trypsinogen activation caused by the bile acid TLC-S. Our results indicate that PI3K and its product, PIP(3), facilitate bile acid-induced [Ca(2+)](i) responses in pancreatic acinar cells through inhibition of SERCA-dependent Ca(2+) reloading into the ER and that bile acid-induced trypsinogen activation is mediated by PI3K. The findings have important implications for the mechanism of acute pancreatitis since [Ca(2+)](i) increases and trypsinogen activation mediate key pathological processes in this disorder.  相似文献   

4.
5.
Calcium is a key mediator of hormone-induced enzyme secretion in pancreatic acinar cells. At the same time, abnormal Ca(2+) responses are associated with pancreatitis. We have recently shown that inhibition of phosphatidylinositol 3-kinase (PI3-kinase) by LY-294002 and wortmannin, as well as genetic deletion of PI3-kinase-gamma, regulates Ca(2+) responses and the Ca(2+)-sensitive trypsinogen activation in pancreatic acinar cells. The present study sought to determine the mechanisms of PI3-kinase involvement in Ca(2+) responses induced in these cells by CCK and carbachol. The PI3-kinase inhibitors inhibited both Ca(2+) influx and mobilization from intracellular stores induced by stimulation of acini with physiological and pathological concentrations of CCK, as well as with carbachol. PI3-kinase inhibition facilitated the decay of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) oscillations observed in individual acinar cells. The PI3-kinase inhibitors decreased neither CCK-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] production nor Ins(1,4,5)P(3)-induced Ca(2+) mobilization, suggesting that the effect of PI3-kinase inhibition is not through Ins(1,4,5)P(3) or Ins(1,4,5)P(3) receptors. PI3-kinase inhibition did not affect Ca(2+) mobilization induced by thapsigargin, a specific inhibitor of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). Moreover, SERCA blockade with thapsigargin abolished the effects of pharmacological and genetic PI3-kinase inhibition on [Ca(2+)](i) signals, suggesting SERCA as a downstream target of PI3-kinase. Both pharmacological PI3-kinase inhibition and genetic deletion of PI3-kinase-gamma increased the amount of Ca(2+) in intracellular stores during CCK stimulation. Finally, addition of the PI3-kinase product phosphatidylinositol 3,4,5-trisphosphate to permeabilized acini significantly attenuated Ca(2+) reloading into the endoplasmic reticulum. The results indicate that PI3-kinase regulates Ca(2+) signaling in pancreatic acinar cells through its inhibitory effect on SERCA.  相似文献   

6.
Liu YJ  Vieira E  Gylfe E 《Cell calcium》2004,35(4):357-365
The glucagon-releasing pancreatic alpha-cells are electrically excitable cells but the signal transduction leading to depolarization and secretion is not well understood. To clarify the mechanisms we studied [Ca(2+)](i) and membrane potential in individual mouse pancreatic alpha-cells using fluorescent indicators. The physiological secretagogue l-adrenaline increased [Ca(2+)](i) causing a peak, which was often followed by maintained oscillations or sustained elevation. The early effect was due to mobilization of Ca(2+) from the endoplasmic reticulum (ER) and the late one to activation of store-operated influx of the ion resulting in depolarization and Ca(2+) influx through voltage-dependent L-type channels. Consistent with such mechanisms, the effects of adrenaline on [Ca(2+)](i) and membrane potential were mimicked by inhibitors of the sarco(endo)plasmic reticulum Ca(2+) ATPase. The alpha-cells express ATP-regulated K(+) (K(ATP)) channels, whose activation by diazoxide leads to hyperpolarization. The resulting inhibition of the voltage-dependent [Ca(2+)](i) response to adrenaline was reversed when the K(ATP) channels were inhibited by tolbutamide. However, tolbutamide alone rarely affected [Ca(2+)](i), indicating that the K(ATP) channels are normally closed in mouse alpha-cells. Glucose, which is the major physiological inhibitor of glucagon secretion, hyperpolarized the alpha-cells and inhibited the late [Ca(2+)](i) response to adrenaline. At concentrations as low as 3mM, glucose had a pronounced stimulatory effect on Ca(2+) sequestration in the ER amplifying the early [Ca(2+)](i) response to adrenaline. We propose that adrenaline stimulation and glucose inhibition of the alpha-cell involve modulation of a store-operated current, which controls a depolarizing cascade leading to opening of L-type Ca(2+) channels. Such a control mechanism may be unique among excitable cells.  相似文献   

7.
Basic fibroblast growth factor (bFGF) induced a marked increase in the levels of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and a rapid rise in cytosolic free calcium [Ca2+]i levels in rat pancreatic acini. The bFGF-mediated calcium transient was not dependent on the presence of extracellular calcium, and was abolished by pretreatment of acini with carbachol. bFGF stimulated amylase release in pancreatic acini in a monophasic, dose-dependent manner, and this effect was blocked by neutralizing anti-bFGF antibodies. At much higher concentrations, epidermal growth factor (EGF), but not insulin-like growth factor-I (IGF-I), partially mimicked some of the actions of bFGF. These findings suggest that bFGF is a previously unrecognized calcium-mobilizing pancreatic secretagogue that may participate in the regulation of pancreatic exocrine function.  相似文献   

8.
We investigated signal transduction between receptor-operated Ca(2+) influx (ROCI) and Src-related nonreceptor protein tyrosine kinase (PTK) in rat pancreatic acini. CCK and the Ca(2+) ionophore enhanced the Src-related PTK activity, whereas the high-affinity CCK-A receptor agonists, fibroblast growth factor (FGF), and the protein kinase C (PKC) activator had no or little effect. This increase was abolished by eliminating [Ca(2+)](o), loading of the intracellular Ca(2+) chelator, and administering the PTK inhibitor genistein. While genistein inhibited extracellular Ca(2+) or Mn(2+) entry induced by CCK and carbachol, it did not affect intracellular Ca(2+) release and oscillations. CCK dose-dependently increased the Src phosphotransferase activity, which was abolished by inhibitors of G(q) protein, phospholipase C (PLC), and Src, but not by the calmodulin kinase (CaMK) inhibitor. Intensities of the Src band and amounts of tyrosine phosphorylated Src were enhanced by CCK stimulation. Thus, Src cascades appear to be coupled to the low-affinity CCK-A receptor and utilize G(q)-PLC pathways for their activation, independent of PKC and CaMK cascades. The low-affinity CCK-A receptor regulates ROCI via mediation of Src-related PTK and activates Src pathways to cause [Ca(2+)](o)-dependent pancreatic exocytosis.  相似文献   

9.
Intra-acinar cell nuclear factor-kappaB (NF-kappaB) and trypsinogen activation are early events in secretagogue-induced acute pancreatitis. We have studied the relationship between NF-kappaB and trypsinogen activation in rat pancreas. CCK analogue caerulein induces early (within 15 min) parallel activation of both NF-kappaB and trypsinogen in pancreas in vivo as well as in pancreatic acini in vitro. However, NF-kappaB activation can be induced without trypsinogen activation by lipopolysaccharide in pancreas in vivo and by phorbol ester in pancreatic acini in vitro. Stimulation of acini with caerulein after 6 h of culture results in NF-kappaB but not trypsinogen activation. Protease inhibitors (AEBSF, TLCK, and E64d) inhibit both intracellular trypsin activity and NF-kappaB activation in caerulein stimulated acini. A chymotrypsin inhibitor (TPCK) inhibits NF-kappaB activation but not trypsin activity. The proteasome inhibitor MG-132 prevents caerulein-induced NF-kappaB activation but does not prevent trypsinogen activation. These findings indicate that although caerulein-induced NF-kappaB and trypsinogen activation are temporally closely related, they are independent events in pancreatic acinar cells. NF-kappaB activation per se is not required for the development of early acinar cell injury by supramaximal secretagogue stimulation.  相似文献   

10.
The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells.  相似文献   

11.
Acute pancreatitis is a serious and sometimes fatal inflammatory disease of the pancreas without any reliable treatment or imminent cure. In recent years, impaired metabolism and cytosolic Ca(2+) ([Ca(2+)](i)) overload in pancreatic acinar cells have been implicated as the cardinal pathological events common to most forms of pancreatitis, regardless of the precise causative factor. Therefore, restoration of metabolism and protection against cytosolic Ca(2+) overload likely represent key therapeutic untapped strategies for the treatment of this disease. The plasma membrane Ca(2+)-ATPase (PMCA) provides a final common path for cells to "defend" [Ca(2+)](i) during cellular injury. In this paper, we use fluorescence imaging to show for the first time that insulin treatment, which is protective in animal models and clinical studies of human pancreatitis, directly protects pancreatic acinar cells from oxidant-induced cytosolic Ca(2+) overload and inhibition of the PMCA. This protection was independent of oxidative stress or mitochondrial membrane potential but appeared to involve the activation of Akt and an acute metabolic switch from mitochondrial to predominantly glycolytic metabolism. This switch to glycolysis appeared to be sufficient to maintain cellular ATP and thus PMCA activity, thereby preventing Ca(2+) overload, even in the face of impaired mitochondrial function.  相似文献   

12.
Mitochondria shape Ca(2+) signaling and exocytosis by taking up calcium during cell activation. In addition, mitochondrial Ca(2+) ([Ca(2+)](M)) stimulates respiration and ATP synthesis. Insulin secretion by pancreatic beta-cells is coded mainly by oscillations of cytosolic Ca(2+) ([Ca(2+)](C)), but mitochondria are also important in excitation-secretion coupling. Here, we have monitored [Ca(2+)](M) in single beta-cells within intact mouse islets by imaging bioluminescence of targeted aequorins. We find an increase of [Ca(2+)](M) in islet-cells in response to stimuli that induce either Ca(2+) entry, such as extracellular glucose, tolbutamide or high K(+), or Ca(2+) mobilization from the intracellular stores, such as ATP or carbamylcholine. Many cells responded to glucose with synchronous [Ca(2+)](M) oscillations, indicating that mitochondrial function is coordinated at the whole islet level. Mitochondrial Ca(2+) uptake in permeabilized beta-cells increased exponentially with increasing [Ca(2+)], and, particularly, it became much faster at [Ca(2+)](C)>2 microM. Since the bulk [Ca(2+)](C) signals during stimulation with glucose are smaller than 2 microM, mitochondrial Ca(2+) uptake could be not uniform, but to take place preferentially from high [Ca(2+)](C) microdomains formed near the mouth of the plasma membrane Ca(2+) channels. Measurements of mitochondrial NAD(P)H fluorescence in stimulated islets indicated that the [Ca(2+)](M) changes evidenced here activated mitochondrial dehydrogenases and therefore they may modulate the function of beta-cell mitochondria. Diazoxide, an activator of K(ATP), did not modify mitochondrial Ca(2+) uptake.  相似文献   

13.
The effects of ethanol administration on exocrine pancreas have been widely studied, but little is known about the effect of dietary fiber in combination with chronic ethanol on exocrine pancreatic function. The aim of this work was to examine the chronic effects of a high fiber diet, ethanol ingestion, and a combination of both on the function of the rat exocrine pancreas. Four groups of rats were fed for six months the following diets: 1.- NW: standard laboratory diet; 2.- FW: high fiber diet (15% cellulose); 3.- NE: standard laboratory diet and 20% ethanol in the drinking water; and 4.- FE: high fiber diet and 20% ethanol. Cholecystokinin (CCK) and acetylcholine (Ach) effects on amylase release and intracellular calcium mobilization in pancreatic acini were studied. In rats fed a 20% ethanol (NE), both the basal amylase release and the basal [Ca(2+)](i) were significantly increased; nonetheless, CCK and Ach-induced amylase release were significantly reduced compared with control rats. Ach- but not CCK-stimulated [Ca(2+)](i) increase in NE rats was significantly decreased compared with NW. In rats fed a combination of ethanol and a high fiber diet (FE) all the parameters under study were not significantly affected compared to control rats (NW). In conclusion, high fiber consumption does not alter the function of the exocrine pancreas. However, it ameliorates the deleterious effect of chronic ethanol consumption on pancreatic amylase secretion and, at least partially, reverses the ethanol-induced alterations on [Ca(2+)](i) in the rat exocrine pancreas.  相似文献   

14.
Protease-activated receptor-2 (PAR-2) is activated when trypsin cleaves its NH(2) terminus to expose a tethered ligand. We previously demonstrated that PAR-2 activates ion channels in pancreatic duct epithelial cells (PDEC). Using real-time optical fluorescent probes, cyan fluorescence protein-Epac1-yellow fluorescence protein for cAMP, PH(PLC-delta1)-enhanced green fluorescent protein for phosphatidylinositol 4,5-bisphosphate, and protein kinase Cgamma (PKCgamma)-C1-yellow fluorescence protein for diacylglycerol, we now define the signaling pathways mediating PAR-2 effect in dog PDEC. Although PAR-2 activation does not stimulate a cAMP increase, it induces phospholipase C to hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol. Intracellular Ca(2+) mobilization from inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores and a subsequent Ca(2+) influx through store-operated Ca(2+) channels cause a biphasic increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), measured with Indo-1 dye. Single-cell amperometry demonstrated that this increase in [Ca(2+)](i) in turn causes a biphasic increase in exocytosis. A protein kinase assay revealed that trypsin also activates PKC isozymes to stimulate additional exocytosis. Paralleling the increased exocytosis, mucin secretion from PDEC was also induced by trypsin or the PAR-2 activating peptide. Consistent with the serosal localization of PAR-2, 1 microm luminal trypsin did not induce exocytosis in polarized PDEC monolayers; on the other hand, 10 microm trypsin at 37 degrees C damaged the epithelial barrier sufficiently so that it could reach and activate the serosal PAR-2 to stimulate exocytosis. Thus, in PDEC, PAR-2 activation increases [Ca(2+)](i) and activates PKC to stimulate exocytosis and mucin secretion. These functions may mediate the reported protective role of PAR-2 in different models of pancreatitis.  相似文献   

15.
Leukocyte infiltration is an early and critical event in the development of acute pancreatitis. However, the mechanism of leukocyte transmigration into the pancreas and the function of leukocytes in initiating acute pancreatitis are still poorly understood. Here, we studied the role of S100A9 (MRP14), a calcium binding protein specifically released by polymorph nuclear leukocytes (PMN), in the course of acute experimental pancreatitis. Acute pancreatitis was induced by repeated supramaximal caerulein injections in S100A9 deficient or S100A9 wild-type mice. We then determined S100A9 expression, trypsinogen activation peptide (TAP) levels, serum amylase and lipase activities, and tissue myeloperoxidase (MPO) activity. Cell-cell contact dissociation was analyzed in vitro with biovolume measurements of isolated acini after incubation with purified S100A8/A9 heterodimers, and in vivo as measurement of Evans Blue extravasation after intravenous application of S100A8/A9. Pancreatitis induced increased levels of S100A9 in the pancreas. However, infiltration of leukocytes and MPO activity in the lungs and pancreas during acute pancreatitis was decreased in S100A9-deficient mice and associated with significantly lower serum amylase and lipase activities as well as reduced intrapancreatic TAP-levels. Incubation of isolated pancreatic acini with purified S100A8/A9-heterodimers resulted in a rapid dissociation of acinar cell-cell contacts which was highly calcium-dependent. Consistent with these findings, in vivo application of S100A8/A9 in mice was in itself sufficient to induce pancreatic cell-cell contract dissociation as indicated by Evans Blue extravasation. These data show that the degree of intrapancreatic trypsinogen activation is influenced by the extent of leukocyte infiltration into the pancreas which, in turn, depends on the presence of S100A9 that is secreted from PMN. S100A9 directly affects leukocyte tissue invasion and mediates cell contact dissociation via its calcium binding properties.  相似文献   

16.
Aberrant cytosolic Ca(2+) flux in pancreatic acinar cells is critical to the pathological pancreatic zymogen activation observed in acute pancreatitis, but the downstream effectors are not known. In this study, we examined the role of Ca(2+)-activated protein phosphatase 2B (or calcineurin) in zymogen activation. Isolated pancreatic acinar cells were stimulated with supraphysiological caerulein (100 nM) with or without the calcineurin inhibitors FK506 or cell-permeable calcineurin inhibitory peptide (CiP). Chymotrypsin activity was measured as a marker of zymogen activation, and the percent amylase secretion was used as a measure of enzyme secretion. Cytosolic Ca(2+) changes were recorded in acinar cells loaded with the intermediate Ca(2+)-affinity dye fluo-5F using a scanning confocal microscope. A 50% reduction in chymotrypsin activity was observed after pretreatment with 1 microM FK506 or 10 microM CiP. These pretreatments did not affect amylase secretion or the rise in cytosolic Ca(2+) after caerulein stimulation. These findings suggest that calcineurin mediates caerulein-induced intra-acinar zymogen activation but not enzyme secretion or the initial caerulein-induced cytosolic Ca(2+) signal.  相似文献   

17.
This is the first thorough study of refilling of a cortical calcium store in a secretory cell after stimulation in which we combined widely different methodologies. Stimulation of dense-core vesicle ("trichocysts") exocytosis in Paramecium involves a Ca(2+) -influx" superimposed to Ca(2+) -release from cortical stores ("alveolar sacs" (ASs)). In quenched-flow experiments, membrane fusion frequency rose with increasing [Ca(2+)](o) in the medium, from approximately 20-25% at [Ca(2+)](o) < or = 0.25 microM to 100% at [Ca(2+)](o) between 2 and 10 microM, i.e. close to the range of estimated local intracellular [Ca(2+)] during membrane fusion. Next, we analyzed Ca(2+)-specific fluorochrome signals during stimulation under different conditions. Treatment with actin-reactive drugs had no effect on Ca(2+) -signaling. In double trigger experiments, with BAPTA in the second secretagogue application (BAPTA only for stimulation and analysis), the cortical Ca(2+) -signal (due solely to Ca(2+) released from cortical stores) recovered with t(1/2) approximately 65 min. When ASs were analyzed in situ by X-ray microanalysis after different trigger times (+Ca(2+)(o)), t(1/2) for store refilling was similar, approximately 60 min. These values are similar to previously measured 45Ca(2+) -uptake by isolated ASs. In sum we find, (i) exogenous Ca(2+) increases exocytosis/membrane fusion performance with EC(50)=0.7 microM, (ii) Ca(2+) -signaling in this system is not sensitive to actin-reactive drugs, and (iii) refilling of these cortical calcium stores goes on over hours and thus is much slower than expected.  相似文献   

18.
Role of mitochondria in Ca(2+) homeostasis of mouse pancreatic acinar cells   总被引:1,自引:0,他引:1  
The effects of mitochondrial Ca(2+) uptake on cytosolic Ca(2+) concentration ([Ca(2+)](c)) were investigated in mouse pancreatic acinar cells using cytosolic and/or mitochondrial Ca(2+) indicators. When calcium stores of the endoplasmic reticulum (ER) were emptied by prolonged incubation with thapsigargin (Tg) and acetylcholine (ACh), small amounts of calcium could be released into the cytosol (Delta[Ca(2+)](c)=46 +/- 6 nM, n=13) by applying mitochondrial inhibitors (combination of rotenone (R) and oligomycin (O)). However, applications of R/O, soon after the peak of Tg/Ach-induced Ca(2+) transient, produced a larger cytosolic calcium elevation (Delta[Ca(2+)](c)=84 +/- 6 nM, n=9), this corresponds to an increase in the total mitochondrial calcium concentration ([Ca(2+)](m)) by approximately 0.4 mM. In cells pre-treated with R/O or Ru360 (a specific blocker of mitochondrial Ca(2+) uniporter), the decay time-constant of the Tg/ACh-induced Ca(2+) response was prolonged by approximately 40 and 80%, respectively. Tests with the mitochondrial Ca(2+) indicator rhod-2 revealed large increases in [Ca(2+)](m) in response to Tg/ACh applications; this mitochondrial uptake was blocked by Ru360. In cells pre-treated with Ru360, 10nM ACh elicited large global increases in [Ca(2+)](c), compared to control cells in which ACh-induced Ca(2+) signals were localised in the apical region. We conclude that mitochondria are active elements of cellular Ca(2+) homeostasis in pancreatic acinar cells and directly modulate both local and global calcium signals induced by agonists.  相似文献   

19.
To examine mechanisms that might be related to biliary pancreatitis, we examined the effects of pancreatic duct ligation (PDL) with pancreatic stimulation in vivo. PDL alone caused no increase in pancreatic levels of trypsinogen activation peptide (TAP), trypsin, or chymotrypsin and did not initiate pancreatitis. Although bombesin caused zymogen activation within the pancreas, the increases were slight and it did not cause pancreatitis. However, the combination of PDL with bombesin resulted in prominent increases in pancreatic TAP, trypsin, chymotrypsin, and the appearance of TAP in acinar cells and caused pancreatitis. Disruption of the apical actin network in the acinar cell was observed when PDL was combined with bombesin but not with PDL or bombesin alone. These studies suggest that when PDL is combined with pancreatic acinar cell stimulation, it can promote zymogen activation, the retention of active enzymes in acinar cells, and the development of acute pancreatitis.  相似文献   

20.
Trypsin premature activation has been thought to be a key event in the initiation phase of acute pancreatitis. Here we test a hypothesis that a sustained increase of cytosolic Ca(2+) concentration ([Ca(2+)](C)) can trigger K(+) influx into pancreas acinar zymogen granules (ZGs) via a Ca(2+)-activated K(+) channel (K(Ca)), and this influx of K(+) then mobilizes bound-Ca(2+) by K(+)/Ca(2+) ion-exchange to increase free Ca(2+) concentration in the ZGs ([Ca(2+)](G)) and release bound-H(+) by K(+)/H(+) ion-exchange to decrease the pH in ZGs (pH(G)). Both the increase of [Ca(2+)](G) and the decrease of pH(G) will facilitate trypsinogen autoactivation and stabilize active trypsin inside ZGs that could lead to acute pancreatitis. The experimental results are consistent with our hypothesis, suggesting that K(+) induced ion-exchanges play a critical role in the initiation of trypsin premature activation in ZGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号