首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rotation of the sodium ion-driven polar flagellum of Vibrio alginolyticus requires the inner membrane sodium ion channel complex PomA/PomB and the outer membrane components MotX and MotY. None of the detergents used in this study were able to solubilize MotX when it was expressed alone. However, when co-expressed with MotY, MotX was solubilized by some detergents. The change in the solubility of MotX suggests that MotY interacts with MotX. In agreement with this, a pull-down assay showed the association of MotY with MotX. Solubilized MotX and MotY eluted in the void volume from a gel-filtration column, suggesting that MotX and MotY form a large oligomeric structure(s). In the absence of MotY, MotX affected membrane localization of the PomA/PomB complex and of PomB alone but not of PomA alone, suggesting an interaction between MotX and PomB. We propose that MotX exhibits multiple interactions with the other motor components, first with MotY for its localization to the outer membrane and then with the PomA/PomB complex through PomB for the motor rotation.  相似文献   

2.
Rotation of the sodium-driven polar flagella of Vibrio alginolyticus requires four motor proteins: PomA, PomB, MotX and MotY. MotX and MotY, which are unique components of the sodium-driven motor of Vibrio, have been believed to be localized in the inner (cytoplasmic) membrane via their N-terminal hydrophobic segments. Here we show that MotX and MotY colocalize to the outer membrane. Both proteins, when expressed together, were detected in the outer membrane fraction separated by sucrose density gradient centrifugation. As mature MotX and MotY proteins do not have N-terminal hydrophobic segments, the N-termini of the primary translation products must have signal sequences that are removed upon translocation across the inner membrane. Moreover, MotX and MotY require each other for efficient localization to the outer membrane. Based on these lines of evidence, we propose that MotX and MotY form a complex in the outer membrane. This is the first case that describes motor proteins function in the outer membrane for flagellar rotation.  相似文献   

3.
Four proteins, PomA, PomB, MotX, and MotY, appear to be involved in force generation of the sodium-driven polar flagella of Vibrio alginolyticus. Among these, PomA and PomB seem to be associated and to form a sodium channel. By using antipeptide antibodies against PomA or PomB, we carried out immunoprecipitation to verify whether these proteins form a complex and examined the in vivo stabilities of PomA and PomB. As a result, we could demonstrate that PomA and PomB functionally interact with each other.  相似文献   

4.
The bacterial flagellar motor is a molecular machine that couples the influx of specific ions to the generation of the force necessary to drive rotation of the flagellar filament. Four integral membrane proteins, PomA, PomB, MotX, and MotY, have been suggested to be directly involved in torque generation of the Na(+)-driven polar flagellar motor of Vibrio alginolyticus. In the present study, we report the isolation of the functional component of the torque-generating unit. The purified protein complex appears to consist of PomA and PomB and contains neither MotX nor MotY. The PomA/B protein, reconstituted into proteoliposomes, catalyzed (22)Na(+) influx in response to a potassium diffusion potential. Sodium uptake was abolished by the presence of Li(+) ions and phenamil, a sodium channel blocker. This is the first demonstration of a purification and functional reconstitution of the bacterial flagellar motor component involved in torque generation. In addition, this study demonstrates that the Na(+)-driven motor component, PomA and PomB, forms the Na(+)-conducting channel.  相似文献   

5.
The proteins PomA, PomB, MotX, and MotY are essential for the motor function of Na+-driven flagella in Vibrio spp. Both MotY and MotX have the two cysteine residues (one of which is in a conserved tetrapeptide [CQLV]) that are inferred to form an intramolecular disulfide bond. The cysteine mutants of MotY prevented the formation of an intramolecular disulfide bond, which is presumably important for protein stability. Disruption of the disulfide bridge in MotX by site-directed mutagenesis resulted in increased instability, which did not, however, affect the motility of the cells. These lines of evidence suggest that the intramolecular disulfide bonds are involved in the stability of both proteins, but only MotY requires the intramolecular bridge for proper function.  相似文献   

6.
Four motor proteins, MotX, MotY, PomA, and PomB, have been identified as constituents of the Na(+)-driven flagellum of Vibrio species. In this study, the complete motX gene was cloned from Vibrio alginolyticus and shown to complement three mot mutations, motX94, motX115, and motX119, as well as a V. parahaemolyticus motX mutant. The motX94 mutant contains a frameshift at Val86 of MotX, while the motX115 and motX119 mutations comprise substitutions of Ala146 to Val and Gln 194 to amber, respectively. When MotX was overexpressed in Vibrio cells, the amount of MotY detected in the membrane fraction increased, and vice versa, suggesting that MotX and MotY mutually stabilize each other by interacting at the membrane level. When a plasmid containing the motX gene was introduced into motY mutants NMB117 (motY117) and VIO542 (motY542), the mutations were suppressed. In contrast, motY could not cause the recovery of any swarm-defective motX mutants studied. Considering the above evidence, we propose that MotX is more directly involved than MotY in the mechanical functioning of the Na(+)-type flagellar motor, and that MotY may stabilize MotX to support its interaction with other Mot proteins.  相似文献   

7.
The bacterial flagellar motor is a tiny molecular machine that uses a transmembrane flux of H(+) or Na(+) ions to drive flagellar rotation. In proton-driven motors, the membrane proteins MotA and MotB interact via their transmembrane regions to form a proton channel. The sodium-driven motors that power the polar flagellum of Vibrio species contain homologs of MotA and MotB, called PomA and PomB. They require the unique proteins MotX and MotY. In this study, we investigated how ion selectivity is determined in proton and sodium motors. We found that Escherichia coli MotA/B restore motility in DeltapomAB Vibrio alginolyticus. Most hypermotile segregants isolated from this weakly motile strain contain mutations in motB. We constructed proteins in which segments of MotB were fused to complementary portions of PomB. A chimera joining the N terminus of PomB to the periplasmic C terminus of MotB (PotB7(E)) functioned with PomA as the stator of a sodium motor, with or without MotX/Y. This stator (PomA/PotB7(E)) supported sodium-driven motility in motA or motB E.coli cells, and the swimming speed was even higher than with the original stator of E.coli MotA/B. We conclude that the cytoplasmic and transmembrane domains of PomA/B are sufficient for sodium-driven motility. However, MotA expressed with a B subunit containing the N terminus of MotB fused to the periplasmic domain of PomB (MomB7(E)) supported sodium-driven motility in a MotX/Y-dependent fashion. Thus, although the periplasmic domain of PomB is not necessary for sodium-driven motility in a PomA/B motor, it can convert a MotA/B proton motor into a sodium motor.  相似文献   

8.
Four integral membrane proteins, PomA, PomB, MotX, and MotY, are thought to be directly involved in torque generation of the Na(+)-driven polar flagellar motor of Vibrio alginolyticus. Our previous study showed that PomA and PomB form a complex, which catalyzes sodium influx in response to a potassium diffusion potential. PomA forms a stable dimer when expressed in a PomB null mutant. To explore the possible functional dependence of PomA domains in adjacent subunits, we prepared a series of PomA dimer fusions containing different combinations of wild-type or mutant subunits. Introduction of the mutation P199L, which completely inactivates flagellar rotation, into either the first or the second half of the dimer abolished motility. The P199L mutation in monomeric PomA also altered the PomA-PomB interaction. PomA dimer with the P199L mutation even in one subunit also had no ability to interact with PomB, indicating that the both subunits in the dimer are required for the functional interaction between PomA and PomB. Flagellar rotation by wild-type PomA dimer was completely inactivated by phenamil, a sodium channel blocker. However, activity was retained in the presence of phenamil when either half of the dimer was replaced with a phenamil-resistant subunit, indicating that both subunits must bind phenamil for motility to be fully inhibited. These observations demonstrate that both halves of the PomA dimer function together to generate the torque for flagellar rotation.  相似文献   

9.
We have shown that a hybrid motor consisting of proton-type Rhodobacter sphaeroides MotA and sodium-type VIBRIO: alginolyticus PomB, MotX and MotY, can work as a sodium-driven motor in VIBRIO: cells. In this study, we tried to substitute the B subunits, which contain a putative ion-binding site in the transmembrane region. Rhodobacter sphaeroides MotB did not work with either MotA or PomA in Vibrio cells. Therefore, we constructed chimeric proteins (MomB), which had N-terminal MotB and C-terminal PomB. MomB proteins, with the entire transmembrane region derived from the H(+)-type MotB, gave rise to an Na(+) motor with MotA. The other two MomB proteins, in which the junction sites were within the transmembrane region, also formed Na(+) motors with PomA, but were changed for Na(+) or Li(+) specificity. These results show that the channel part consisting of the transmembrane regions from the A and B subunits can interchange Na(+)- and H(+)-type subunits and this can affect the ion specificity. This is the first report to have changed the specificity of the coupling ions in a bacterial flagellar motor.  相似文献   

10.
The marine bacterium Vibrio alginolyticus has four motor components, PomA, PomB, MotX, and MotY, responsible for its Na(+)-driven flagellar rotation. PomA and PomB are integral inner membrane proteins having four and one transmembrane segments (TMs), respectively, which are thought to form an ion channel complex. First, site-directed Cys mutagenesis was systematically performed from Asp-24 to Glu-41 of PomB, and the resulting mutant proteins were examined for susceptibility to a sulfhydryl reagent. Secondly, the Cys substitutions at the periplasmic boundaries of the PomB TM (Ser-38) and PomA TMs (Gly-23, Ser-34, Asp-170, and Ala-178) were combined. Cross-linked products were detected for the combination of PomB-S38C and PomA-D170C mutant proteins. The Cys substitutions in the periplasmic boundaries of PomA TM3 (from Met-169 to Asp-171) and the PomB TM (from Leu-37 to Ser-40) were combined to construct a series of double mutants. Most double mutations reduced the motility, whereas each single Cys substitution slightly affected it. Although the motility of the strain carrying PomA-D170C and PomB-S38C was significantly inhibited, it was recovered by reducing reagent. The strain with this combination showed a lower affinity for Na(+) than the wild-type combination. PomA-D148C and PomB-P16C, which are located at the cytoplasmic boundaries of PomA TM3 and the PomB TM, also formed the cross-linked product. From these lines of evidence, we infer that TM3 of PomA and the TM of PomB are in close proximity over their entire length and that cooperation between these two TMs is required for coupling of Na(+) conduction to flagellar rotation.  相似文献   

11.
The bacterial flagellar motor is a molecular machine that converts ion flux across the membrane into flagellar rotation. The coupling ion is either a proton or a sodium ion. The polar flagellar motor of the marine bacterium Vibrio alginolyticus is driven by sodium ions, and the four protein components, PomA, PomB, MotX, and MotY, are essential for motor function. Among them, PomA and PomB are similar to MotA and MotB of the proton-driven motors, respectively. PomA shows greatest similarity to MotA of the photosynthetic bacterium Rhodobacter sphaeroides. MotA is composed of 253 amino acids, the same length as PomA, and 40% of its residues are identical to those of PomA. R. sphaeroides MotB has high similarity only to the transmembrane region of PomB. To examine whether the R. sphaeroides motor genes can function in place of the pomA and pomB genes of V. alginolyticus, we constructed plasmids including both motA and motB or motA alone and transformed them into missense and null pomA-paralyzed mutants of V. alginolyticus. The transformants from both strains showed restored motility, although the swimming speeds were low. On the other hand, pomB mutants were not restored to motility by any plasmid containing motA and/or motB. Next, we tested which ions (proton or sodium) coupled to the hybrid motor function. The motor did not work in sodium-free buffer and was inhibited by phenamil and amiloride, sodium motor-specific inhibitors, but not by a protonophore. Thus, we conclude that the proton motor component, MotA, of R. sphaeroides can generate torque by coupling with the sodium ion flux in place of PomA of V. alginolyticus.  相似文献   

12.
PomA and PomB are transmembrane proteins that form the stator complex in the sodium-driven flagellar motor of Vibrio alginolyticus and are believed to surround the rotor part of the flagellar motor. We constructed and observed green fluorescent protein (GFP) fusions of the stator proteins PomA and PomB in living cells to clarify how stator proteins are assembled and installed into the flagellar motor. We were able to demonstrate that GFP-PomA and GFP-PomB localized to a cell pole dependent on the presence of the polar flagellum. Localization of the GFP-fused stator proteins required their partner subunit, PomA or PomB, and the C-terminal domain of PomB, which has a peptidoglycan-binding motif. Each of the GFP-fused stator proteins was co-isolated with its partner subunit from detergent-solubilized membrane. From these lines of evidence, we have demonstrated that the stator proteins are incorporated into the flagellar motor as a PomA/PomB complex and are fixed to the cell wall via the C-terminal domain of PomB.  相似文献   

13.
Flagellar motor proteins, PomA and PomB, are essential for converting the sodium motive force into rotational energy in the Na(+)-driven flagella motor of Vibrio alginolyticus. PomA and PomB, which are cytoplasmic membrane proteins, together comprise the stator complex of the motor and form a Na(+) channel. We tried to synthesize PomA and PomB by using the cell-free protein synthesis system, PURESYSTEM. We succeeded in doing so in the presence of liposomes, and showed an interaction between them using the pull-down assay. It seems likely that the proteins are inserted into liposomes and assembled spontaneously. The N-terminal region of in vitro synthesized PomB appeared to be lost, but this problem was suppressed by fusing GFP to the N-terminus of PomB or by mutagenesis at Pro-11 or Pro-12. A structural change of the N-terminal region of PomB by these modifications may prevent cleavage during protein synthesis in PURESYSTEM. The mutations did not affect the functioning of the motor. Using this system, biochemical analysis of PomA and PomB can be performed easily and efficiently.  相似文献   

14.
In Vibrio alginolyticus, the flagellar motor can rotate at a remarkably high speed, ca. three to four times faster than the Escherichia coli or Salmonella motor. Here, we found a Vibrio-specific protein, FlgT, in the purified flagellar basal body fraction. Defects of FlgT resulted in partial Fla and Mot phenotypes, suggesting that FlgT is involved in formation of the flagellar structure and generating flagellar rotation. Electron microscopic observation of the basal body of ΔflgT cells revealed a smaller LP ring structure compared to the wild type, and most of the T ring was lost. His6-tagged FlgT could be coisolated with MotY, the T-ring component, suggesting that FlgT may interact with the T ring composed of MotX and MotY. From these lines of evidence, we conclude that FlgT associates with the basal body and is responsible to form an outer ring of the LP ring, named the H ring, which can be distinguished from the LP ring formed by FlgH and FlgI. Vibrio-specific structures, e.g., the T ring and H ring might contribute the more robust motor structure compared to that of E. coli and Salmonella.The bacterial flagellar motor is a rotary nanomotor, which converts the electrochemical potential difference of the coupling ion (H+ or Na+) into rotational energy. Escherichia coli and Salmonella spp. have H+-driven motors, and Vibrio alginolyticus has Na+-driven motors. The rotation speed of the Vibrio motor is remarkably fast, 1,100 Hz on average and up to 1,700 Hz maximum, which is more than four times faster than that of the E. coli motor (24, 27).The flagellum is coordinately and hierarchically constructed from more than 30 related proteins and is composed of rotor, stator, universal joint (hook), and helical filament (22, 43). The rotor part (also called the basal body) contains several rings and a drive shaft, which are named the L, P, MS, and C rings and the rod (1, 14). The L, P, MS, and C rings are thought to be located in positions corresponding to the outer membrane, peptidoglycan layer, cytoplasmic membrane, and cytoplasm, respectively (Fig. (Fig.1).1). Because the LP ring is thought to be a bushing for rotation of the rod, the LP ring seems not to rotate. Analyses of the basal body components of Salmonella were carried out in detail, thereby identifying all of the gene products that are responsible for the substructures. The L, P and MS rings are composed of FlgH, FlgI, and FliF, respectively, while the C ring is composed of three different proteins, FliG, FliM, and FliN, and the rod is composed of FlgB, FlgC, FlgF, and FlgG (14, 17, 18, 39, 44).Open in a separate windowFIG. 1.Model of the flagellar basal body in Vibrio. The H ring and the T ring are shown in dark gray. The LP ring and the other basal body parts are shown in light gray. The PomA/B complex is shown in the medium gray. OM, outer membrane; PG, peptidoglycan layer; IM, inner membrane.The stator part is responsible for torque generation. The torque generation unit of the stator is composed of MotA and MotB in E. coli or PomA and PomB in Vibrio spp. and is a hexamer of four A subunits and two B subunits. They assemble around the rotor and transfer the coupling ions (H+ in E. coli and Na+ in Vibrio) across the membrane due to the electrochemical potential (2, 4, 11, 15, 37, 38, 40, 41). MotX and MotY are species-specific (e.g., Vibrio and Shewanella spp.) stator proteins, and defects in these proteins result in a mot phenotype in which flagellar morphogenesis is normal but the flagella cannot rotate (21, 30, 31, 33, 36). Pseudomonas spp. have only MotY but not MotX; MotY is required for flagellar rotation (12). In Vibrio alginolyticus it has been shown that MotX and MotY are produced as precursor proteins with signal sequences and are translocated to the periplasmic space by a general secretion pathway (35). MotX and MotY form a ring structure called the T ring in addition to the LP ring (Fig. (Fig.1).1). The N-terminal domain of MotY has been suggested to directly associate with the basal body, probably the P ring and MotX (23, 42), and MotX has been suggested to interact with PomB (34). Based on these lines of evidence, the T ring was proposed to be involved in the incorporation and/or stabilization of the PomA/B complex into the motor and provide a connection between the rotor and PomA/B in Vibrio (42).When flagellar basal bodies were purified from various species, the basic structures were similar but the details were different. When we compared the structures from Vibrio cells and E. coli cells, the Vibrio LP rings were bigger than those of E. coli (42). We speculated that additional proteins were present in the Vibrio LP rings. In the present study, we recognized a novel ring structure on the basal body of V. alginolyticus, and it was composed of the product of a recently identified motility gene, flgT. It was reported in that in Vibrio cholerae FlgT is somehow involved in motility and flagellar formation (9, 29). Furthermore, V. cholerae strains with defects in FlgT develop outer membrane blebbing and release the flagellum into the medium, suggesting that FlgT is involved in anchoring the flagellar base on the cell surface (29). We found that FlgT is necessary to form an outer ring of the LP ring, named the H ring (for holding ring of the flagellar base on the cell surface). The H ring is thought to be involved in assembly of MotX and MotY to the basal body.  相似文献   

15.
The stator of the sodium-driven flagellar motor of Vibrio alginolyticus is a membrane protein complex composed of four PomA and two PomB subunits. PomB has a peptidoglycan-binding motif in the C-terminal region. In this study, four kinds of PomB deletions in the C terminus were constructed. None of the deletion proteins restored motility of the DeltapomB strain. The PomA protein was coisolated with all of the PomB derivatives under detergent-solubilized conditions. Homotypic disulfide cross-linking of all of the deletion derivatives through naturally occurring Cys residues was detected. We conclude that the C-terminal region of PomB is essential for motor function but not for oligomerization of PomB with itself or PomA.  相似文献   

16.
The single polar flagellum of Shewanella oneidensis MR-1 is powered by two different stator complexes, the sodium-dependent PomAB and the proton-driven MotAB. In addition, Shewanella harbors two genes with homology to motX and motY of Vibrio species. In Vibrio, the products of these genes are crucial for sodium-dependent flagellar rotation. Resequencing of S. oneidensis MR-1 motY revealed that the gene does not harbor an authentic frameshift as was originally reported. Mutational analysis demonstrated that both MotX and MotY are critical for flagellar rotation of S. oneidensis MR-1 for both sodium- and proton-dependent stator systems but do not affect assembly of the flagellar filament. Fluorescence tagging of MotX and MotY to mCherry revealed that both proteins localize to the flagellated cell pole depending on the presence of the basal flagellar structure. Functional localization of MotX requires MotY, whereas MotY localizes independently of MotX. In contrast to the case in Vibrio, neither protein is crucial for the recruitment of the PomAB or MotAB stator complexes to the flagellated cell pole, nor do they play a major role in the stator selection process. Thus, MotX and MotY are not exclusive features of sodium-dependent flagellar systems. Furthermore, MotX and MotY in Shewanella, and possibly also in other genera, must have functions beyond the recruitment of the stator complexes.Flagellum-mediated swimming motility is a widespread means of locomotion among bacteria. Flagella consist of protein filaments that are rotated at the filament''s base by a membrane-embedded motor (3, 39). Rotation is powered by electrochemical gradients across the cytoplasmic membrane. Thus far, two coupling ions, sodium ions and protons, have been described as energy sources for bacterial flagellar motors (4, 24, 48). Two major components confer the conversion of the ion flux into rotary motion. The first component forms a rotor-mounted ring-like structure at the base of the flagellar basal body and is referred to as the switch complex or the C ring; it is composed of the proteins FliG, FliM, and FliN. The second major component is the stator system, consisting of membrane-embedded stator complexes that surround the C ring (3). Each stator complex is composed of two subunits in a 4:2 stoichiometry. In Escherichia coli, MotA and MotB constitute the stator complex by forming a proton-specific ion channel; the Na+-dependent counterpart in Vibrio species consists of the orthologs PomA and PomB (1, 5, 49). MotA and PomA both have four transmembrane domains and are thought to interact with FliG via a cytoplasmic segment to generate torque (2, 50). Stator function is presumably made possible by a peptidoglycan-binding motif located at the C-terminal portion of MotB and PomB that anchors the stator complex to the cell wall (1, 8). In E. coli, at least 11 stator complexes can be synchronously involved in driving flagellar rotation (35). However, a single complex is sufficient for rotation of the filament (36, 40). Despite its tight attachment to the peptidoglycan, the stator ring system was found to form a surprisingly dynamic complex. It has been suggested that inactive precomplexes of the stators form a membrane-located pool before being activated upon incorporation into the stator ring system around the motor (13, 45). In E. coli, the turnover time of stator complexes can be as short as 30 s (21).In Vibrio species, two auxiliary proteins, designated MotX and MotY, are required for motor function of the Na+-driven polar flagellar system (22, 23, 28, 31). Recently, it was shown that the proteins associate with the flagellar basal body in Vibrio alginolyticus to form an additional structure, the T ring (42). MotX interacts with MotY and the PomAB stator complexes, and both proteins are thought to be crucial for the acquisition of the stators to the motor of the polar flagellum. (29, 30, 42). A MotY homolog is also associated with the proton-dependent motor system of the lateral flagella of V. alginolyticus that is induced under conditions of elevated viscosity (41).We recently showed that Shewanella oneidensis MR-1 uses two different stator systems to drive the rotation of its single polar flagellum, the Na+-dependent PomAB stator and the proton-driven MotAB stator. As suggested by genetic data, the MotAB stator has been acquired by lateral gene transfer, presumably in the process of adaptation from a marine to a freshwater environment (32). The two different stators are recruited to the motor in a way that depends on the sodium ion concentration in the medium. The Na+-dependent PomAB stator is present at the flagellated cell pole regardless of the sodium ion concentration, whereas the proton-dependent MotAB stator functionally localizes only under conditions of low sodium or in the absence of PomAB. It is still unclear how stator selection is achieved and whether additional proteins play a role in this process.Orthologs of motX and motY have been annotated in S. oneidensis MR-1. We thus hypothesized that MotX and MotY might play a role in stator selection in S. oneidensis MR-1. However, the originally published sequence of motY harbors a frameshift that would result in a drastically truncated protein lacking a functionally relevant putative peptidoglycan-binding domain at its C terminus (16, 18). This situation seemed inconsistent with a role for MotY in S. oneidensis MR-1.Here we describe a functional analysis of the MotX and MotY orthologs in S. oneidensis MR-1. We found that motY does not, in fact, contain a frameshift mutation, so that MotY is translated in its full-length form. Both MotX and MotY were essential for Na+-dependent and proton-dependent motility. Therefore, these proteins have a role in S. oneidensis MR-1 that differs from their function in Vibrio species. We also used fusions to the fluorescent protein mCherry for functional localization studies of MotX and MotY.  相似文献   

17.
Vibrio alginolyticus use flagella to swim. A flagellum consists of a filament, hook and basal body. The basal body is made up of a rod and several ring structures. This study investigates the structure of the T ring which is a unique component of the V. alginolyticus sodium ion-driven flagellar basal body. Using Zernike phase contrast (ZPC) cryo-electron tomography, we compared the 3D structures of purified hook-basal bodies (HBB) from a wild-type strain (KK148) and a deletion mutant lacking MotX and MotY (TH3), which are thought to form the T ring. ZPC images of HBBs had highly improved signal-to-noise ratio compared to conventional phase contrast images. We observed the outline of the HBBs from strains KK148 and TH3, and the TH3 mutant was missing its T ring. In the wild-type strain, the T ring was beneath the LP ring and seemed to form a ring shape with diameter of 32 nm.  相似文献   

18.
Bacterial flagellar motors are intricate nanomachines in which the stator units and rotor component FliM may be dynamically exchanged during function. Similar to other bacterial species, the gammaproteobacterium Shewanella putrefaciens CN-32 possesses a complete secondary flagellar system along with a corresponding stator unit. Expression of the secondary system occurs during planktonic growth in complex media and leads to the formation of a subpopulation with one or more additional flagella at random positions in addition to the primary polar system. We used physiological and phenotypic characterizations of defined mutants in concert with fluorescent microscopy on labelled components of the two different systems, the stator proteins PomB and MotB, the rotor components FliM(1) and FliM(2), and the auxiliary motor components MotX and MotY, to determine localization, function and dynamics of the proteins in the flagellar motors. The results demonstrate that the polar flagellum is driven by a Na(+)-dependent FliM(1)/PomAB/MotX/MotY flagellar motor while the secondary system is rotated by a H(+)-dependent FliM(2)/MotAB motor. The components were highly specific for their corresponding motor and are unlikely to be extensively swapped or shared between the two flagellar systems under planktonic conditions. The results have implications for both specificity and dynamics of flagellar motor components.  相似文献   

19.
It is known that PomA and PomB form a complex that functions as a Na(+) channel and generates the torque of the Na(+)-driven flagellar motor of Vibrio alginolyticus. It has been suggested that PomA works as a dimer and that the PomA/PomB complex is composed of four PomA and two PomB molecules. PomA does not have any Cys residues and PomB has three Cys residues. Therefore, a mutant PomB (PomB(cl)) whose three Cys residues were replaced by Ala was constructed and found to be motile as well. We carried out gel filtration analysis and examined the effect of cross-linking between the Cys residues of PomB on the formation of the PomA/PomB complex. In the presence of dithiothreitol (DTT), the elution profile of the PomA/PomB complex was shifted to a lower apparent molecular mass fraction similar to that of the complex of the wild-type PomA and PomB(cl) mutant. Next, to analyze the arrangement of PomA molecules in the complex, we introduced the mutation P172C, which has been shown to cross-link PomA molecules, into tandem PomA dimers (PomA approximately PomA). These mutant dimers showed a dominant-negative effect. DTT could restore the function of PomA approximately P172C and P172C approximately P172C, but not P172C approximately PomA. Interdimer and intradimer cross-linked products were observed; the interdimer cross-linked products could be assembled with PomB. The formation of the interdimer cross-link suggests that the channel complex of the Na(+)-driven flagellar motor is composed of two units of a complex consisting of two PomA and one PomB, and that they might interact with each other via not only PomA but also PomB.  相似文献   

20.
The polar flagellum of Vibrio alginolyticus rotates remarkably fast (up to 1,700 revolutions per second) by using a motor driven by sodium ions. Two genes, motX and motY, for the sodium-driven flagellar motor have been identified in marine bacteria, Vibrio parahaemolyticus and V. alginolyticus. They have no similarity to the genes for proton-driven motors, motA and motB, whose products constitute a proton channel. MotX was proposed to be a component of a sodium channel. Here we identified additional sodium motor genes, pomA and pomB, in V. alginolyticus. Unexpectedly, PomA and PomB have similarities to MotA and MotB, respectively, especially in the predicted transmembrane regions. These results suggest that PomA and PomB may be sodium-conducting channel components of the sodium-driven motor and that the motor part consists of the products of at least four genes, pomA, pomB, motX, and motY. Furthermore, swimming speed was controlled by the expression level of the pomA gene, suggesting that newly synthesized PomA proteins, which are components of a force-generating unit, were successively integrated into the defective motor complexes. These findings imply that Na+-driven flagellar motors may have similar structure and function as proton-driven motors, but with some interesting differences as well, and it is possible to compare and study the coupling mechanisms of the sodium and proton ion flux for the force generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号