首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The human immunodeficiency virus envelope glycoprotein (Env) is composed of surface (gp120) and transmembrane (gp41) subunits, which are noncovalently associated on the viral surface. Human immunodeficiency virus Env mediates viral entry after undergoing a complex series of conformational changes induced by interaction with cellular CD4 and a chemokine coreceptor. These changes propagate from gp120 to gp41 via the gp120-gp41 interface, ultimately exposing gp41 and allowing it to form the trimer-of-hairpins structure that provides the driving force for membrane fusion. Key unresolved questions about the gp120-gp41 interface include the specific regions of gp41 and gp120 involved, the mechanism by which receptor and coreceptor-binding-induced conformational changes in gp120 are communicated to gp41, how trimer-of-hairpins formation is prevented in the prefusogenic gp120-gp41 complex, and, ultimately, the structure of the prefusion gp120-gp41 complex. Here, we develop a biochemical model system that mimics a key portion of the gp120-gp41 interface in the prefusogenic state. We find that a gp41 fragment containing the disulfide bond loop and C-peptide region binds primarily to the gp120 C5 region and that this interaction is incompatible with trimer-of-hairpins formation. Based on these data, we propose that in prefusogenic Env, gp120 sequesters the gp41 C-peptide region away from the N-trimer region, preventing trimer-of-hairpins formation until coreceptor binding disrupts this interface. This model system is a valuable tool for studying the gp120-gp41 complex, conformational changes induced by CD4 and coreceptor binding, and the mechanism of membrane fusion.  相似文献   

2.
CD4-immunoglobulin G2 (CD4-IgG2) incorporates four copies of the D1D2 domains of CD4 into an antibody-like molecule that potently neutralizes primary human immunodeficiency virus type 1. Here electron microscopy was used to explore the structure and functional valence of CD4-IgG2 in complex with gp120. CD4-gamma2, a divalent CD4-immunoglobulin fusion protein, was evaluated in parallel. Whereas CD4-gamma2-gp120 complexes adopted a simple Y-shaped structure, CD4-IgG2-gp120 complexes consisted of four gp120s arrayed about a central CD4-IgG2 molecule, a structure more reminiscent of complement C1q. Molecular modeling corroborated the electron microscopy data and further indicated that CD4-IgG2 but not CD4-gamma2 has significant potential to cross-link gp120-gp41 trimers on the virion surface, suggesting a mechanism for the heightened antiviral activity of CD4-IgG2.  相似文献   

3.
The conserved disulfide-bonded region (DSR) of the human immunodeficiency virus type 1 (HIV-1) fusion glycoprotein, gp41, mediates association with the receptor-binding glycoprotein, gp120. Interactions between gp120, CD4 and chemokine receptors activate the fusion activity of gp41. The introduction of W596L and W610F mutations to the DSR of HIV-1QH1549.13 blocked viral entry and hemifusion without affecting gp120-gp41 association. The fusion defect correlated with inhibition of CD4-triggered gp41 pre-hairpin formation, consistent with the DSR mutations having decoupled receptor-induced conformational changes in gp120 from gp41 activation. Our data implicate the DSR in sensing conformational changes in the gp120-gp41 complex that lead to fusion activation.  相似文献   

4.
Cyanovirin-N (CV-N) is a cyanobacterial protein with potent neutralizing activity against human immunodeficiency virus (HIV). CV-N has been shown to bind HIV type 1 (HIV-1) gp120 with high affinity; moreover, it blocks the envelope glycoprotein-mediated membrane fusion reaction associated with HIV-1 entry. However, the inhibitory mechanism(s) remains unclear. In this study, we show that CV-N blocked binding of gp120 to cell-associated CD4. Consistent with this, pretreatment of gp120 with CV-N inhibited soluble CD4 (sCD4)-dependent binding of gp120 to cell-associated CCR5. To investigate possible effects of CV-N at post-CD4 binding steps, we used an assay that measures sCD4 activation of the HIV-1 envelope glycoprotein for fusion with CCR5-expressing cells. CV-N displayed equivalently potent inhibitory effects when added before or after sCD4 activation, suggesting that CV-N also has blocking action at the level of gp120 interaction with coreceptor. This effect was shown not to be due to CV-N-induced coreceptor down-modulation after the CD4 binding step. The multiple activities against the HIV-1 envelope glycoprotein prompted us to examine other enveloped viruses. CV-N potently blocked infection by feline immunodeficiency virus, which utilizes the chemokine receptor CXCR4 as an entry receptor but is CD4 independent. CV-N also inhibited fusion and/or infection by human herpesvirus 6 and measles virus but not by vaccinia virus. Thus, CV-N has broad-spectrum antiviral activity, both for multiple steps in the HIV entry mechanism and for diverse enveloped viruses. This broad specificity has implications for potential clinical utility of CV-N.  相似文献   

5.
We simulated the docking of human immunodeficiency virus (HIV) with a cell membrane using Brownian adhesive dynamics. The main advance in the current version of Brownian adhesive dynamics is that we use a simple bead-spring model to coarsely approximate the role of gp120 trimerization on HIV docking. We used our simulations to elucidate the effect of env spike density on the rate and probability of HIV binding, as well as the probability that each individual gp120 trimer is fully engaged. We found that for typical CD4 surface densities, viruses expressing as few as 8 env spikes will dock with binding rate constants comparable to viruses expressing 72 spikes. We investigated the role of cellular receptor diffusion on the degree of binding achieved by the virus on both short timescales (where binding has reached steady state but before substantial receptor accumulation in the viral-cell contact zone has occurred) and long timescales (where the system has reached steady state). On short timescales, viruses with 10-23 env trimers most efficiently form fully engaged trimers. On long timescales, all gp120 in the contact area will become bound to CD4. We found that it takes seconds for engaged trimers to cluster CD4 molecules in the contact zone, which partially explains the deleay in viral entry.  相似文献   

6.
It is well known that the gp120-gp41 complex undergoes a conformational change after CD4 binding. It is likely that CD4 undergoes a conformational change as well. Recently, a calculation of the normal modes of the two N-terminal domains of CD4 has shown that a hinge-bending motion of one of these domains with respect to the other may occur. In the present study, results obtained previously are verified with two other normal mode calculations, starting from crystallographic structures of different origin. A scheme describing the first steps of the process leading to cell infection by human immunodeficiency virus (HIV) is then proposed. It rests upon the idea that CD4 and gp120-gp41 conformational changes allow for bringing the cell and virus membranes closer to each other.  相似文献   

7.
J P Moore 《Journal of virology》1993,67(6):3656-3659
The CDR-3 region of CD4 has been proposed to be involved in the fusion reaction between human immunodeficiency virus type 1 (HIV-1) and CD4+ cells, either at a stage involving virus binding or subsequent to virus binding. Part of the evidence for this has been the observation that monoclonal antibodies (MAbs) to CDR-3 block HIV infection potently without strongly inhibiting the binding of monomeric gp120 to CD4. Here I show that, in a system using oligomeric, virion-bound gp120, a MAb to CDR-3 resembles those to CDR-2 in that it inhibits soluble CD4 binding to virions. Consequently, ternary complexes of MAb-soluble CD4-gp120 cannot be detected with CDR-2 MAbs and are detectable only at a very low level with a CDR-3 MAb, but they clearly form when a control MAb to CD4 domain 4 is used. Although not in direct conflict with previously published data on the role of CDR-3 MAbs in the inhibition of HIV-1 infection, these experiments do not support the hypothesis that the CDR-3 region is specifically involved in virus entry at a postbinding stage.  相似文献   

8.
The high-affinity interaction between the envelope glycoprotein (gp120-gp41) of the human immunodeficiency virus type 1 and its receptor, CD4, is important for viral entry into cells and therapeutical approaches based on the soluble form of CD4 (sCD4). Using flow cytometry, we studied the kinetics of binding of sCD4 to gp120-gp41 expressed on the cell surface. sCD4 binding was dependent on sCD4 concentration and temperature and exhibited bimolecular reaction kinetics. Binding was very slow at low sCD4 concentrations (below 0.2 micrograms/ml) and low temperatures (below 13 degrees C) but increased sharply with increasing temperature. The rate constant for association at 37 degrees C (1.5 x 10(5) M-1 s-1) was 14-fold higher than at 4 degrees C, but the affinity of sCD4 to membrane-bound gp120-gp41 was not significantly affected. The activation energy at higher temperatures (28 to 37 degrees C) was less than at lower temperatures (4 to 13 degrees C). After long periods of incubation, we observed a decrease of surface-bound sCD4 and gp120, even at low temperatures, which was attributed to sCD4-induced shedding of gp120. The rate of gp120 shedding was much lower than the rate of sCD4 binding and was dependent on sCD4 concentration and temperature. The finding that sCD4 binding is slow, especially at low sCD4 concentrations, can be of critical importance for efficient blocking of viral infection by sCD4 and should be considered when designing new protocols in the therapy of AIDS patients.  相似文献   

9.
The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.  相似文献   

10.
The entry of human immunodeficiency virus type 1 (HIV-1) into cells is initiated by binding of the viral glycoprotein gp120-gp41 to its cellular receptor CD4. The gp120-CD4 complex formed at the cell surface undergoes conformational changes that may allow its association with an additional membrane component(s) and the eventual formation of the fusion complex. These conformational rearrangements are accompanied by immunological changes manifested by altered reactivity with monoclonal antibodies specific for the individual components and presentation of new epitopes unique to the postbinding complex. In order to analyze the structure and function of the gp120-CD4 complex, monoclonal antibodies were generated from splenocytes of BALB/c mice immunized with soluble CD4-gp120 (IIIB) molecules (J. M. Gershoni, G. Denisova, D. Raviv, N. I. Smorodinsky, and D. Buyaner, FASEB J. 7:1185-1187 1993). One of those monoclonal antibodies, CG10, was found to be strictly complex specific. Here we demonstrate that this monoclonal antibody can significantly enhance the fusion of CD4+ cells with effector cells expressing multiple HIV-1 envelopes. Both T-cell-line-tropic and macrophage-tropic envelope-mediated cell fusion were enhanced, albeit at different optimal doses. Furthermore, infection of HeLa CD4+ (MAGI) cells by HIV-1 LAI, ELI1, and ELI2 strains was increased two- to fourfold in the presence of CG10 monoclonal antibodies, suggesting an effect on viral entry. These findings indicate the existence of a novel, conserved CD4-gp120 intermediate structure that plays an important role in HIV-1 cell fusion.  相似文献   

11.
The binding of CD4 and chemokine receptors to the gp120 attachment glycoprotein of human immunodeficiency virus triggers refolding of the associated gp41 fusion glycoprotein into a trimer of hairpins with a 6-helix bundle (6HB) core. These events lead to membrane fusion and viral entry. Here, we examined the functions of the fusion peptide-proximal polar segment and membrane-proximal Trp-rich region (MPR), which are exterior to the 6HB. Alanine substitution of Trp(666), Trp(672), Phe(673), and Ile(675) in the MPR reduced entry by up to 120-fold without affecting gp120-gp41 association or cell-cell fusion. The L537A polar segment mutation led to the loss of gp120 from the gp120-gp41 complex, reduced entry by approximately 10-fold, but did not affect cell-cell fusion. Simultaneous Ala substitution of Leu(537) with Trp(666), Trp(672), Phe(673), or Ile(675) abolished entry with 50-80% reductions in cell-cell fusion. gp120-gp41 complexes of fusion-defective double mutants were resistant to soluble CD4-induced shedding of gp120, suggesting that their ability to undergo receptor-induced conformational changes was compromised. Consistent with this idea, a representative mutation, L537A/W666A, led to an approximately 80% reduction in lipophilic fluorescent dye transfer between gp120-gp41-expressing cells and receptor-expressing targets, indicating a block prior to the lipid-mixing phase. The L537A/W666A double mutation increased the chymotrypsin sensitivity of the polar segment in a trimer of hairpins model, comprising the 6HB core, the polar segment, and MPR linked N-terminally to maltose-binding protein. The data indicate that the polar segment and MPR of gp41 act synergistically in forming a fusion-competent gp120-gp41 complex and in stabilizing the membrane-interactive end of the trimer of hairpins.  相似文献   

12.
Antibodies to several epitopes of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120-gp41) can synergize in inhibiting HIV-1 infection. In the present study we tested the ability of a monoclonal antibody (MAb), 5A8, which interacts with CD4 domain 2, and other CD4-specific MAbs to synergize with antibodies against gp120. We have previously found that 5A8 inhibits HIV-1 entry without interfering with gp120 binding to CD4, presumably by affecting a postbinding membrane fusion event. Because antibodies to the gp120 V3 loop also affect post-CD4-gp120-binding events, 5A8 was first tested in combination with anti-V3 loop antibodies for possible synergy. The anti-V3 loop antibodies 0.5 beta, NEA-9205, and 110.5 acted synergistically with 5A8 in inhibiting syncytium formation between gp120-gp41- and CD4-expressing cells. A human MAb to an epitope of gp120 involved in CD4 binding, IAM 120-1B1, and another anti-CD4 binding site antibody, PC39.13, also exerted synergistic effects in combination with 5A8. Similarly, an antibody against the gp120 binding site on CD4, 6H10, acted synergistically with an anti-V3 loop antibody, NEA-9205. However, a control anti-CD4 antibody, OKT4, which does not significantly inhibit syncytium formation alone, produced only an additive effect when combined with NEA-9205. Serum from HIV-1-infected individuals, which presumably contains antibodies to the V3 loop and the CD4 binding site, exhibited a strong synergistic effect with 5A8 in inhibiting infection by a patient HIV-1 isolate (0104B) and in blocking syncytium formation. These results indicate that therapeutics based on antibodies affecting both non-gp120 binding and gp120 binding epitopes of the target receptor molecule, CD4, could be efficient in patients who already contain anti-gp120 antibodies and could also be used to enhance passive immunization against HIV-1 in combination with anti-gp120 antibodies.  相似文献   

13.
Metastable conformations of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) must be maintained in the unliganded state of the envelope glycoprotein trimer. Binding of gp120 to the primary receptor, CD4, triggers the transition to an open conformation of the trimer, promoting interaction with the CCR5 chemokine receptor and ultimately leading to gp41-mediated virus-cell membrane fusion and entry. Topological layers in the gp120 inner domain contribute to gp120-trimer association in the unliganded state and to CD4 binding. Here we describe similarities and differences between HIV-1 and SIVmac gp120. In both viruses, the gp120 N/C termini and the inner domain β-sandwich and layer 2 support the noncovalent association of gp120 with the envelope glycoprotein trimer. Layer 1 of the SIVmac gp120 inner domain contributes more to trimer association than the corresponding region of HIV-1 gp120. On the other hand, layer 1 plays an important role in stabilizing the CD4-bound conformation of HIV-1 but not SIVmac gp120 and thus contributes to HIV-1 binding to CD4. In SIVmac, CD4 binding is instead enhanced by tryptophan 375, which fills the Phe 43 cavity of gp120. Activation of SIVmac by soluble CD4 is dependent on tryptophan 375 and on layer 1 residues that determine a tight association of gp120 with the trimer. Distinct biological requirements for CD4 usage have resulted in lineage-specific differences in the HIV-1 and SIV gp120 structures that modulate trimer association and CD4 binding.  相似文献   

14.
Using recombinant and mutant viruses generated between two human immunodeficiency virus type 1 isolates that display differences in cell tropism and sensitivity to soluble CD4 neutralization, we show that these two properties of the virus are regulated by different mechanisms. Whereas there is an association between V3 loop conformation and a particular cellular tropism, soluble CD4 neutralization sensitivity appears to be determined by amino acid differences in the C2 domain of the envelope gp120 that modulate the stability of gp120-gp41 association. Our findings further illustrate the importance of functional interactions among different regions of the envelope gp120 in regulating the biological phenotypes of human immunodeficiency virus and suggest that additional probing of the V3 loop with monoclonal antibodies may identify specific structural features of this loop that determine cell tropism.  相似文献   

15.
The entry of human immunodeficiency virus type 1 into cells proceeds via a fusion mechanism that is initiated by binding of the viral glycoprotein gp120-gp41 to its cellular receptor CD4. Species- and tissue-specific restrictions to viral entry suggested the participation of additional membrane components in the postbinding fusion events. In a previous study (H. Golding, J. Manischewitz, L. Vujcic, R. Blumenthal, and D. Dimitrov, J. Virol. 68:1962-1968, 1994), it was found that phorbol myristate acetate (PMA) inhibits human immunodeficiency virus type 1 envelope-mediated cell fusion by inducing down modulation of an accessory component(s) in the CD4-expressing cells. The fusion inhibition was seen in a variety of cells, including T-cell transfectants expressing engineered CD4 receptors (CD4.401 and CD4.CD8) which are not susceptible to down modulation by PMA treatment. In the current study, it was found that preincubation of A2.01.CD4.401 cells with soluble monomeric gp120 for 1 h at 37 degrees C primed them for PMA-induced down modulation (up to 70%) of the tailless CD4 receptors. The gp120-priming effect was temperature dependent, and the down modulation may have occurred via clathrin-coated pits. Importantly, nonhuman cell lines expressing tailless CD4 molecules did not down modulate their CD4 receptors under the same conditions. The gp120-dependent PMA-induced down modulation of tailless CD4 receptors could be efficiently blocked by the human monoclonal antibodies 48D and 17B, which bind with increased avidity to gp120 that was previously bound to CD4 (M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski, J. Virol. 67:3978-3988, 1993). These findings suggest that gp120 binding to cellular CD4 receptors induces conformational changes leading to association of the gp120-CD4 complexes with accessory transmembrane molecules that are susceptible to PMA-induced down modulation and can target the virions to clathrin-coated pits.  相似文献   

16.
The mature human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P) in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env spikes and I559P Envs.  相似文献   

17.
Recent evidence suggests that primary patient isolates of T-cell-tropic human immunodeficiency virus type 1 (HIV-1 ) have lower affinities for CD4 than their laboratory-adapted derivatives, that this may partly result from tighter gp120-gp41 bonds that constrain the CD4 binding sites of the primary viruses, and that selection for increased CD4 affinity may be the principal factor in laboratory adaptation of HIV-1 (S. L. Kozak, E. J. Platt, N. Madani, F. E. Ferro, Jr., K. Peden, and D. Kabat, J. Virol. 71:873-882, 1997). These conclusions were based on studies with a panel of HeLa-CD4 cell clones that differ in CD4 levels over a broad range, with laboratory-adapted viruses infecting all clones with equal efficiencies and primary T-cell-tropic viruses infecting the clones in proportion to cellular CD4 levels. Additionally, all of the primary and laboratory-adapted T-cell-tropic viruses efficiently used CXCR-4 (fusin) as a coreceptor. To test these conclusions by an independent approach, we studied mutations in the laboratory-adapted virus LAV/IIIB that alter the CD)4 binding region of gp120 and specifically reduce CD4 affinities of free gp 120 by 85 to 98% (U. Olshevsky et al., J. Virol. 64:5701-5707, 1990). These mutations reduced virus titers to widely varying extents that ranged from severalfold to several orders of magnitude and converted infectivities on the HeLa-CD4 panel from CD4 independency to a high degree of CD4 dependency that resembled the behavior of primary patient viruses. The relative infectivities of the mutants correlated closely with their sensitivities to inactivation by soluble CD4 but did not correlate with the relative CD4 affinities of their free gp120s. Most of the mutations did not substantially alter envelope glycoprotein synthesis, processing, expression on cell surfaces, incorporation into virions, or rates of gp120 shedding from virions. However, one mutation (D457R) caused a decrease in gp160 processing by approximately 80%. The fact that several mutations increased rates of spontaneous viral inactivation (especially D368P) suggests that HIV-1 life spans may be determined by structural stabilities of viral envelope glycoproteins. All of the wild-type and mutant viruses were only slowly and inefficiently adsorbed onto cultured CD4-positive cells at 37 degrees C, and the gradual declines in viral titers in the media were caused almost exclusively by spontaneous inactivation rather than by adsorption. The extreme inefficiency with which infectious HIV-1 is able to infect cultured susceptible CD4-positive cells in standard assay conditions casts doubt on previous inferences that the vast majority of retrovirions produced in cultures are noninfectious. Apparent infectivity of T-cell-tropic HIV-1 in culture is limited by productive associations with CD4 and is influenced in an interdependent manner by CD4 affinities of viral gp120-gp41 complexes and quantities of cell surface CD4.  相似文献   

18.
BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.  相似文献   

19.
The HIV-1 envelope glycoproteins are assembled by the trimeric gp120s and gp41s proteins. The gp120 binds sequentially to CD4 and coreceptor for initiating virus entry. Because of noncovalent interaction and heavy glycosylation for envelope glycoproteins, it is highly difficult to determine entire envelope glycoproteins structure now. Such question extremely limits our good understanding of HIV-1 membrane fusion mechanism. Here, a novel and reasonable assembly model of trimeric gp120s and gp41s was proposed based on the conformational dynamics of trimeric gp120-gp41 complex and gp41, respectively. As for gp41, the heptad repeat sequences in the gp41 C-terminal is of enormous flexibility. On the contrary, the heptad repeat sequences in the gp41 N-terminal likely present stable three-helical bundle due to strong nonpolar interaction, and they were predicted to associate three alpha1 helixes from the non-neutralizing face of the gp120 inner domain, which is quite similar to gp41 fusion core structure. Such interaction likely leads to the formation of noncovalent gp120-gp41 complex. In the proposed assembly of trimeric gp120-gp41 complex, three gp120s present not only perfectly complementary and symmetrical distribution around the gp41, but also different flexibility degree in the different structural domains. Thus, the new model can well explain numerous experimental phenomena, present plenty of structural information, elucidate effectively HIV-1 membrane fusion mechanism, and direct to further develop vaccine and novel fusion inhibitors.  相似文献   

20.
The conserved surfaces of the human immunodeficiency virus (HIV)-1 envelope involved in receptor binding represent potential targets for the development of entry inhibitors and neutralizing antibodies. Using structural information on a CD4-gp120-17b antibody complex, we have designed a 27-amino acid CD4 mimic, CD4M33, that presents optimal interactions with gp120 and binds to viral particles and diverse HIV-1 envelopes with CD4-like affinity. This mini-CD4 inhibits infection of both immortalized and primary cells by HIV-1, including primary patient isolates that are generally resistant to inhibition by soluble CD4. Furthermore, CD4M33 possesses functional properties of CD4, including the ability to unmask conserved neutralization epitopes of gp120 that are cryptic on the unbound glycoprotein. CD4M33 is a prototype of inhibitors of HIV-1 entry and, in complex with envelope proteins, a potential component of vaccine formulations, or a molecular target in phage display technology to develop broad-spectrum neutralizing antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号