首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
2.
3.
Du W  Lin H  Chen S  Wu Y  Zhang J  Fuglsang AT  Palmgren MG  Wu W  Guo Y 《Plant physiology》2011,156(4):2235-2243
The Arabidopsis (Arabidopsis thaliana) genome encodes nine Salt Overly Sensitive3 (SOS3)-like calcium-binding proteins (SCaBPs; also named calcineurin B-like protein [CBL]) and 24 SOS2-like protein kinases (PKSs; also named as CBL-interacting protein kinases [CIPKs]). A general regulatory mechanism between these two families is that SCaBP calcium sensors activate PKS kinases by interacting with their FISL motif. In this study, we demonstrated that phosphorylation of SCaBPs by their functional interacting PKSs is another common regulatory mechanism. The phosphorylation site serine-216 at the C terminus of SCaBP1 by PKS24 was identified by liquid chromatography-quadrupole mass spectrometry analysis. This serine residue is conserved within the PFPF motif at the C terminus of SCaBP proteins. Phosphorylation of this site of SCaBP8 by SOS2 has been determined previously. We further showed that CIPK23/PKS17 phosphorylated CBL1/SCaBP5 and CBL9/SCaBP7 and PKS5 phosphorylated SCaBP1 at the same site in vitro and in vivo. Furthermore, the phosphorylation stabilized the interaction between SCaBP and PKS proteins. This tight interaction neutralized the inhibitory effect of PKS5 on plasma membrane H(+)-ATPase activity. These data indicate that SCaBP phosphorylation by their interacting PKS kinases is a critical component of the SCaBP-PKS regulatory pathway in Arabidopsis.  相似文献   

4.
5.
The Arabidopsis calcineurin B-like calcium sensor proteins (AtCBLs) interact with a group of serine-threonine protein kinases (AtCIPKs) in a calcium-dependent manner. Here we identify a 24 amino acid domain (NAF domain) unique to these kinases as being required and sufficient for interaction with all known AtCBLs. Mutation of conserved residues either abolished or significantly diminished the affinity of AtCIPK1 for AtCBL2. Comprehensive two-hybrid screens with various AtCBLs identified 15 CIPKs as potential targets of CBL proteins. Database analyses revealed additional kinases from Arabidopsis and other plant species harbouring the NAF interaction module. Several of these kinases have been implicated in various signalling pathways mediating responses to stress, hormones and environmental cues. Full-length CIPKs show preferential interaction with distinct CBLs in yeast and in vitro assays. Our findings suggest differential interaction affinity as one of the mechanisms generating the temporal and spatial specificity of calcium signals within plant cells and that different combinations of CBL-CIPK proteins contribute to the complex network that connects various extracellular signals to defined cellular responses.  相似文献   

6.
Potassium (K(+)) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K(+) channels remain poorly understood. Here, we show that the calcium (Ca(2+)) sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM) targeting of the K(+) channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering phenotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca(2+)-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca(2+) sensor modulates K(+) channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM.  相似文献   

7.
Calcium serves as a critical messenger in many adaptation and developmental processes. Cellular calcium signals are detected and transmitted by sensor molecules such as calcium-binding proteins. In plants, the calcineurin B-like protein (CBL) family represents a unique group of calcium sensors and plays a key role in decoding calcium transients by specifically interacting with and regulating a family of protein kinases (CIPKs). We report here that the CBL protein CBL10 functions as a crucial regulator of salt tolerance in Arabidopsis. Cbl10 mutant plants exhibited significant growth defects and showed hypersensitive cell death in leaf tissues under high-salt conditions. Interestingly, the Na(+) content of the cbl10 mutant, unlike other salt-sensitive mutants identified thus far, was significantly lower than in the wild type under either normal or high-salt conditions, suggesting that CBL10 mediates a novel Ca(2+)-signaling pathway for salt tolerance. Indeed, the CBL10 protein physically interacts with the salt-tolerance factor CIPK24 (SOS2), and the CBL10-CIPK24 (SOS2) complex is associated with the vacuolar compartments that are responsible for salt storage and detoxification in plant cells. These findings suggest that CBL10 and CIPK24 (SOS2) constitute a novel salt-tolerance pathway that regulates the sequestration/compartmentalization of Na(+) in plant cells. Because CIPK24 (SOS2) also interacts with CBL4 (SOS3) and regulates salt export across the plasma membrane, our study identifies CIPK24 (SOS2) as a multi-functional protein kinase that regulates different aspects of salt tolerance by interacting with distinct CBL calcium sensors.  相似文献   

8.
类钙调磷酸酶B亚基蛋白(calcineurin B-like calcium sensor,CBL)属Ca2+结合蛋白,通过与类钙调磷酸酶B亚基互作蛋白激酶(calcineurin B-like calcium sensor interacting protein kinase,CIPK)互作介导Ca2+信号转导过程。CBL-CIPK信号系统参与了植物对多种逆境胁迫的响应过程。为深入探讨小桐子的抗冷性机制,该研究基于BLAST序列比对的方法,在全基因组水平对小桐子CBLCIPK基因家族进行了鉴定,并对其系统进化、基因结构、表达特性及功能互作进行了解析。结果表明:(1)在小桐子基因组中共鉴定到8个CBL基因与18个CIPK基因,CBL与CIPK蛋白长度分别在211~257 aa与422~484 aa之间,等电点分别在4.65~5.08与6.20~9.26之间。(2)另外,CBL基因家族都包含8~10个外显子,而CIPK基因家族分为显著的1~2个外显子(11个基因)和12~15个外显子(7个基因)两类。(3)多序列比对显示,小桐子CBL蛋白都鉴定到1个由14个氨基酸残基组成的非典型EF-hand基序与3个取代程度不同的典型EF-hand基序,而CIPK蛋白都包含N端激酶结构域与C端自抑制FISL/NAF结构域。(4)染色体定位显示,26个小桐子CBLCIPK基因不均匀地分布于9条染色体上。(5)转录组数据分析表明,大部分CBLCIPK基因在小桐子叶片、根及种子中都有高水平表达,其中JcCIPK14与JcCIPK18在低温处理时上调表达量达到了极显著水平(P<0.01),参与小桐子的抗冷性过程。综上结果为开展小桐子CBLCIPK基因的功能鉴定与低温信号转导机制研究提供了借鉴。  相似文献   

9.
Calcium signalling involves sensor proteins that decode temporal and spatial changes in cellular Ca2+ concentration. Calcineurin B-like proteins (CBLs) represent a unique family of plant calcium sensors that relay signals by interacting with a family of protein kinases, designated as CBL-interacting protein kinases (CIPKs). In a reverse genetic screen for altered drought tolerance, we identified a loss-of-function allele of CIPK23 as exhibiting a drought-tolerant phenotype. In the cipk23 mutant, reduced transpirational water loss from leaves coincides with enhanced ABA sensitivity of guard cells during opening as well as closing reactions, without noticeable alterations in ABA content in the plant. We identified the calcium sensors CBL1 and CBL9 as CIPK23-interacting proteins that targeted CIPK23 to the plasma membrane in vivo. Expression analysis of the CIPK23, CBL1 and CBL9 genes suggested that they may function together in diverse tissues, including guard cells and root hairs. In addition, expression of the CIPK23 gene was induced by low-potassium conditions, implicating a function of this gene product in potassium nutrition. Indeed, cipk23 mutants displayed severe growth impairment on media with low concentrations of potassium. This phenotype correlates with a reduced efficiency of K+ uptake into the roots. In support of the conclusion that CBL1 and CBL9 interact with and synergistically serve as upstream regulators of CIPK23, the cbl1 cbl9 double mutant, but not the cbl1 or cbl9 single mutants, exhibit altered phenotypes for stomatal responses and low-potassium sensitivity. Together with the recent identification of the potassium channel AKT1 as a target of CIPK23, these results imply that plasma membrane-localized CBL1- and CBL9-CIPK23 complexes simultaneously regulate K+ transport processes in roots and in stomatal guard cells.  相似文献   

10.
The specificity of intracellular signaling and developmental patterning in biological systems relies on selective interactions between different proteins in specific cellular compartments. The identification of such protein-protein interactions is essential for unraveling complex signaling and regulatory networks. Recently, bimolecular fluorescence complementation (BiFC) has emerged as a powerful technique for the efficient detection of protein interactions in their native subcellular localization. Here we report significant technical advances in the methodology of plant BiFC. We describe a series of versatile BiFC vector sets that are fully compatible with previously generated vectors. The new vectors enable the generation of both C-terminal and N-terminal fusion proteins and carry optimized fluorescent protein genes that considerably improve the sensitivity of BiFC. Using these vectors, we describe a multicolor BiFC (mcBiFC) approach for the simultaneous visualization of multiple protein interactions in the same cell. Application to a protein interaction network acting in calcium-mediated signal transduction revealed the concurrent interaction of the protein kinase CIPK24 with the calcium sensors CBL1 and CBL10 at the plasma membrane and tonoplast, respectively. We have also visualized by mcBiFC the simultaneous formation of CBL1/CIPK1 and CBL9/CIPK1 protein complexes at the plasma membrane. Thus, mcBiFC provides a useful new tool for exploring complex regulatory networks in plants.  相似文献   

11.
The family of calcineurin B-like (CBL) proteins is a unique group of Ca2+ sensors in plants. CBLs relay the calcium signal by interacting with and regulating the family of CBL-interacting protein kinases (CIPKs). Extensive studies have demonstrated that the CBL-CIPK complexes mediate plant responses to a variety of external stresses. However, there are few reports on the CBL-CIPK involved in cold stress responses. In this study, we analyzed expression of CIPK7 and CBL1 in Arabidopsis during cold treatments. Expression of CIPK7 was induced by cold, and CIPK7 interacted with CBL1 in vitro. Moreover, affinity chromatography purification of CIPK7 from Arabidopsis plants using CBL1 suggested that CIPK7 may associate with CBL1 in vivo. Expression of CBL1 was cold inducible, and CBL1 had a role in regulating cold response. By comparing expression patterns of CIPK7 between wild-type and cbl1 mutant plants, we found the induction of CIPK7 by cold stress was influenced by CBL1. This is the first report to demonstrate that CIPK7 may play a role in cold response via its interaction with CBL1.  相似文献   

12.
During adaptation and developmental processes cells respond through nonlinear calcium‐decoding signaling cascades, the principal components of which have been identified. However, the molecular mechanisms generating specificity of cellular responses remain poorly understood. Calcineurin B‐like (CBL) proteins contribute to decoding calcium signals by specifically interacting with a group of CBL‐interacting protein kinases (CIPKs). Here, we report the subcellular localization of all 10 CBL proteins from Arabidopsis and provide a cellular localization matrix of a plant calcium signaling network. Our findings suggest that individual CBL proteins decode calcium signals not only at the plasma membrane and the tonoplast, but also in the cytoplasm and nucleus. We found that distinct targeting signals located in the N‐terminal domain of CBL proteins determine the spatially discrete localization of CBL/CIPK complexes by COPII‐independent targeting pathways. Our findings establish the CBL/CIPK signaling network as a calcium decoding system that enables the simultaneous specific information processing of calcium signals emanating from different intra‐ and extracellular stores, and thereby provides a mechanism underlying the specificity of cellular responses.  相似文献   

13.
Calcium is a crucial messenger in many growth and developmental processes in plants. The central mechanism governing how plant cells perceive and respond to environmental stimuli is calcium signal transduction, a process through which cellular calcium signals are recognized, decoded, and transmitted to elicit downstream responses. In the initial decoding of calcium signals, Ca2+ sensor proteins that bind Ca2+ and activate downstream signaling components are implicated, thereby regulating specific physiological and biochemical processes. After calcineurin B-like proteins (CBLs) sense these Ca2+ signatures, these proteins interact selectively with CBL-interacting protein kinases (CIPKs), thereby forming CBL/CIPK complexes, which are involved in decoding calcium signals. Therefore, specificity, diversity, and complexity are the main characteristics of the CBL-CIPK signaling system. However, additional CBLs, CIPKs, and CBL/CIPK complexes remain to be identified in plants, and the specific functions of their abiotic and biotic stress signaling will need to be further dissected. Therefore, a much-needed synthesis of recent findings is important to further the study of CBL-CIPK signaling systems. Here, we review the structure of CBLs and CIPKs, discuss the current knowledge of CBL–CIPK pathways that decode calcium signals in Arabidopsis, and link plant responses to a variety of environmental stresses with specific CBL/CIPK complexes. This will provide a foundation for future research on genetically engineered resistant plants with enhanced tolerance to various environmental stresses.  相似文献   

14.
15.
Kim KN  Cheong YH  Gupta R  Luan S 《Plant physiology》2000,124(4):1844-1853
Calcium is a critical component in a number of plant signal transduction pathways. A new family of calcium sensors called calcineurin B-like proteins (AtCBLs) have been recently identified from Arabidopsis. These calcium sensors have been shown to interact with a family of protein kinases (CIPKs). Here we report that each individual member of AtCBL family specifically interacts with a subset of CIPKs and present structural basis for the interaction and for the specificity underlying these interactions. Although the C-terminal region of CIPKs is responsible for interaction with AtCBLs, the N-terminal region of CIPKs is also involved in determining the specificity of such interaction. We have also shown that all three EF-hand motifs in AtCBL members are required for the interaction with CIPKs. Several AtCBL members failed to interact with any of the CIPKs presented in this study, suggesting that these AtCBL members either have other CIPKs as targets or they target distinct proteins other than CIPKs. These results may provide structural basis for the functional specificity of CBL family of calcium sensors and their targets.  相似文献   

16.
Phosphorylase kinase (PhK) is a large hexadecameric complex that catalyzes the phosphorylation and activation of glycogen phosphorylase (GP). It consists in four copies each of a catalytic subunit (gamma) and three regulatory subunits (alpha beta delta). Delta corresponds to endogenous calmodulin, whereas little is known on the molecular architecture of the large alpha and beta subunits, which probably arose from gene duplication. Here, using sensitive methods of sequence analysis, we show that the C-terminal domain (named domain D) of these alpha and beta subunits can be significantly related to calcineurin B-like (CBL) proteins. CBL are members of the EF-hand family that are involved in the regulation of plant-specific kinases of the CIPK/PKS family, and relieve autoinhibition of their target kinases by binding to their regulatory region. The relationship highlighted here suggests that PhK alpha and/or beta domain D may be involved in a similar regulation mechanism, a hypothesis which is supported by the experimental observation of a direct interaction between domain D of PhKalpha and the regulatory region of the Gamma subunit. This finding, together the identification of significant similarities of domain D with the preceding domain C, may help to understand the molecular mechanism by which PhK alpha and/or beta domain D might regulate PhK activity.  相似文献   

17.
Gong D  Guo Y  Jagendorf AT  Zhu JK 《Plant physiology》2002,130(1):256-264
The Arabidopsis Salt Overly Sensitive 2 (SOS2) gene encodes a serine/threonine (Thr) protein kinase that has been shown to be a critical component of the salt stress signaling pathway. SOS2 contains a sucrose-non-fermenting protein kinase 1/AMP-activated protein kinase-like N-terminal catalytic domain with an activation loop and a unique C-terminal regulatory domain with an FISL motif that binds to the calcium sensor Salt Overly Sensitive 3. In this study, we examined some of the biochemical properties of the SOS2 in vitro. To determine its biochemical properties, we expressed and isolated a number of active and inactive SOS2 mutants as glutathione S-transferase fusion proteins in Escherichia coli. Three constitutively active mutants, SOS2T168D, SOS2T168D Delta F, and SOS2T168D Delta 308, were obtained previously, which contain either the Thr-168 to aspartic acid (Asp) mutation in the activation loop or combine the activation loop mutation with removal of the FISL motif or the entire regulatory domain. These active mutants exhibited a preference for Mn(2+) relative to Mg(2+) and could not use GTP as phosphate donor for either substrate phosphorylation or autophosphorylation. The three enzymes had similar peptide substrate specificity and catalytic efficiency. Salt overly sensitive 3 had little effect on the activity of the activation loop mutant SOS2T168D, either in the presence or absence of calcium. The active mutant SOS2T168D Delta 308 could not transphosphorylate an inactive protein (SOS2K40N), which indicates an intramolecular reaction mechanism of SOS2 autophosphorylation. Interestingly, SOS2 could be activated not only by the Thr-168 to Asp mutation but also by a serine-156 or tyrosine-175 to Asp mutation within the activation loop. Our results provide insights into the regulation and biochemical properties of SOS2 and the SOS2 subfamily of protein kinases.  相似文献   

18.
In Arabidopsis thaliana, the calcium binding protein Salt Overly Sensitive3 (SOS3) interacts with and activates the protein kinase SOS2, which in turn activates the plasma membrane Na(+)/H(+) antiporter SOS1 to bring about sodium ion homeostasis and salt tolerance. Constitutively active alleles of SOS2 can be constructed in vitro by changing Thr(168) to Asp in the activation loop of the kinase catalytic domain and/or by removing the autoinhibitory FISL motif from the C-terminal regulatory domain. We expressed various activated forms of SOS2 in Saccharomyces cerevisiae (yeast) and in A. thaliana and evaluated the salt tolerance of the transgenic organisms. Experiments in which the activated SOS2 alleles were coexpressed with SOS1 in S. cerevisiae showed that the kinase activity of SOS2 is partially sufficient for SOS1 activation in vivo, and higher kinase activity leads to greater SOS1 activation. Coexpression of SOS3 with SOS2 forms that retained the FISL motif resulted in more dramatic increases in salt tolerance. In planta assays showed that the Thr(168)-to-Asp-activated mutant SOS2 partially rescued the salt hypersensitivity in sos2 and sos3 mutant plants. By contrast, SOS2 lacking only the FISL domain suppressed the sos2 but not the sos3 mutation, whereas truncated forms in which the C terminus had been removed could not restore the growth of either sos2 or sos3 plants. Expression of some of the activated SOS2 proteins in wild-type A. thaliana conferred increased salt tolerance. These studies demonstrate that the protein kinase activity of SOS2 is partially sufficient for activation of SOS1 and for salt tolerance in vivo and in planta and that the kinase activity of SOS2 is limiting for plant salt tolerance. The results also reveal an essential in planta role for the SOS2 C-terminal regulatory domain in salt tolerance.  相似文献   

19.
Intracellular release of calcium ions belongs to the earliest events in cellular stress perception. The molecular mechanisms integrating signals from different environmental cues and translating them into an optimized response are largely unknown. We report here the functional characterization of CIPK1, a protein kinase interacting strongly with the calcium sensors CBL1 and CBL9. Comparison of the expression patterns indicates that the three proteins execute their functions in the same tissues. Physical interaction of CIPK1 with CBL1 and CBL9 targets the kinase to the plasma membrane. We show that, similarly to loss of CBL9 function, mutation of either CBL1 or CIPK1 renders plants hypersensitive to osmotic stress. Remarkably, in contrast to the cbl1 mutant and similarly to the cbl9 mutant, loss of CIPK1 function impairs abscisic acid (ABA) responsiveness. We therefore suggest that, by alternative complex formation with either CBL1 or CBL9, the kinase CIPK1 represents a convergence point for ABA-dependent and ABA-independent stress responses. Based on our genetic, physiological and protein-protein interaction data, we propose a general model for information processing in calcium-regulated signalling networks.  相似文献   

20.
Oh SI  Park J  Yoon S  Kim Y  Park S  Ryu M  Nam MJ  Ok SH  Kim JK  Shin JS  Kim KN 《Plant physiology》2008,148(4):1883-1896
Calcineurin B-like (CBL) proteins represent a unique family of calcium sensors in plant cells. Sensing the calcium signals elicited by a variety of abiotic stresses, CBLs transmit the information to a group of serine/threonine protein kinases (CBL-interacting protein kinases [CIPKs]), which are currently known as the sole targets of the CBL family. Here, we report that the CBL3 member of this family has a novel interaction partner in addition to the CIPK proteins. Extensive yeast two-hybrid screenings with CBL3 as bait identified an interesting Arabidopsis (Arabidopsis thaliana) cDNA clone (named AtMTAN, for 5'-methylthioadenosine nucleosidase), which encodes a polypeptide similar to EcMTAN from Escherichia coli. Deletion analyses showed that CBL3 utilizes the different structural modules to interact with its distinct target proteins, CIPKs and AtMTAN. In vitro and in vivo analyses verified that CBL3 and AtMTAN physically associate only in the presence of Ca(2+). In addition, we empirically demonstrated that the AtMTAN protein indeed possesses the MTAN activity, which can be inhibited specifically by Ca(2+)-bound CBL3. Overall, these findings suggest that the CBL family members can relay the calcium signals in more diverse ways than previously thought. We also discuss a possible mechanism by which the CBL3-mediated calcium signaling regulates the biosynthesis of ethylene and polyamines, which are involved in plant growth and development as well as various stress responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号