首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The structure of the I domain of integrin alpha L beta 2 bound to the Ig superfamily ligand ICAM-1 reveals the open ligand binding conformation and the first example of an integrin-IgSF interface. The I domain Mg2+ directly coordinates Glu-34 of ICAM-1, and a dramatic swing of I domain residue Glu-241 enables a critical salt bridge. Liganded and unliganded structures for both high- and intermediate-affinity mutant I domains reveal that ligand binding can induce conformational change in the alpha L I domain and that allosteric signals can convert the closed conformation to intermediate or open conformations without ligand binding. Pulling down on the C-terminal alpha 7 helix with introduced disulfide bonds ratchets the beta 6-alpha 7 loop into three different positions in the closed, intermediate, and open conformations, with a progressive increase in affinity.  相似文献   

2.
The integrin lymphocyte function-associated antigen-1 (alpha(L)beta(2)), which is known for its ability to mediate firm adhesion and migration, can also contribute to tethering and rolling in shear flow. The alpha(L) I domain can be mutationally locked with disulfide bonds into two distinct conformations, open and closed, which have high and low affinity for the ligand intercellular adhesion molecule 1 (ICAM-1), respectively. The wild type I domain exists primarily in the lower energy closed conformation. We have measured for the first time the effect of conformational change on adhesive behavior in shear flow. We show that wild type and locked open I domains, expressed in alpha(L)beta(2) heterodimers or as isolated domains on the cell surface, mediate rolling adhesion and firm adhesion, respectively. alpha(L)beta(2) is thus poised for the conversion of rolling to firm adhesion upon integrin activation in vivo. Isolated I domains are surprisingly more effective than alpha(L)beta(2) in interactions in shear flow, which may in part be a consequence of the presence of alpha(L)beta(2) in a bent conformation. Furthermore, the force exerted on the C-terminal alpha-helix appears to stabilize the open conformation of the wild type isolated I domain and contribute to its robustness in supporting rolling. An allosteric small molecule antagonist of alpha(L)beta(2) inhibits both rolling adhesion and firm adhesion, which has important implications for its mode of action in vivo.  相似文献   

3.
Regulation of integrin affinity on cell surfaces   总被引:1,自引:0,他引:1  
Lymphocyte activation triggers adhesiveness of lymphocyte function-associated antigen-1 (LFA-1; integrin α(L)β(2)) for intercellular adhesion molecules (ICAMs) on endothelia or antigen-presenting cells. Whether the activation signal, after transmission through multiple domains to the ligand-binding αI domain, results in affinity changes for ligand has been hotly debated. Here, we present the first comprehensive measurements of LFA-1 affinities on T lymphocytes for ICAM-1 under a broad array of activating conditions. Only a modest increase in affinity for soluble ligand was detected after activation by chemokine or T-cell receptor ligation, conditions that primed LFA-1 and robustly induced lymphocyte adhesion to ICAM-1 substrates. By stabilizing well-defined LFA-1 conformations by Fab, we demonstrate the absolute requirement of the open LFA-1 headpiece for adhesiveness and high affinity. Interaction of primed LFA-1 with immobilized but not soluble ICAM-1 triggers energy-dependent affinity maturation of LFA-1 to an adhesive, high affinity state. Our results lend support to the traction or translational motion dependence of integrin activation.  相似文献   

4.
Integrin activation has been postulated to occur in part via conformational changes in the I domain of the beta subunit (the betaI domain), especially near the F-alpha(7) loop, in response to "inside-out" signaling. However, direct evidence for a role of the F-alpha(7) loop in ligand binding and activity modulation is still lacking. Here, we report our finding that the F-alpha(7) loop (residues 344-358) within the beta(2)I domain has dual functions in ligand binding by alpha(M)beta(2). On the one hand, it supports intercellular adhesion molecule 1 (ICAM-1) binding to alpha(M)beta(2) directly as part of a recognition interface formed by five noncontiguous segments (Pro(192)-Glu(197), Asn(213)-Glu(220), Leu(225)-Leu(230), Ser(324)-Thr(329), and Glu(344)-Asp(348)) on the apex of the beta(2)I domain. On the other hand, it controls the open and closed conformation of the alpha(M)beta(2) receptor, thereby indirectly affecting alpha(M)beta(2) binding to other ligands. Switching the five constituent sequences of the ICAM-1-binding site within the beta(2)I domain to their beta(1) counterparts destroyed ICAM-1 binding but had no effect on the gross conformations of the receptor. Of the five ICAM-1 binding-defective mutants, four had normal or even stronger interaction with Fg and C3bi, as reported in our previous study. Synthetic peptides derived from the identified site inhibited alpha(M)beta(2)-ICAM-1 interaction and supported direct binding to ICAM-1. Most importantly, perturbation of the F-alpha(7) loop caused conformational changes within the beta(2)I domain, which was further propagated to other regions of alpha(M)beta(2). Altogether, our data demonstrate that inside-out signaling could modulate ligand binding directly by changing the ligand-binding pocket per se and/or indirectly by inducing multiple conformational changes within the receptor.  相似文献   

5.
We examined the effect of conformational change at the beta(7) I-like/hybrid domain interface on regulating the transition between rolling and firm adhesion by integrin alpha(4)beta(7). An N-glycosylation site was introduced into the I-like/hybrid domain interface to act as a wedge and to stabilize the open conformation of this interface and hence the open conformation of the alpha(4) beta(7) headpiece. Wild-type alpha(4)beta(7) mediates rolling adhesion in Ca(2+) and Ca(2+)/Mg(2+) but firm adhesion in Mg(2+) and Mn(2+). Stabilizing the open headpiece resulted in firm adhesion in all divalent cations. The interaction between metal binding sites in the I-like domain and the interface with the hybrid domain was examined in double mutants. Changes at these two sites can either counterbalance one another or be additive, emphasizing mutuality and the importance of multiple interfaces in integrin regulation. A double mutant with counterbalancing deactivating ligand-induced metal ion binding site (LIMBS) and activating wedge mutations could still be activated by Mn(2+), confirming the importance of the adjacent to metal ion-dependent adhesion site (ADMIDAS) in integrin activation by Mn(2+). Overall, the results demonstrate the importance of headpiece allostery in the conversion of rolling to firm adhesion.  相似文献   

6.
The integrin alphaLbeta2 mediates leukocyte adhesion and migration that are required for a functional immune system. It is known that inside-out signaling triggers alphaLbeta2 conformational changes, which affect its ligand-binding affinity. At least three alphaLbeta2 affinity states (low, intermediate, and high) were described. The cytosolic protein talin connects alphaLbeta2 to the actin filament. The talin head domain is also known to activate alphaLbeta2 ligand binding. However, it remains to be determined whether talin promotes an intermediate or high affinity alphaLbeta2. In this study using transfectants and T cells, we showed that talin induced an intermediate affinity alphaLbeta2 that adhered constitutively to its ligand intercellular adhesion molecule (ICAM)-1 but not ICAM-3. Adhesion to ICAM-3 was induced when an additional exogenous activating agent was included. Similar profiles were observed with soluble ICAMs. In addition, the intermediate affinity alphaLbeta2 induced by talin allowed adhesion and migration of T cells on immobilized ICAMs.  相似文献   

7.
The integrin alpha(v)beta(3) has been shown to exist in low and high affinity conformations. Activation to the high affinity state is thought to depend on the "switchblade-like" opening, from a low affinity bent conformation with a closed headpiece to an extended form of the integrin with an open headpiece. Activation has been shown to depend on separation of the cytoplasmic domains. How cytoplasmic domain separation is related to separation of the transmembrane domains is unknown, and the distance of separation of the transmembrane domains required for activation has not been defined. A constrained secreted form of alpha(v)beta(3) was engineered that introduced a 50-A separation of the integrin C-terminal tails of the extracellular domains of the alpha(v) and beta(3) subunits. Receptor binding and recognition by ligand-induced binding state (LIBS) monoclonal antibodies demonstrated that the mutant receptor was locked into a low affinity state that was likely in a partially extended conformation but with a closed headpiece. In the presence of RGD peptide, the constrained receptor was able to fully extend, as determined by full exposure of LIBS epitopes. In the presence of the appropriate LIBS antibody, high affinity ligand binding of the constrained receptor was achieved. The results support the existence of transient intermediate activation states of secreted alpha(v)beta(3). Furthermore, these results with the secreted alpha(v)beta(3) receptor support a model for the full-length membrane-bound form of alpha(v)beta(3), whereby a 50-A lateral separation of the integrin alpha(v) and beta(3) transmembrane domains would be sufficient to enforce the switchblade-like opening to the extended conformation but insufficient for full receptor activation.  相似文献   

8.
L-plastin (LPL) is a leukocyte actin binding protein previously implicated in the activation of the integrin alpha(M)beta(2) on polymorphonuclear neutrophils. To determine the role for LPL in integrin activation, K562 cell adhesion to vitronectin via alpha(v)beta(3), a well-studied model for activable integrins, was examined. Cell permeant versions of peptides based on the N-terminal sequence of LPL and the LPL headpiece domain both activated alpha(v)beta(3)-mediated adhesion. In contrast to adhesion induced by treatment with phorbol 12-myristate 13-acetate (PMA), LPL peptide-activated adhesion was independent of integrin beta(3) cytoplasmic domain tyrosines and was not inhibited by cytochalasin D. Also in contrast to PMA, LPL peptides synergized with RGD ligand or Mn(2+) for generation of a conformational change in alpha(v)beta(3) associated with the high affinity state of the integrin, as determined by binding of a ligand-induced binding site antibody. Although LPL and ligand showed synergy for ligand-induced binding site expression when actin depolymerization was inhibited by jasplakinolide, LPL peptide-induced adhesion was inhibited. Thus, both actin depolymerization and ligand-induced integrin conformational change are required for LPL peptide-induced adhesion. We hypothesize that the critical steps of increased integrin diffusion and affinity enhancement may be linked via modulation of the function of the actin binding protein L-plastin.  相似文献   

9.
Integrin undergoes different activation states by changing its quaternary conformation. The integrin beta hybrid domain acts as a lever for the transmission of activation signal. The displacement of the hybrid domain can serve to report different integrin activation states. The monoclonal antibody (mAb) MEM148 is a reporter antibody that recognizes Mg/EGTA-activated but not resting integrin alpha(L) beta2. Herein, we mapped its epitope to the critical residue Pro374 located on the inner face of the beta2 hybrid domain. Integrin alpha(L) beta2 binds to its ligands ICAM-1 and ICAM-3 with different affinities. Integrin is proposed to have at least three affinity states, and the position of the hybrid domain differs in each. We made use of the property of mAb MEM148 to analyze and correlate these affinity states in regard to alpha(L) beta2/intercellular adhesion molecule (ICAM) binding. Our study showed that Mg/EGTA-activated alpha(L)beta2 can adopt a different conformation from that activated by activating mAbs KIM185 or MEM48. Unlike ICAM-1 binding, which required only one activating agent, alpha(L) beta2/ICAM-3 binding required both Mg/EGTA and an activating mAb. This suggests that alpha(L)beta2 with intermediate affinity is sufficient to bind ICAM-1 but not ICAM-3, which requires a high affinity state. Furthermore, we showed that the conformation adopted by alpha(L)beta2 in the presence of Mg/EGTA, depicting an intermediate activation state, could be reverted to its resting conformation.  相似文献   

10.
Integrin activation involves global conformational changes as demonstrated by various functional and structural analyses. The integrin beta hybrid domain is proposed to be involved in the propagation of this activation signal. Our previous study showed that the integrin beta(2)-specific monoclonal antibody 7E4 abrogates monoclonal antibody KIM185-activated but not Mg(2+)/EGTA-activated leukocyte function-associated antigen-1 (LFA-1; alpha(L)beta(2))-mediated adhesion to ICAM-1. Here we investigated the allosteric inhibitory property of 7E4. By using human/mouse chimeras and substitution mutations, the epitope of 7E4 was mapped to Val(407), located in the mid-region of the beta(2) hybrid domain. Two sets of constitutively active LFA-1 variants were used to examine the effect of 7E4 on LFA-1/ICAM-1 binding. 7E4 attenuated the binding of variants that have modifications to regions membrane proximal with respect to the beta(2) hybrid domain. In contrast, the inhibitory effect was minimal on variants with alterations in the alpha(L) I- and beta(2) I-like domains preceding the hybrid domain. Furthermore, 7E4 abrogated LFA-1/ICAM-1 adhesion of phorbol 12-myristate 13-acetate-treated MOLT-4 cells. Our data demonstrate that interaction between the hybrid and I-like domain is critical for the regulation of LFA-1-mediated adhesion.  相似文献   

11.
The glycosylphosphatidylinositol-linked urokinase-type plasminogen activator receptor (uPAR) interacts with the heterodimer cell adhesion molecules integrins to modulate cell adhesion and migration. Devoid of a cytoplasmic domain, uPAR triggers intracellular signaling via its associated molecules that contain cytoplasmic domains. Interestingly, uPAR changes the ectodomain conformation of one of its partner molecules, integrin alpha(5)beta(1), and elicits cytoplasmic signaling. The separation or reorientation of integrin transmembrane domains and cytoplasmic tails are required for integrin outside-in signaling. However, there is a lack of direct evidence showing these conformational changes of an integrin that interacts with uPAR. In this investigation we used reporter monoclonal antibodies and fluorescence resonance energy transfer analyses to show conformational changes in the alpha(M)beta(2) headpiece and reorientation of its transmembrane domains when alpha(M)beta(2) interacts with uPAR.  相似文献   

12.
The alpha(L) I (inserted or interactive) domain of integrin alpha(L)beta(2) undergoes conformational changes upon activation. Recent studies show that the isolated, activated alpha(L) I domain is sufficient for strong ligand binding, suggesting the beta(2) subunit to be only indirectly involved. It has been unclear whether the activity of the alpha(L) I domain is regulated by the beta(2) subunit. In this study, we demonstrate that swapping the disulfide-linked CPNKEKEC sequence (residues 169-176) in the beta(2) I domain with a corresponding beta(3) sequence, or mutating Lys(174) to Thr, constitutively activates alpha(L)beta(2) binding to ICAM-1. These mutants do not require Mn(2+) for ICAM-1 binding and are insensitive to the inhibitory effect of Ca(2+). We have also localized a component of the mAb 24 epitope (a reporter of beta(2) integrin activation) in the CPNKEKEC sequence. Glu(173) and Glu(175) of the beta(2) I domain are identified as critical for mAb 24 binding. Because the epitope is highly expressed upon beta(2) integrin activation, it is likely that the CPNKEKEC sequence is exposed or undergoes conformational changes upon activation. Deletion of the alpha(L) I domain did not eliminate the mAb 24 epitope. This confirms that the alpha(L) I domain is not critical for mAb 24 binding, and indicates that mAb 24 detects a change expressed in part in the beta(2) subunit I domain. These results suggest that the CPNKEKEC sequence of the beta(2) I domain is involved in regulating the alpha(L) I domain.  相似文献   

13.
Integrin inside-out signaling and the immunological synapse   总被引:1,自引:0,他引:1  
Integrins dynamically equilibrate between three conformational states on cell surfaces. A bent conformation has a closed headpiece. Two extended conformations contain either a closed or an open headpiece. Headpiece opening involves hybrid domain swing-out and a 70 ? separation at the integrin knees, which is conveyed by allostery from the hybrid-proximal end of the βI domain to a 3 ? rearrangement of the ligand-binding site at the opposite end of the βI domain. Both bent-closed and extended-closed integrins have low affinity, whereas extended-open integrin affinity is 10(3) to 10(4) higher. Integrin-mediated adhesion requires the extended-open conformation, which in physiological contexts is stabilized by post-ligand binding events. Integrins thus discriminate between substrate-bound and soluble ligands. Analysis of LFA-1-ICAM-1 interactions in the immunological synapse suggests that bond lifetimes are on the order of seconds, which is consistent with high affinity interactions subjected to cytoskeletal forces that increase the dissociation rate. LFA-1 βI domain antagonists abrogate function in the immunological synapse, further supporting a critical role for high affinity LFA-1.  相似文献   

14.
AlphaLbeta2 affinity for intercellular adhesion molecule-1 (ICAM-1) is regulated by the conformation of the alphaL I domain, which is in turn controlled by the conformation and orientation of other adjacent domains. Additionally, overall integrin conformation (bent versus straightened) influences the orientation of the I domain and access to its ligands, influencing adhesive efficiency. The open or high affinity I domain conformation supports strong adhesion, whereas the closed, low affinity conformation mediates weak interactions or rolling. We have previously suggested that alphaLbeta2 can also exist on the cell surface in an intermediate affinity state. Here we have studied the adhesive properties of integrin alphaLbeta2 containing mutant I domains with intermediate affinities for ICAM-1. In an overall bent conformation, the intermediate affinity state of alphaLbeta2 is hardly detected by conventional adhesion assays, but robust adhesion is seen when an extended conformation is induced by a small molecule alpha/beta I allosteric antagonist. Intermediate affinity alphaLbeta2 supports more stable rolling than wild-type alphaLbeta2 under shear conditions. Moreover, antagonist-induced extension transforms rolling adhesion into firm adhesion in a manner reminiscent of chemokine activation of integrin alphaLbeta2. These findings suggest the relevance of intermediate affinity states of alphaLbeta2 to the transition between inactive and active states and demonstrate the importance of both I domain affinity and overall integrin conformation for cell adhesion.  相似文献   

15.
Integrins are cell surface receptors that transduce signals bidirectionally across the plasma membrane. The key event of integrin signaling is the allosteric regulation between its ligand-binding site and the C-terminal helix (alpha7) of integrin's inserted (I) domain. A significant axial movement of the alpha7 helix is associated with the open, active conformation of integrins. We describe the crystal structure of an engineered high-affinity I domain from the integrin alpha(L)beta(2) (LFA-1) alpha subunit in complex with the N-terminal two domains of ICAM-5, an adhesion molecule expressed in telencephalic neurons. The finding that the alpha7 helix swings out and inserts into a neighboring I domain in an upside-down orientation in the crystals implies an intrinsically unusual mobility of this helix. This remarkable feature allows the alpha7 helix to trigger integrin's large-scale conformational changes with little energy penalty. It serves as a mechanistic example of how a weakly bound adhesion molecule works in signaling.  相似文献   

16.
Importance of force linkage in mechanochemistry of adhesion receptors   总被引:1,自引:0,他引:1  
Astrof NS  Salas A  Shimaoka M  Chen J  Springer TA 《Biochemistry》2006,45(50):15020-15028
The alpha subunit-inserted (I) domain of integrin alphaLbeta2 [lymphocyte function-associated antigen-1 (LFA-1)] binds to intercellular adhesion molecule-1 (ICAM-1). The C- and N-termini of the alpha I domain are near one another on the "lower" face, opposite the metal ion-dependent adhesion site (MIDAS) on the "upper face". In conversion to the open alpha I domain conformation, a 7 A downward, axial displacement of C-terminal helix alpha7 is allosterically linked to rearrangement of the MIDAS into its high-affinity conformation. Here, we test the hypothesis that when an applied force is appropriately linked to conformational change, the conformational change can stabilize adhesive interactions that resist the applied force. Integrin alpha I domains were anchored to the cell surface through their C- or N-termini using type I or II transmembrane domains, respectively. C-terminal but not N-terminal anchorage robustly supported cell rolling on ICAM-1 substrates in shear flow. In contrast, when the alphaL I domain was mutationally stabilized in the open conformation with a disulfide bond, it mediated comparable levels of firm adhesion with type I and type II membrane anchors. To exclude other effects as the source of differential adhesion, these results were replicated using alpha I domains conjugated through the N- or C-terminus to polystyrene microspheres. Our results demonstrate a mechanical feedback system for regulating the strength of an adhesive bond. A review of crystal structures of integrin alpha and beta subunit I domains and selectins in high- and low-affinity conformations demonstrates a common mechanochemical design in which biologically applied tensile force stabilizes the more extended, high-affinity conformation.  相似文献   

17.
The beta(2) integrin lymphocyte function-associated antigen-1 (LFA-1) is a conformationally flexible alpha/beta heterodimeric receptor, which is expressed on the surface of all leukocytes. LFA-1 mediates cell adhesion crucial for normal immune and inflammatory responses. Intracellular signals or cations are required to convert LFA-1 from a nonligand binding to a ligand binding state. Here we investigated the effect of small molecule inhibitors on LFA-1 by monitoring the binding of monoclonal antibodies mapped to different receptor domains. The inhibitors were found to not only induce epitope changes in the I domain of the alpha(L) chain but also in the I-like domain of the beta(2) chain depending on the individual chemical structure of the inhibitor and its binding site. For the first time, we provide strong evidence that the I-like domain represents a target for allosteric LFA-1 inhibition similar to the well established regulatory L-site on the I domain of LFA-1. Moreover, the antibody binding patterns observed in the presence of the various inhibitors establish a conformational interaction between the LFA-1 I domain and the I-like domain in the native receptor that is formed upon activation. Differentially targeting the binding sites of the inhibitors, the L-site and the I-like domain, may open new avenues for highly specific therapeutic intervention in diseases where integrins play a pathophysiological role.  相似文献   

18.
The binding of integrin alpha(L)beta(2) to its ligand intercellular adhesion molecule-1 is required for immune responses and leukocyte trafficking. Small molecule antagonists of alpha(L)beta(2) are under intense investigation as potential anti-inflammatory drugs. We describe for the first time a small molecule integrin agonist. A previously described alpha/beta I allosteric inhibitor, compound 4, functions as an agonist of alpha(L)beta(2) in Ca(2+) and Mg(2+)and as an antagonist in Mn(2+). We have characterized the mechanism of activation and its competitive and noncompetitive inhibition by different compounds. Although it stimulates ligand binding, compound 4 nonetheless inhibits lymphocyte transendothelial migration. Agonism by compound 4 results in accumulation of alpha(L)beta(2) in the uropod, extreme uropod elongation, and defective de-adhesion. Small molecule integrin agonists open up novel therapeutic possibilities.  相似文献   

19.
The trafficking of leukocytes through tissues is supported by an interaction between the beta 2 (CD18) integrins CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1) and their ligand ICAM-1. The most recently identified and fourth member of the beta 2 integrins, alpha D beta 2, selectively binds ICAM-3 and does not appear to bind ICAM-1. We have reported recently that alpha D beta 2 can support eosinophil adhesion to VCAM-1. Here we demonstrate that expression of alpha D beta 2 in a lymphoid cell that does not express alpha 4 integrins confers efficient binding to VCAM-1. In addition, a soluble form of alpha D beta 2 binds VCAM-1 with greater efficiency relative to ICAM-3. The I domain of alpha D contains a binding site for VCAM-1 since recombinant alpha D I domain binds specifically to VCAM-1. In addition, alpha D mAb that block cellular binding to VCAM-1 bind the alpha D I domain. Using VCAM-1 mutants we have determined that the binding site on VCAM-1 for alpha D beta 2 overlaps with that of alpha 4++ integrins. Substitution of VCAM-1 aspartate at position 40, D40, within the conserved integrin binding site, diminishes binding to alpha D beta 2 and abrogates binding to the alpha D I domain. The corresponding integrin binding site residue in ICAM-3 is also essential to alpha D beta 2 binding. Finally, we demonstrate that alpha D beta 2 can support lymphoid cell adhesion to VCAM-1 under flow conditions at levels equivalent to those mediated by alpha 4 beta 1. These results indicate that VCAM-1 can bind to an I domain and that the binding of alpha D beta 2 to VCAM-1 may contribute to the trafficking of a subpopulation of leukocytes that express alpha D beta 2.  相似文献   

20.
Takagi J  Petre BM  Walz T  Springer TA 《Cell》2002,110(5):599-511
How ligand binding alters integrin conformation in outside-in signaling, and how inside-out signals alter integrin affinity for ligand, have been mysterious. We address this with electron microscopy, physicochemical measurements, mutational introduction of disulfides, and ligand binding to alphaVbeta3 and alphaIIbbeta3 integrins. We show that a highly bent integrin conformation is physiological and has low affinity for biological ligands. Addition of a high affinity ligand mimetic peptide or Mn(2+) results in a switchblade-like opening to an extended structure. An outward swing of the hybrid domain at its junction with the I-like domain shows conformational change within the headpiece that is linked to ligand binding. Breakage of a C-terminal clasp between the alpha and beta subunits enhances Mn(2+)-induced unbending and ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号