首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
报道了固相时间分辨荧光免疫螫合剂4,7-二氯磺基苯-1,10-菲罗啉-2,9-二羧酸(BCPDA)的制备方法,BCPDA 标记蛋白质及螫合 Eu3+方法,BCPDA-Eu3+标记物荧光光谱研究以及固相时间分辨荧光免疫分析法检测甲胎蛋白异质体(AFP-R-LCA)方法的建立.结果表明 BCPDA 能在温合条件下与蛋白质氨基结合并与 Eu3+螯合,BCPDA-Eu3+蛋白质标记物荧光特性、标记比度、生物结合活性与国外同类产品一致,所建立的检测 AFP-R-LCA 免疫分析法最小检测值0.6ng/ml,为提高我国非放射性同位素标记技术水平奠定了基础.  相似文献   

2.
The carbon dioxide concentrating system in C4 photosynthesis allows high net photosynthetic rates (P N) at low internal carbon dioxide concentrations (C i), permitting higher P N relative to stomatal conductance (g s) than in C3 plants. This relation would be reflected in the ratio of C i to external ambient (C a) carbon dioxide concentration, which is often given as 0.3 or 0.4 for C4 plants. For a C a of 360 μmol mol−1 that would mean a C i about 110–140 μmol mol−1. Our field observations made near midday on three weedy C4 species, Amaranthus retroflexus, Echinochloa crus-galli, and Setaria faberi, and the C4 crop Sorghum bicolor indicated mean values of C i of 183–212 μ mol mol−1 at C a = 360 μmol mol−1. Measurements in two other C4 crop species grown with three levels of N fertilizer indicated that while midday values of C i at high photon flux were higher at limiting N, even at high nitrogen C i averaged 212 and 196 μmol mol−1 for Amaranthus hypochondriacus and Zea mays, respectively. In these two crops midday C i decreased with increasing leaf to air water vapor pressure difference. Averaged over all measurement days, the mean C i across all C4 species was 198 μmol mol−1, for a C i/C a ratio of 0.55. Prior measurements on four herbaceous C3 species using the same instrument indicated an average C i/C a ratio of 0.69. Hence midday C i values in C 4 species under field conditions may often be considerably higher and more similar to those of C3 species than expected from measurements made on plants in controlled environments. Reducing g s in C4 crops at low water vapor pressure differences could potentially improve their water use efficiency without decreasing P N.  相似文献   

3.
Response of net photosynthetic rate (P N), stomatal conductance (g s), intercellular CO2 concentration (c i), and photosynthetic efficiency (Fv/Fm) of photosystem 2 (PS2) was assessed in Eucalyptus cladocalyx grown for long duration at 800 (C800) or 380 (C380) μmol mol-1 CO2 concentration under sufficient water supply or under water stress. The well-watered plants at C800 showed a 2.2 fold enhancement of P N without any change in g s. Under both C800 and C380, water stress decreased P N and g s significantly without any substantial reduction of c i, suggesting that both stomatal and non-stomatal factors regulated P N. However, the photosynthetic efficiency of PS2 was not altered. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
黄河上游灌区稻田N2O排放特征   总被引:4,自引:0,他引:4  
黄河上游灌区稻田高产区过量施肥现象十分突出,氮肥过量施用引起土壤氮素盈余,导致N2O排放量增大,由此引起的温室效应引起广泛关注。采用静态箱-气相色谱法研究黄河上游灌区稻田不同施肥处理下N2O排放特征。试验设置5个施肥处理,包括常规氮肥300 kg/hm2下单施尿素和有机肥配施2个处理,分别用N300和N300-OM代表;优化氮肥240 kg/hm2下单施尿素和有机肥配施2个处理,分别用N240和N240-OM代表;对照不施氮肥用N0代表。试验结果得出,灌区水稻生长季稻田土壤N2O排放主要集中在水稻分蘖前及水稻生长的中后期,稻田氮肥施用、灌水及土壤温度的变化对N2O排放通量影响较大,不同处理水稻各生育阶段N2O累积排放量与稻田土壤耕层NO-3-N含量动态变化显著相关。稻田N2O排放不是黄河上游灌区稻田氮素损失的主要途径,但灌区稻田N2O排放的增温潜势较大;稻田氮肥过量施用会显著增加N2O排放量,在相同氮素水平下,有机肥配施会显著增加稻田土壤N2O的排放量(P<0.01)。优化施氮能有效减少灌区稻田水稻生长季N2O排放量。稻田不同处理的水稻整个生长季土壤N2O排放总量为2.69-3.87 kg/hm2,肥料氮通过N2O排放损失的百分率仅为0.43%-0.64%。在灌区习惯灌水和高氮肥300 kg/hm2时,N300-OM处理的稻田N2O排放量达3.87 kg/hm2,在100 a时间尺度上的全球增温潜势(GWPs)为20.76×107 kg CO2/hm2;优化施氮240 kg/hm2水平下,N240和N240-OM处理的N2O累计排放量较N300-OM处理,分别降低了1.18 kg/hm2和0.57 kg/hm2,在100 a尺度上每年由稻田N2O排放引起的GWPs分别降低了6.33×107 kg CO2/hm2和3.06×107 kg CO2/hm2。  相似文献   

5.
该研究以鸢尾蒜属两种早春短命植物准噶尔鸢尾蒜(Ixiolirion songaricum)和鸢尾蒜(Ixiolirion tataricum)为对象,通过解剖结构、光合参数、稳定碳同位素比值(δ13C)和光合关键酶活性分析二者的光合途径。结果发现:(1)显微结构和超微结构显示,两种短命植物的叶脉维管束鞘细胞1层、排列较紧密,鞘细胞内含有较多叶绿体且多离心分布,类似C4花环结构。(2)准噶尔鸢尾蒜和鸢尾蒜最大净光合速率分别为14.81和15.04 μmol·m-2·s-1;两者的CO2补偿点较低,分别为3.57和2.54 μmol·mol-113C分别为-25.36±0.55‰和-25.76±1.38‰,光合酶PEPC/Rubisco比值分为别0.244和0.322。(3)最大净光合速率、δ13C和PEPC/Rubisco比值均说明两种植物为C3光合途径,但二者均具有类似C4的维管束鞘结构、较低的CO2补偿点和暗呼吸速率,并具有高于部分C3和C3 C4中间型植物的PEPC/Rubisco比值,表明两种短命植物的光合途径并非典型的C3途径,而是C3 C4中间型。  相似文献   

6.
邓欧平  唐祺超  叶丽  邓良基 《生态学报》2021,41(23):9305-9314
氧化亚氮(N2O)是一种潜在的、强大的温室气体,应该根据京都议定书规定开展监测和削减。河流、水库、鱼塘和沟渠等受人类影响的小流域水生生态系统是氮素生物地球化学循环的活跃区域,更是N2O重要的源和汇。然而,同一流域不同水体N2O的排放特征差异及其驱动因素尚不清楚。因此,选择川西平原西河流域作为研究区,于2016年6月到2017年5月连续监测不同水体水气界面的N2O排放强度,并结合聚类分析解析N2O排放特征的驱动因素。结果显示,不同水体的N2O年排放通量差异显著,沟渠的N2O年排放通量最高((52.68±36.09)μg m-2 h-1),城市段河流和鱼塘次之((34.16±23.97)μg m-2 h-1和(29.03±31.41)μg m-2 h-1),乡镇段和农区段河流再次((8.32±28.60)μg m-2 h-1和(8.52±9.43)μg m-2 h-1),水库最低((-16.45±29.76)μg m-2 h-1)。除水库表现为N2O的汇,其他水体均表现为N2O的排放源。另外,不同水体N2O排放的季节特征差异显著,农区段河流和农业沟渠表现为夏天最高,冬春最低(P<0.05),而其他水体均表现为冬春显著高于夏秋(P<0.05)。根据N2O排放季节特征及其驱动因素可将西河流域水体分为四类:第一类农业类水体的N2O排放季节特征受气象因素和农业活动的联合驱动;第二类城乡类河流和第三类鱼塘分别受控于人类活动和养殖活动,与降雨温度等气象指标关系较弱;第四类水库主要受控于气象因素。并且,第一类农业类水体已成为大气N2O排放的重要源,农业氮素管控是区域控制N2O排放的重点。  相似文献   

7.
We determined the interactive effects of irradiance, elevated CO2 concentration (EC), and temperature in carrot (Daucus carota var. sativus). Plants of the cv. Red Core Chantenay (RCC) were grown in a controlled environmental plant growth room and exposed to 3 levels of photosynthetically active radiation (PAR) (400, 800, 1 200 μmol m−2 s−1), 3 leaf chamber temperatures (15, 20, 30 °C), and 2 external CO2 concentrations (C a), AC and EC (350 and 750 μmol mol−1, respectively). Rates of net photosynthesis (P N) and transpiration (E) and stomatal conductance (g s ) were measured, along with water use efficiency (WUE) and ratio of internal and external CO2 concentrations (C i/C a). P N revealed an interactive effect between PAR and C a. As PAR increased so did P N under both C a regimes. The g s showed no interactive effects between the three parameters but had singular effects of temperature and PAR. E was strongly influenced by the combination of PAR and temperature. WUE was interactively affected by all three parameters. Maximum WUE occurred at 15 °C and 1 200 μmol m−2 s− 1 PAR under EC. The C i /C a was influenced independently by temperature and C a. Hence photosynthetic responses are interactively affected by changes in irradiance, external CO2 concentration, and temperature. EC significantly compensates the inhibitory effects of high temperature and irradiance on P N and WUE.  相似文献   

8.
内陆淡水水体是大气中N2O的重要排放源,然而目前对于内陆典型城市水体N2O排放通量的监测数据依然匮乏,典型城市水体的N2O排放特征及驱动因素尚不清楚。本研究选取了南京市江北新区的典型水体,包括湖库、河流、养殖池塘和景观池塘,在2020年5月-2021年4月利用漂浮箱法连续监测了不同水体类型的水-气界面N2O排放特征,并通过测定水环境特征,探究驱动水体N2O排放通量的关键因素。研究结果表明,典型城市水体整体均表现为N2O排放源,河流和养殖池塘的日平均排放通量最大,分别为(503±1236)μg m-2 d-1和(508±797)μg m-2 d-1,其次为景观池塘((179±989)μg m-2 d-1),而湖库的N2O排放通量最小,仅表现为微弱的N2O排放源((54±212)μg m-2 d-1)。水体的N2O排放呈现季节性差异,河流和养殖池塘夏季的N2O排放通量显著高于其他季节(P<0.01)。水体全年N2O排放数据与水体温度和溶解氧含量(DO)呈显著相关。而在温度较高的5月份-9月份(>20℃),氮输入成为影响N2O排放通量的关键因素(P<0.01),因此控制城市水体的氮输入尤其是在水温较高的夏季是减少N2O排放的有利措施。此外,由于水文化学条件差异等因素,小型封闭水体包括养殖池塘和景观池塘的N2O排放通量差异较大,未来应加强监测不同水体的水文化学特征和N2O的时空排放特征,探讨影响小型封闭水体水-气界面N2O排放通量的具体驱动因素。此研究为城市区域N2O排放的精准核算提供了数据支撑,为N2O排放模型的修正提供了科学依据。  相似文献   

9.
云贵高原喀斯特坡耕地土壤微生物量 C、N、P空间分布   总被引:3,自引:0,他引:3  
土壤微生物是地球生物演化进程中的先锋种类,具有重要的生态修复功能,但空间分布格局是否存在的争议很大。以云贵高原典型喀斯特坡耕地为对象,基于网格法取样,用经典统计学和地统计学综合分析了土壤微生物生物量的空间变异特征。结果表明,云贵高原喀斯特坡耕地土壤微生物生物量碳(Cmic)、磷(Pmic)以及碳氮比(Cmic/Nmic)适宜,氮(Nmic)的含量较低,变异均很大,空间自相关性明显,最佳拟合模型均为指数模型。块金值C0较小(0.0016-0.0087),C0/(C0+C)均<25%(2.6%-10.2%),变程a较短(22.2-51.0 m),其强烈的空间变异主要由结构性变异引起。Kriging等值线图表明,Cmic、Nmic和Cmic/Nmic的高值区分布在坡的中上部,Pmic的高值区则在坡的中下部和坡脚。云贵高原喀斯特坡耕地土壤微生物不仅存在着小尺度的空间分布格局,而且不同土壤微生物属性的空间分布不同。  相似文献   

10.
黄土高原冬小麦地N2O排放   总被引:1,自引:0,他引:1  
从2007年7月1日到2009年6月30日对黄土高原冬小麦地氧化亚氮(N2O)排放采用静态箱气相色谱法进行了为期2a 的监测。设置2个处理,有小麦田(有小麦生长),无小麦田(出芽初期拔去麦苗)。研究结果表明有小麦田、无小麦田N2O排放量年际变化不大。有小麦田年均的N2O 排放量为2.05 kg · N2O · hm-2 · a-1,无小麦田年均的N2O 排放量为2.28 kg · N2O · hm-2 · a-1 。在冻融交替期,施肥后、翻地后和降雨后无小麦田和有小麦田N2O排放明显增加,N2O的季节变化受到这些短期事件的显著影响;有小麦田N2O排放与地温(P<0.01),气温(P<0.01)和WFPS(P<0.05)显著相关,而无小麦田N2O排放与这些环境土壤因子都不相关;有小麦田和无小麦田两个处理土壤的WFPS通常都低于60%,可以推断在本地区,硝化反应是N2O的重要生成源。  相似文献   

11.
Eu3+–β‐diketonate complexes are used, for example, in solid‐state lighting (SSL) or light‐converting molecular devices. However, their low emission quantum efficiency due to water molecules coordinated to Eu3+ and low photostability are still problems to be addressed. To overcome such challenges, we synthesized Eu3+ tetrakis complexes based on [Q][Eu(tfaa)4] and [Q][Eu(dbm)4] (Q1 = C26H56N+, Q2 = C19H42N+, and Q3 = C17H38N+), replacing the water molecules in the tris stoichiometry. The tetrakis β‐diketonates showed desirable thermal stability for SSL and, under excitation at 390 nm, they displayed the characteristic Eu3+ emission in the red spectral region. The quantum efficiencies of the dbm complexes achieved values as high as 51%, while the tfaa complexes exhibited lower quantum efficiencies (28–33%), but which were superior to those reported for the tris complexes. The structures were evaluated using the Sparkle/PM7 model and comparing the theoretical and the experimental Judd–Ofelt parameters. [Q1][Eu(dbm)4] was used to coat a near‐UV light‐emitting diode (LED), producing a red‐emitting LED prototype that featured the characteristic emission spectrum of [Q1][Eu(dbm)4]. The emission intensity of this prototype decreased only 7% after 30 h, confirming its high photostability, which is a notable result considering Eu3+ complexes, making it a potential candidate for SSL.  相似文献   

12.
Wheat (Triticum aestivum L. cv. HD 2329 and DL 1266-5) and sunflower (Helianthus annuus L. cv. MSFH 17 and MRSF 1754) plants were grown in field under atmospheric (360±10 cm3 m−3, AC) and elevated (650±50 cm3 m−3, EC) CO2 concentrations in open top chambers for entire period of growth and development till maturity. Net photosynthetic rate (P N) of wheat cvs. when compared at the same internal CO2 concentration (C i), by generating P N/C i curves, showed lower P N in EC plants than in AC ones. EC-grown wheat cultivars also showed a lesser response to irradiance than AC plants. In sunflower cultivars, P N/C i curves and irradiance response curves were not significantly different in AC and EC plants. CO2 and irradiance responses of photosynthesis, therefore, further revealed a down-regulation of P N in wheat but not so in sunflower under long-term CO2 enrichment. Wheat cvs. accumulated in leaves mostly sugars, whereas sunflower accumulated mainly starch. This further strengthened the view that accumulation of excess assimilates in the leaves under EC as starch is not inhibitory to P N.  相似文献   

13.
[C20H17N3O2] and cobalt (II) complex [Co(L2)(MeOH)2].ClO4, (L2 = 4-((E)-1-((2-(((E)-pyridin-2-ylmethylene) amino) phenyl) imino) ethyl) benzene-1, 3-diol) novel Schiff base has been synthesiszed and chracterized by Fourier transform infrared, UV–vis, 1H-NMR spectroscopy, and elemental analysis techniques. The interaction of Co(II) complex with DNA and BSA was investigated by electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism, and thermal denaturation studies. Our experiments indicate that this complex could strongly bind to CT-DNA via minor groove mechanism. In addition, fluorescence spectrometry of BSA with the complex showed that the fluorescence quenching mechanism of BSA was of static type. The complex exhibited significant in vitro cytotoxicity against three human cancer cell lines (JURKAT, SKOV3, and U87). The molecular docking experiment effectively proved the binding of complex to DNA and BSA. Finally, antibacterial assay over gram-positive and gram-negative pathogenic bacterial strains was studied.  相似文献   

14.
A novel ligand containing multiple coordinating groups (sulfinyl, carboxyl and carbonyl groups), acetophenonylcarboxymethyl sulphoxide, was synthesized. Its corresponding two lanthanide (III) binary complexes were synthesized and characterized by element analysis, molar conductivity, FT‐IR, TG‐DTA and UV spectroscopy. Results showed that the composition of these complexes was REL3L (ClO4)2·3H2O (RE = Eu (III), Tb (III); L = C6H5COCH2SOCH2COOH; L = C6H5COCH2SOCH2COO). FT‐IR results indicated that acetophenonylcarboxymethyl sulphoxide was bonded with an RE (III) ion by an oxygen atom of the sulfinyl and carboxyl groups and not by an oxygen atom of the carbonyl group due to high steric hinderance. Fluorescent spectra showed that the Tb (III) complex had excellent luminescence as a result of a transfer of energy from the ligand to the excitation state energy level (5D4) of Tb (III). The Eu (III) complex displayed weak luminescence, attributed to low energy transfer efficiency between the triplet state energy level of its ligand and the excited state (5D0) of Eu (III). As a result, the Tb (III) complex displayed a good antenna effect for luminescence. The fluorescence decay curves of Eu (III) and Tb (III) complexes were also measured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The methodology, characteristics and application of the sensitive C2H2-C2H4 assay for N2 fixation by nitrogenase preparations and bacterial cultures in the laboratory and by legumes and free-living bacteria in situ is presented in this comprehensive report. This assay is based on the N2ase-catalyzed reduction of C2H2 to C2H4, gas chromatographic isolation of C2H2 and C2H4, and quantitative measurement with a H2-flame analyzer. As little as 1 μμmole C2H4 can be detected, providing a sensitivity 103-fold greater than is possible with 15N analysis.

A simple, rapid and effective procedure utilizing syringe-type assay chambers is described for the analysis of C2H2-reducing activity in the field. Applications to field samples included an evaluation of N2 fixation by commercially grown soybeans based on over 2000 analyses made during the course of the growing season. Assay values reflected the degree of nodulation of soybean plants and indicated a calculated seasonal N2 fixation rate of 30 to 33 kg N2 fixed per acre, in good agreement with literature estimates based on Kjeldahl analyses. The assay was successfully applied to measurements of N2 fixation by other symbionts and by free living soil microorganisms, and was also used to assess the effects of light and temperature on the N2 fixing activity of soybeans. The validity of measuring N2 fixation in terms of C2H2 reduction was established through extensive comparisons of these activities using defined systems, including purified N2ase preparations and pure cultures of N2-fixing bacteria.

With this assay it now becomes possible and practicable to conduct comprehensive surveys of N2 fixation, to make detailed comparisons among different N2-fixing symbionts, and to rapidly evaluate the effects of cultural practices and environmental factors on N2 fixation. The knowledge obtained through extensive application of this assay should provide the basis for efforts leading to the maximum agricultural exploitation of the N2 fixation reaction.

  相似文献   

16.
The synthesis of a series of lanthanide tetracyanoplatinates containing the auxiliary ligands 1,10′-phenanthroline (phen) or 2,2′-bipyridine (bpy) have been carried out by reaction of Ln3+ nitrate salts with phen or bpy and potassium tetracyanoplatinate in solvent systems containing dimethylsulfoxide and dimethylformamide. The use of these solvents has lead to the isolation of [{Ln(DMSO)2(C12H8N2)(H2O)3}2Pt(CN)4](Pt(CN)4)2·2C12H8N2·4H2O (Ln = Eu (Eu-1), Tb (Tb-1), Yb(Yb-1)), [Ln(DMF)3(C12H8N2)(H2O)2NO3]Pt(CN)4 (Ln = La (La-2), Eu (Eu-2), Tb (Tb-2)), and [Ln(DMF)3(C10H8N2)(H2O)2NO3]Pt(CN)4 (Ln = La (La-3), Sm (Sm-3), Eu (Eu-3), Tb (Tb-3)) in the form of single crystals. Single-crystal X-ray diffraction has been used to investigate their structural features. The use of DMSO versus DMF as the solvent results in markedly different structural features. Eu-1 contains [{Eu(DMSO)2(C12H8N2)(H2O)3}2Pt(CN)4]2+ complex cations where the two Eu3+ centers are linked by a trans-bridging Pt(CN)42− anion to form a dimeric lanthanide complex cation. An additional uncoordinated Pt(CN)42− anion balances charge. Eu-2 and Eu-3 consist of zero-dimensional salts with [Eu(DMF)3(C12H8N2)(H2O)2(NO3)]2+ or [Eu(DMF)3(C10H8N2)(H2O)2(NO3)]2+ complex cations, respectively, and only non-coordinated Pt(CN)42− anions. Photoluminescence measurements illustrate that the Eu3+ and Tb3+ compounds for all three structure types display enhanced emission due to intramolecular energy transfer from the coordinated cyclic amines.  相似文献   

17.
Tropospheric ozone (O3) decreases photosynthesis, growth, and yield of crop plants, while elevated carbon dioxide (CO2) has the opposite effect. The net photosynthetic rate (P N), dark respiration rate (R D), and ascorbic acid content of rice leaves were examined under combinations of O3 (0, 0.1, or 0.3 cm3 m−3, expressed as O0, O0.1, O0.3, respectively) and CO2 (400 or 800 cm3 m−3, expressed as C400 or C800, respectively). The P N declined immediately after O3 fumigation, and was larger under O0.3 than under O0.1. When C800 was combined with the O3, P N was unaffected by O0.1 and there was an approximately 20 % decrease when the rice leaves were exposed to O0.3 for 3 h. The depression of stomatal conductance (g s) observed under O0.1 was accelerated by C800, and that under O0.3 did not change because the decline under O0.3 was too large. Excluding the stomatal effect, the mesophyll P N was suppressed only by O0.3, but was substantially ameliorated when C800 was combined. Ozone fumigation boosted the R D value, whereas C800 suppressed it. An appreciable reduction of ascorbic acid occurred when the leaves were fumigated with O0.3, but the reduction was partially ameliorated by C800. The degree of visible leaf symptoms coincided with the effect of the interaction between O3 and CO2 on P N. The amelioration of O3 injury by elevated CO2 was largely attributed to the restriction of O3 intake by the leaves with stomatal closure, and partly to the maintenance of the scavenge system for reactive oxygen species that entered the leaf mesophyll, as well as the promotion of the P N.  相似文献   

18.
To understand the interactive effects of O3 and CO2 on rice leaves; gas exchange, chlorophyll (Chl) fluorescence, ascorbic acid and glutathione were examined under acute (5 h), combined exposures of O3 (0, 0.1, or 0.3 cm3 m−3, expressed as O0, O0.1, or O0.3, respectively), and CO2 (400 or 800 cm3 m−3, expressed as C400 or C800, respectively) in natural-light gas-exposure chambers. The net photosynthetic rate (P N), maximum (Fv/Fm) and operating (Fq′/Fm′) quantum efficiencies of photosystem II (PSII) in young (8th) leaves decreased during O3 exposure. However, these were ameliorated by C800 and fully recovered within 3 d in clean air (O0 + C400) except for the O0.3 + C400 plants. The maximum PSII efficiency at 1,500 μmol m−2 s−1 PPFD (Fv′/Fm′) for the O0.3 + C400 plants decreased for all measurement times, likely because leaves with severely inhibited P N also had a severely damaged PSII. The P N of the flag (16th) leaves at heading decreased under O3 exposure, but the decline was smaller and the recovery was faster than that of the 8th leaves. The Fq′/Fm′ of the flag leaves in the O0.3 + C400 and O0.3 + C800 plants decreased just after gas exposure, but the Fv/Fm was not affected. These effects indicate that elevated CO2 interactively ameliorated the inhibition of photosynthesis induced by O3 exposure. However, changes in antioxidant levels did not explain the above interaction.  相似文献   

19.
Near-infrared reflectance spectroscopy (NIRS) has been used extensively in the forage industry for rapid measurement of forage constituents and could be useful for determining quality of biomass feedstocks at the point of delivery. In previous work, we developed an assay that partitions feedstock carbohydrates based on their availability to be converted to fermentable sugars, including non-structural carbohydrates (C N), biochemically available carbohydrates (C B) with an associated first-order availability rate constant (k B), and unavailable carbohydrates (C U ). Additional quality parameters measured included neutral detergent lignin (NDL), total available carbohydrates (C A), and total carbohydrates (C T). We evaluated the variability of biomass quality parameters in a set of corn stover samples and developed calibration equations for determining parameter values using NIRS. Fifty-two corn stover samples harvested in Iowa and Wisconsin in 2005 and 2006 were analyzed using a high-throughput assay for determining feedstock quality for biochemical conversion. Non-structural carbohydrates ranged from 84 to 155?g?kg?1 dry matter (DM); C B ranged from 354 to 557?g?kg?1 DM; k B ranged from 0.199 to 0.330?h?1; C A ranged from 463 to 699?g?kg?1 DM, and NDL ranged from 32 to 74?g?kg?1 DM. Significant differences (P?<?0.0001) among samples were observed for all parameters, except k B. Near-infrared reflectance spectroscopy calibration equations were developed for C N, C B, C A, C U , C T, and NDL. It was not possible to generate a meaningful calibration equation for k B. There is significant variability within the corn stover population for several key quality-related carbohydrate and lignin constituents which can be predicted reliably using NIRS.  相似文献   

20.
Lanthanide-induced shifts (LIS) with Eu (dpm)3 and aromatic solvent induced shifts (ASIS) with C4H4, C5H5N1 and C6F6 of PMR signals were examined for a series of C-4-methylated steroids and tetracyclic triterpenoids having a hydroxyl, carbonyl or acetoxyl group at position C-3. The magnitude and/or direction of the LIS (or ASIS) of corresponding protons were extensively influenced by the nature of the C-3-functional groups. The possible geometries of Eu (dpm)3-substrate complexes were also discussed on the basis of the LIS data. The above two techniques in the PMR spectroscopy provided the confirmatory evidence for the structural and stereochemical determination of steroids and triterpenoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号