首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
We investigated the muscle fiber conduction velocity (MFCV) during gait phases of the lower limb muscles in individuals with various degrees of diabetic peripheral neuropathy (DPN). Forty-five patients were classified into severity degrees of DPN by a fuzzy model. The stages were absent (n = 11), mild (n = 14), moderate (n = 11) and severe (n = 9), with 10 matched healthy controls. While walking, all subjects had their sEMG (4 linear electrode arrays) recorded for tibialis anterior (TA), gastrocnemius medialis (GM), vastus lateralis (VL) and biceps femoris (BF). MFCV was calculated using a maximum likelihood algorithm with 30 ms standard deviation Gaussian windows. In general, individuals in the earlier stages of DPN showed lower MFCV of TA, GM and BF, whilst individuals with severe DPN presented higher MFCV of the same muscles. We observed that mild patients already showed lower MFCV of TA at early stance and swing, and lower MFCV of BF at swing. All diabetic groups showed a markedly reduction in MFCV of VL, irrespective of DPN. Severe patients presented higher MFCV mainly in distal muscles, TA at early and swing phases and GM at propulsion and midstance. The absent group already showed MFCV of VL and GM reductions at the propulsion phase and of VL at early stance. Although MFCV changes were not as progressive as the DPN was, we clearly distinguished diabetic patients from controls, and severe patients from all others.  相似文献   

2.
Space permanence simulations such as prolonged bed-rest can mimic some of the physiological modifications in the human body and provide study conditions that are more accessible than during space flight. A short term bed-rest experiment was organized to simulate the effects of weightlessness for studying the adaptation to this condition. Eight healthy young volunteers were studied before and immediately after the 14 day periods of strict bed-rest.Surface EMG signals were detected with linear electrode arrays from vastus medialis, vastus lateralis and tibialis anterior muscle during isometric voluntary contractions at 20% MVC. Motor unit action potentials (MUAPs) of individual motor units were extracted from the interference EMG signals with a partial decomposition algorithm and averaged.MUAP templates generated by the same motor unit could be retrieved before and after bed-rest period. Muscle fiber conduction velocity (CV) was estimated from each averaged MUAP template and from the global EMG signal. Both global and single MU conduction velocity was observed to decrease by about 10% after the bed-rest period (p < 0.05). Amplitude and power spectral parameters did not significantly change after the bed-rest period.It is concluded that a short term bed-rest reduces the CV of individual motor units without a significant effect on muscle force or on other electrophysiological parameters.  相似文献   

3.
The aim of this study was to determine the inter- and intra-session reliability of the temporal and magnitude components of activity in eight muscles considered important for the leg cycling action. On three separate occasions, 13 male non-cyclists and 11 male cyclists completed 6 min of cycling at 135, 150, and 165 W. Cyclists completed two additional 6-min bouts at 215 and 265 W. Surface electromyography was used to record the electrical activity of tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lateralis, vastus medialis, vastus lateralis, rectus femoris, and gluteus maximus. There were no differences (P > 0.05) in the muscle activity onset and offset or in the iEMG of any muscles between visits. There were also no differences (P > 0.05) between cyclists and non-cyclists in the variability of these parameters. Overall, standard error of measurement (SEM) and intra-class correlation analyses suggested similar reliability of both inter- and intra-session muscle activity onset and offset. The SEM of activity onset in tibialis anterior and activity offset in soleus, gastrocnemius lateralis and rectus femoris was markedly higher than in the other muscles. Intra-session iEMG was reliable (coefficient of variation (CV) = 5.3–13.5%, across all muscles), though a CV range of 15.8–43.1% identified low inter-session iEMG reliability. During submaximal cycling, the temporal components of muscle activity exhibit similar intra- and inter-session reliability. The magnitude component of muscle activity is reliable on an intra-session basis, but not on an inter-session basis.  相似文献   

4.
In surface electromyography (sEMG), the distribution of motor unit potential (MUP) velocities has been shown to reflect the proportion of faster and slower propagating MUPs. This study investigated whether the distribution of MUP velocities could distinguish between sprinters (n = 11) and endurance athletes (n = 12) in not-specifically trained muscle (biceps brachii) during prolonged dynamic exercises at low forces. sEMG was acquired during 4 min’ exercises: unloaded, 5%, 10% and 20% of maximal voluntary contraction (MVC). The features extracted from the sEMG were: the mean muscle conduction velocity – estimated using the inter-peak latency and cross-correlation methods, the within-subject skewness (expressing the proportions of faster and slower propagating MUPs) and the within-subject standard deviation of MUP velocities (SD-mup). Sprinters showed a greater proportion of faster propagating MUPs than endurance athletes. During fatigue, the SD-mup of sprinters broadened progressively, whereas that of endurance athletes did not. The findings suggest that sprinters conveyed a greater proportion of faster motor units than endurance athletes and that motor unit behavior during fatigue differed between groups. Thus, the distribution of MUP velocities enables distinction between a muscle of sprinters and endurance athletes during prolonged dynamic exercises at low forces.  相似文献   

5.
Studies have demonstrated that the electromyographic (EMG) amplitude versus submaximal isometric force relationship is relatively linear. The purpose of this investigation was to determine the minimum number of contractions required to study this relationship. Eighteen men (mean age = 23 years) performed isometric contractions of the leg extensors at 10–90% of the maximum voluntary contraction (MVC) in 10% increments while surface EMG signals were detected from the vastus lateralis and vastus medialis. Linear regression was used to determine the coefficient of determination, slope coefficient, and y-intercept for each muscle and force combination with successively higher levels included in the model (i.e., 10–30%,  10–90% MVC). For the slope coefficients, there was a main effect for force combination (P < .001). The pairwise comparisons showed there was no difference from 10–60% through 10–90% MVC. For the y-intercepts, there were main effects for both muscle (vastus lateralis [4.3 μV RMS] > vastus medialis [−3.7 μV RMS]; P = .034) and force combination (P < .001), with similar values shown from 10–50% through 10–90% MVC. The linearity of the absolute EMG amplitude versus isometric force relationship for the vastus lateralis and vastus medialis suggests that investigators may exclude high force contractions from their testing protocol.  相似文献   

6.
Assessment of intra-session repeatability of muscle activation pattern is of considerable relevance for research settings, especially when used to determine changes over time. However, the repeatability of lower limb muscles activation pattern during pedaling is not fully established. Thus, we tested the intra-session repeatability of the activation pattern of 10 lower limb muscles during a sub-maximal cycling exercise.Eleven triathletes participated to this study. The experimental session consisted in a reference sub-maximal cycling exercise (i.e. 150 W) performed before and after a 53-min simulated training session (mean power output = 200 ± 12 W). Repeatability of EMG patterns was assessed in terms of muscle activity level (i.e. RMS of the mean pedaling cycle and burst) and muscle activation timing (i.e. onset and offset of the EMG burst) for the 10 following lower limb muscles: gluteus maximus (GMax), semimembranosus (SM), Biceps femoris (BF), vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), gastrocnemius medianus (GM) and lateralis (GL), soleus (SOL) and tibialis anterior (TA).No significant differences concerning the muscle activation level were found between test and retest for all the muscles investigated. Only VM, SOL and TA showed significant differences in muscle activation timing parameters. Whereas ICC and SEM values confirmed this weak repeatability, cross-correlation coefficients suggest a good repeatability of the activation timing parameters for all the studied muscles.Overall, the main finding of this work is the good repeatability of the EMG pattern during pedaling both in term of muscle activity level and muscle activation timing.  相似文献   

7.
The aims of this study were to examine group differences in muscle activation onset of the vastus medialis (VM) in relation to the vastus lateralis (VL) and pain level during stair ascent in females with patellofemoral pain (PFP) who maintain high and moderate levels of physical activity; to determine the association between physical activity level and muscle activation onset. Forty-three females with PFP and thirty-eight pain-free females were recruited and divided into four groups based on their level of physical activity: females with PFP (n = 26) and pain-free females (n = 26) who practiced a moderate level of physical activity and females with PFP (n = 17) and pain-free females (n = 12) who practiced an intense amount of physical activity. Participants were asked to ascend a seven-step staircase and the VM and VL activation onset was determined. Females with PFP who practiced high level of physical activity demonstrated delayed onset of VM (4.06 ms) compared to healthy females (−14.4 ms). Conversely, females with PFP who practiced moderate level of physical activity did not present VM delay (−2.48 ms) in comparison to healthy females (−9.89 ms). Furthermore, physical activity significantly correlated to the muscle activation onset difference (p = 0.005; R = 0.60). These findings may explain why controversial results regarding VM and VL muscle activation onset have been found.  相似文献   

8.
ObjectiveInvestigate the influence of apprehensive gait on activation and cocontraction of lower limb muscles of younger and older female adults.MethodsData of 17 younger (21.47 ± 2.06 yr) and 18 older women (65.33 ± 3.14 yr) were considered for this study. Participants walked on the treadmill at two different conditions: normal gait and apprehensive gait. The surface electromyographic signals (EMG) were recorded during both conditions on: rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), gastrocnemius lateralis (GL), and soleus (SO).ResultsApprehensive gait promoted greater activation of thigh muscles than normal gait (F = 5.34 and p = 0.007, for significant main effect of condition; RF, p = 0.002; VM, p < 0.001; VL, p = 0.003; and BF, p = 0.001). Older adults had greater cocontraction of knee and ankle stabilizer muscles than younger women (F = 4.05 and p = 0.019, for significant main effect of groups; VM/BF, p = 0.010; TA/GL, p = 0.007; and TA/SO, p = 0.002).ConclusionApprehensive gait promoted greater activation of thigh muscles and older adults had greater cocontraction of knee and ankle stabilizer muscles. Thus, apprehensive gait may leads to increased percentage of neuromuscular capacity, which is associated with greater cocontraction and contribute to the onset of fatigue and increased risk of falling in older people.  相似文献   

9.
This study’s aim was to determine the between days reliability of surface EMG recordings from the superficial quadriceps during a multi joint sub-maximal fatiguing protocol. Three subject groups (healthy n = 29; patellofemoral pain syndrome n = 74; knee osteoarthritis n = 55) performed the task at 60 maximum voluntary isometric contraction on three separate days. Spectral and amplitude EMG parameters were recorded from vastus medialis oblique, vastus lateralis and rectus femoris and were analysed for between days reliability using intraclass correlation coefficient (ICC(2,1)), the standard errors of measure and smallest detectable differences. For frequency results, initial and final frequency values had ‘good’ or ‘excellent’ reliability in all groups for all muscles. ICCs for median frequency slopes for vastus medialis oblique, vastus lateralis, and rectus femoris respectively, in the osteoarthritis group were 0.04, 0.55, and 0.72; in the patellofemoral pain group were 0.41, 0.17, and 0.33; in the healthy group were 0.68, 0.64, and 0.31. The standard errors of measurement and smallest detectable differences for all groups and for all muscles were unacceptably high. For amplitude results, ICC root mean squared initial and final values were ‘good’ to ‘excellent’ for all groups and all muscles, albeit with high measurement error. The ICCs for root mean squared slopes in all tests were ‘poor’ with extremely high measurement error. The poor between days reliability and high measurement error suggests that surface EMG should not be adopted to assess fatigue during multi joint sub-maximal isometric quadriceps testing.  相似文献   

10.
This prospective study investigated the diagnostic sensitivity of a novel multichannel surface electrode for detecting electrophysiologic changes in symptomatic diabetic neuropathy. We recruited healthy subjects without neuropathic complaints and diabetic patients with distal symmetric sensory symptoms who had normal nerve conduction studies (NCS). Eight compound muscle action potentials (CMAPs) were recorded using a multichannel electrode from each subject’s abductor pollicis brevis muscle by stimulating the median nerve at the wrist. Latency- and amplitude-related variables were obtained and analyzed to compare the two groups. We used the Classification and Regression Tree (CART) algorithm to determine the cut-off values for selected predictors of diabetic neuropathy. All of the variables related to CMAP latency showed statistically significant differences between the median values for the diabetic group and the healthy control group. For example, the median value of the maximum latency and standard deviation of the eight CMAP onset latencies in diabetic patients (3.82 ms and 0.15 ms, respectively) were significantly larger than those in controls (3.26 ms and p < 0.001; 0.09 ms and p < 0.001, respectively). The CART analysis revealed that these variables were the most sensitive and specific variables for discriminating between patients with diabetic neuropathy and normal subjects. The multichannel surface electrode demonstrated both high sensitivity and specificity in detecting neurophysiologic abnormality of diabetic neuropathy, even when conventional NCS did not detect the abnormality.  相似文献   

11.
Previous studies have identified differences in gait kinetics between healthy older and young adults. However, the underlying factors that cause these changes are not well understood. The objective of this study was to assess the effects of age and speed on the activation of lower-extremity muscles during human walking. We recorded electromyography (EMG) signals of the soleus, gastrocnemius, biceps femoris, medial hamstrings, tibialis anterior, vastus lateralis, and rectus femoris as healthy young and older adults walked over ground at slow, preferred and fast walking speeds. Nineteen healthy older adults (age, 73 ± 5 years) and 18 healthy young adults (age, 26 ± 3 years) participated. Rectified EMG signals were normalized to mean activities over a gait cycle at the preferred speed, allowing for an assessment of how the activity was distributed over the gait cycle and modulated with speed. Compared to the young adults, the older adults exhibited greater activation of the tibialis anterior and soleus during mid-stance at all walking speeds and greater activation of the vastus lateralis and medial hamstrings during loading and mid-stance at the fast walking speed, suggesting increased coactivation across the ankle and knee. In addition, older adults depend less on soleus muscle activation to push off at faster walking speeds. We conclude that age-related changes in neuromuscular activity reflect a strategy of stiffening the limb during single support and likely contribute to reduced push off power at fast walking speeds.  相似文献   

12.
The purpose of this study was to determine whether surface electromyography (EMG) assessment of myoelectric manifestations of muscle fatigue is capable of detecting differences between the vastus lateralis and medialis muscles which are consistent with the results of previous biopsy studies. Surface EMG signals were recorded from the vastus medialis longus (VML), vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles during isometric knee extension contractions at 60% and 80% of the maximum voluntary contraction (MVC) for 10 s and 60 s, respectively. Initial values and rate of change of mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) of the EMG signal were calculated. Comparisons between the two force levels revealed that the initial values of MNF for the VL muscle were greater at 80% MVC compared to 60% MVC (P < 0.01). Comparisons between the vasti muscles demonstrated lower initial values of CV for VMO compared to VL at 60% MVC (P < 0.01) and lower than VML and VL at 80% MVC (P < 0.01). In addition, initial values of MNF were higher for VL with respect to both VML and VMO at 80% MVC (P < 0.01) and initial estimates of ARV were higher for VMO compared to VML at both force levels (P < 0.01 at 60% MVC and P < 0.05 at 80% MVC). For the sustained contraction at 80% MVC, VL demonstrated a greater decrease in CV over time compared to VMO (P < 0.05).These findings suggest that surface EMG signals and their time course during sustained isometric contractions may be useful to non-invasively describe functional differences between the vasti muscles.  相似文献   

13.
The aim of this preliminary study was to examine the validity of a recently-introduced tool (MyotonPRO) for the assessment of mechanical parameters of the main lower extremity muscles in patients with chronic stroke. Thigh and shank muscles of 20 stroke patients with limited hypertonia (11 men and 9 women; mean age: 52 ± 11 yrs) and 20 healthy controls (11 men and 9 women; mean age: 53 ± 10 yrs) were bilaterally evaluated with (i) MyotonPRO for muscle stiffness, tone and elasticity, (ii) ultrasonography for muscle and subcutaneous thickness, and (iii) dynamometry for isometric muscle strength. MyotonPRO parameters of stroke patients were reassessed a week later (inter-day test-retest design). For all the investigated muscles, MyotonPRO variables did not differ between the more affected and the less affected side of patients (P > 0.05 for main side effect), and neither differed between patients and controls (P > 0.05 for main group effect), except for gastrocnemius medialis stiffness that was higher in patients (300 ± 51 N/m) than in controls (281 ± 29 N/m; P < 0.05). Thigh muscle stiffness was negatively correlated to subcutaneous thickness (r = −0.84 for the vastus lateralis; P < 0.001), while only tibialis anterior stiffness and tone correlated positively with muscle thickness (both r = 0.46; P < 0.01). Test-retest reliability of MyotonPRO parameters was adequate, except for muscle elasticity. The validity of MyotonPRO for the evaluation of thigh muscles in chronic stroke patients is partially challenged by the poor discriminant ability and by the considerable impact of subcutaneous tissue thickness (sex-dependent) on mechanical parameters. The potential validity of MyotonPRO for the assessment of shank muscles requires further investigation.  相似文献   

14.
The purpose of this study was to compare lower limb muscle activity during whole-body vibration (WBV) exercise between a young and an older study population. Thirty young (25.9±4.3 yrs) and thirty older (64.2±5.3 yrs) individuals stood on a side-alternating WBV platform while surface electromyography (sEMG) was measured for the tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SOL), vastus lateralis (VL), vastus medialis (VM), and biceps femoris (BF). The WBV protocol included nine vibration settings consisting of three frequencies (6, 11, 16 Hz) x three amplitudes (0.9, 2.5, 4.0 mm), and three control trials without vibration (narrow, medium, wide stance). The vertical platform acceleration (peak values of maximal displacement from equilibrium) was quantified during each vibration exercise using an accelerometer. The outcomes of this study showed that WBV significantly increased muscle activity in both groups for most vibration conditions in the TA (averaged absolute increase: young: +3.9%, older: +18.4%), GM (young: +4.1%, older: +9.5%), VL (young: +6.3%, older: +12.6%) and VM (young: +5.4%, older: +8.0%), and for the high frequency-amplitude combinations in the SOL (young: +7.5%, older: +12.6%) and BF (young: +1.9%, older: +7.5%). The increases in sEMG activity were significantly higher in the older than the young adults for all muscles, i.e., TA (absolute difference: 13.8%, P<0.001), GM (4.6%, P=0.034), VL (7.6%, P=0.001), VM (6.7%, P=0.042), BF (6.4%, P<0.001), except for the SOL (0.3%, P=0.248). Finally, the vertical platform acceleration was a significant predictor of the averaged lower limb muscle activity in the young (r=0.917, P<0.001) and older adults (r=0.931, P<0.001). In conclusion, the older population showed greater increases in lower limb muscle activity during WBV exercise than their young counterparts, meaning that they might benefit more from WBV exercises. Additionally, training intensity can be increased by increasing the vertical acceleration load.  相似文献   

15.
Purpose: To indirectly evaluate the effect of androgens on neuromuscular system in humans we analyzed if an induced short-term hypogonadal state (serum total testosterone-TT < 2.3 ng/ml) may affect central drive to skeletal muscle and/or muscle neuro-mechanical performance. Methods: We compared voluntary and electrically evoked muscle sEMG signals from biceps brachii in nine hypogonadal male volunteers (Hypo) and in ten healthy controls (Cont). Serum TT and dihydrotestosterone (DHT) were assayed. Results: With respect to Hypo, Cont exhibited significantly higher median frequency content (MDF) at any angular velocity; normalized MDF [95.9% (SD = 23.3) vs 73.8% (SD = 9.3)]; muscle fiber conduction velocity (CV) from lowest to highest angular velocities; initial MDF at fatigue test [91.78 Hz (SD = 22.03) vs 70.94 Hz (SD = 11.06)] as well as was the normalized slope [−0.64 (SD = 0.14 vs −0.5 (SD = 0.11)]. In the non-fatigued state, Hypo showed a slower single twitches time to peak (TTP). In Cont, half relaxation time (HRT) decreased after fatigue while increased in Hypo (p < 0.05 between groups). A significant correlation between both TT and dihydrotestosterone with MDF and CV was found during voluntary contractions only. Conclusions: A brief exposure to very low serum TT concentration in males seem to determine a reduced excitability of the NM system which, in turn, would favor a predominant recruitment of slow twitch MUs.  相似文献   

16.
The relationship between surface electromyography (SEMG) amplitude and the ventilatory threshold has been extensively studied. However, previous studies of muscle fiber conduction velocity (MFCV) are scarce and present insufficient evidence concerning the relationship between MFCV and metabolic responses during cycling. Based on that fact, the purpose of this study is twofold: (1) to investigate the existence of a MFCV threshold (MFCVT) during cycling and (2) to verify if this possible breakpoint is correlated with the ventilatory threshold (VT) and the SEMG threshold (SEMGT). Eight trained male cyclists (age 36.0 ± 9.7 years) performed an incremental cycling test with initial workload of 150 W gradually incremented by 20 W min?1 until the exhaustion. Gas analyses were conducted using a breath-by-breath open-circuit spirometry and SEMG were registered from vastus lateralis in each pedaling cycle with a linear array of electrodes. A bi-segmental linear regression computer algorithm was used to estimate VT, MFCVT and SEMGT respectively in the carbon dioxide production (VCO2), MFCV and electromyography root mean square (EMG RMS) curves. The one way ANOVA for repeated measures did not reveal any significant difference among VT (77.1 ± 7.5% of VO2max), MFCVT (80.3 ± 10.4% of VO2max) and SEMGT (81.9 ± 11.7% of VO2max). The Bland and Altman procedure confirmed a good concordance between SEMGT and VT (Bias = 5.5 of %VO2max) as well as MFCVT and VT (Bias = 5.2 of %VO2max). The present findings suggest that muscle fiber conduction velocity threshold is a valid and reliable non-invasive tool to obtain information about ventilatory threshold in trained cyclists.  相似文献   

17.
It is believed that force feedback can modulate lower extremity extensor activity during gait. The purpose of this research was to determine the role of limb loading on knee extensor excitability during the late stance/early swing phase of gait in persons post-stroke. Ten subjects with chronic hemiparesis post-stroke participated in (1) seated isolated quadriceps reflex testing with ankle loads of 0–0.4N m/kg and (2) gait analysis on a treadmill with 0%, 20% or 40% body weight support. Muscle reflex responses were recorded from vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during seated testing. Knee kinematics and quadriceps activity during late stance/early swing phase of gait were compared across loading conditions. Although isolated loading of the ankle plantarflexors at 0.2 N m/kg reduced VM prolonged response (p = 0.04), loading did not alter any other measure of quadriceps excitability (all p > 0.08). During gait, the use of BWS did not influence knee kinematics (p = 0.18) or muscle activity (all p > 0.17) during late stance/early swing phase. This information suggests that load sensed at the ankle has minimal effect on the ipsilateral quadriceps of individuals post-stroke during late stance. It appears that adjusting limb loading during rehabilitation may not be an effective tool to address stiff-knee gait following stroke.  相似文献   

18.
Little is known regarding the modulation and the plasticity of the neural pathway interconnecting elements of the central nervous system and skeletal muscle in resistant-trained individuals. The aim of the study was to compare corticospinal and spinal responses measured during dynamic muscle contractions of the tibialis anterior in resistance trained (RT) and un-trained (UT) males. Nine UT and 10 RT male volunteers reported to the laboratory 24 h following a familiarisation session. Motor evoked potentials (MEPs) and the cortical silent period were evoked using transcranial magnetic stimulation at a range of contraction intensities and was delivered as the ankle passed 90° during shortening and lengthening contractions. The Hoffmann reflex (H-reflex) and V-waves were evoked with peripheral nerve stimulation. Despite the RT group being significantly stronger during shortening (28%; P = 0.023: CI = 1.27–15.1 N m), lengthening (25%; P = 0.041: CI = 0.27–17.0 N m) and isometric muscle actions (20%; P = 0.041; CI = 0.77–14.9 N m), no differences between the groups existed for corticospinal or spinal variables. Lack of detectable differences between RT and UT individuals may be linked to minimal exposure to task specific, isolated high intensity resistance training of the TA muscle.  相似文献   

19.
The influence of the knee flexion on muscle activation and transmissibility during whole body vibration is controversially discussed in the literature. In this study, 34 individuals had electromyography activity (EMG) of the vastus lateralis and the acceleration assessed while squatting with 60° and 90° of knee flexion either with or without whole-body vibration (WBV). The conditions were maintained for 10 s with 1 min of rest between each condition. The main findings were (1) the larger the angle of knee flexion (90° vs. 60°), the greater the EMG (p < 0.001), with no difference on acceleration transmissibility; (2) for both angles of knee flexion, the addition of WBV produced no significant difference in EMG and higher acceleration compared to without WBV (p < 0.001). These results suggest that the larger the knee flexion angle (60° vs. 90°), the greater the muscle activation without acceleration modification. However, the addition of WBV increases the transmissibility of acceleration in the lower limbs without modification in EMG of vastus lateralis.  相似文献   

20.
The aim of this study was to determine the effects of anterior cruciate ligament reconstruction (ACLR) on sub-maximal quadriceps force control with respect to quadriceps and hamstring muscle activity. Thirty ACLR individuals together with 30 healthy individuals participated. With real-time visual feedback of muscle force output and electromyographic electrodes attached to the quadriceps and hamstring muscles, subjects performed an isometric knee extension task where they increased and decreased their muscle force output at 0.128 Hz within a range of 5–30% maximum voluntary capacity. The ACLR group completed the task with more error and increased medial hamstring and vastus medialis activation (p < 0.05). Moderate negative correlations (p < 0.05) were observed between quadriceps force control and medial (Spearman’s rho = −0.448, p = 0.022) and lateral (Spearman’s rho = −0.401, p = 0.034) hamstring activation in the ACLR group. Diminished quadriceps sub-maximal force control in ACLR subjects was reflective of medial quadriceps and hamstring dyskinesia (i.e., altered muscle activity patterns and coordination deficits). Within the ACLR group however, augmented hamstring co-activation was associated with better quadriceps force control. Future studies should explore the convergent validity of quadriceps force control in ACLR patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号