首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre‐synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre‐ and post‐synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre‐synaptic dopamine function remain unclear. Non‐invasive imaging techniques such as positron emission tomography have revealed impaired pre‐synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre‐synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15–20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l ‐amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre‐treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre‐synaptic dopaminergic neurons are not initiated following a single exposure to the drug.

  相似文献   

2.
The olfm1a and olfm1b genes in zebrafish encode conserved secreted glycoproteins. These genes are preferentially expressed in the brain and retina starting from 16 h post‐fertilization until adulthood. Functions of the Olfm1 gene is still unclear. Here, we produced and analyzed a null zebrafish mutant of both olfm1a and olfm1b genes (olfm1 null). olfm1 null fish were born at a normal Mendelian ratio and showed normal body shape and fertility as well as no visible defects from larval stages to adult. Olfm1 proteins were preferentially localized in the synaptosomes of the adult brain. Olfm1 co‐immunoprecipitated with GluR2 and soluble NSF attachment protein receptor complexes indicating participation of Olfm1 in both pre‐ and post‐synaptic events. Phosphorylation of GluR2 was not changed while palmitoylation of GluR2 was decreased in the brain synaptosomal membrane fraction of olfm1 null compared with wt fish. The levels of GluR2, SNAP25, flotillin1, and VAMP2 were markedly reduced in the synaptic microdomain of olfm1 null brain compared with wt. The internalization of GluR2 in retinal cells and the localization of VAMP2 in brain synaptosome were modified by olfm1 null mutation. This indicates that Olfm1 may regulate receptor trafficking from the intracellular compartments to the synaptic membrane microdomain, partly through the alteration of post‐translational GluR2 modifications such as palmitoylation. Olfm1 may be considered a novel regulator of the composition and function of the α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor complex.

  相似文献   

3.
Airborne particulate matter (PM) from urban vehicular aerosols altered glutamate receptor functions and induced glial inflammatory responses in rodent models after chronic exposure. Potential neurotoxic mechanisms were analyzed in vitro. In hippocampal slices, 2 h exposure to aqueous nanosized PM (nPM) selectively altered post‐synaptic proteins in cornu ammonis area 1 (CA1) neurons: increased GluA1, GluN2A, and GluN2B, but not GluA2, GluN1, or mGlur5; increased post synaptic density 95 and spinophilin, but not synaptophysin, while dentate gyrus (DG) neurons were unresponsive. In hippocampal slices and neurons, MitoSOX red fluorescence was increased by nPM, implying free radical production. Specifically, N? production by slices was increased within 15 min of exposure to nPM with dose dependence, 1–10 μg/mL. Correspondingly, CA1 neurons exhibited increased nitrosylation of the GluN2A receptor and dephosphorylation of GluN2B (S1303) and of GluA1 (S831 & S845). Again, DG neurons were unresponsive to nPM. The induction of N? and nitrosylation were inhibited by AP5, an NMDA receptor antagonist, which also protects neurite outgrowth in vitro from inhibition by nPM. Membrane injury (EthidiumD‐1 uptake) showed parallel specificity. Finally, nPM decreased evoked excitatory post‐synaptic currents of CA1 neurons. These findings further document the selective impact of nPM on glutamatergic functions and identify novel responses of NMDA receptor‐stimulated N? production and nitrosylation reactions during nPM‐mediated neurotoxicity.

  相似文献   


4.
Precise quantification of extracellular glutamate concentrations upon neuronal activation is crucial for the understanding of brain function and neurological disorders. While optogenetics is an outstanding method for the correlation between distinct neurons and their role in circuitry and behavior, the electrochemically inactive nature of glutamate has proven challenging for recording upon optogenetic stimulations. This difficulty is due to the necessity for using enzyme‐coated microelectrodes and the risk for light‐induced artifacts. In this study, we establish a method for the combination of in vivo optogenetic stimulation with selective measurement of glutamate concentrations using enzyme‐coated multielectrode arrays and amperometry. The glutamatergic subthalamic nucleus (STN ), which is the main electrode target site in deep brain stimulation treatment of advanced Parkinson′s disease, has recently proven opotogenetically targetable in Pitx2‐Cre‐transgenic mice and was here used as model system. Upon stereotactic injection of viral Channelrhodopsin2‐eYFP constructs into the STN , amperometric recordings were performed at a range of optogenetic stimulation frequencies in the globus pallidus, the main STN target area, in anesthetized mice. Accurate quantification was enabled through a multi‐step analysis approach based on self‐referencing microelectrodes and repetition of the experimental protocol at two holding potentials, which allowed for the identification, isolation and removal of photoelectric and photoelectrochemical artifacts. This study advances the field of in vivo glutamate detection with combined optogenetics and amperometric recordings by providing a validated analysis framework for application in a wide variety of glutamate‐based approaches in neuroscience.

  相似文献   

5.
A set of specific precursor microRNAs (pre‐miRNAs) are reported to localize into neuronal dendrites, where they could be processed locally to control synaptic protein synthesis and plasticity. However, it is not clear whether specific pre‐miRNAs are also transported into distal axons to autonomously regulate intra‐axonal protein synthesis. Here, we show that a subset of pre‐miRNAs, whose mature miRNAs are enriched in axonal compartment of sympathetic neurons, are present in axons of neurons both in vivo and in vitro by quantitative PCR and by in situ hybridization. Some pre‐miRNAs (let 7c‐a and pre‐miRs‐16, 23a, 25, 125b‐1, 433, and 541) showed elevated axonal levels, while others (pre‐miRs‐138‐2, 185, and 221) were decreased in axonal levels following injury. Dicer and KSRP proteins are also present in distal axons, but Drosha is found restricted to the cell body. These findings suggest that specific pre‐miRNAs are selected for localization into distal axons of sensory neurons and are presumably processed to mature miRNAs in response to extracellular stimuli. This study supports the notion that local miRNA biogenesis effectively provides another level of temporal control for local protein synthesis in axons.

  相似文献   


6.
Tan‐67 is a selective non‐peptidic δ‐opioid receptor (DOR ) agonist that confers neuroprotection against cerebral ischemia/reperfusion (I/R)‐caused neuronal injury in pre‐treated animals. In this study, we examined whether post‐ischemic administration of Tan‐67 in stroke mice is also neuroprotective and whether the treatment affects expression, maturation and processing of the amyloid precursor protein (APP ). A focal cerebral I/R model in mice was induced by middle cerebral artery occlusion for 1 h and Tan‐67 (1.5, 3 or 4.5 mg/kg) was administered via the tail vein at 1 h after reperfusion. Alternatively, naltrindole, a selective DOR antagonist (5 mg/kg), was administered 1 h before Tan‐67 treatment. Our results showed that post‐ischemic administration of Tan‐67 (3 mg/kg or 4.5 mg/kg) was neuroprotective as shown by decreased infarct volume and neuronal loss following I/R. Importantly, Tan‐67 improved animal survival and neurobehavioral outcomes. Conversely, naltrindole abolished Tan‐67 neuroprotection in infarct volume. Tan‐67 treatment also increased APP expression, maturation and processing in the ipsilateral penumbral area at 6 h but decreased APP expression and maturation in the same brain area at 24 h after I/R. Tan‐67‐induced increase in APP expression was also seen in the ischemic cortex at 24 h following I/R. Moreover, Tan‐67 attenuated BACE ‐1 expression, β‐secretase activity and the BACE cleavage of APP in the ischemic cortex at 24 h after I/R, which was abolished by naltrindole. Our data suggest that Tan‐67 is a promising DOR ‐dependent therapeutic agent for treating I/R‐caused disorder and that Tan‐67‐mediated neuroprotection may be mediated via modulating APP expression, maturation and processing, despite an uncertain causative relationship between the altered APP and the outcomes observed.

  相似文献   

7.
Compelling evidence indicates that type 2 diabetes mellitus, insulin resistance (IR), and metabolic syndrome are often accompanied by cognitive impairment. However, the mechanistic link between these metabolic abnormalities and CNS dysfunction requires further investigations. Here, we evaluated whether adipose tissue IR and related metabolic alterations resulted in CNS changes by studying synapse lipid composition and function in the adipocyte‐specific ecto‐nucleotide pyrophosphate phosphodiesterase over‐expressing transgenic (AtENPP1‐Tg) mouse, a model characterized by white adipocyte IR, systemic IR, and ectopic fat deposition. When fed a high‐fat diet, AtENPP1‐Tg mice recapitulate essential features of the human metabolic syndrome, making them an ideal model to characterize peripherally induced CNS deficits. Using a combination of gas chromatography and western blot analysis, we found evidence of altered lipid composition, including decreased phospholipids and increased triglycerides (TG) and free fatty acid in hippocampal synaptosomes isolated from high‐fat diet‐fed AtENPP1‐Tg mice. These changes were associated with impaired basal synaptic transmission at the Schaffer collaterals to hippocampal cornu ammonis 1 (CA1) synapses, decreased phosphorylation of the GluN1 glutamate receptor subunit, down‐regulation of insulin receptor expression, and up‐regulation of the free fatty acid receptor 1.

  相似文献   


8.
Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2‐knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2‐knockout mice were significantly lower than those in wild‐type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons.

  相似文献   


9.
Our recent studies have shown that endogenous zinc, co‐released with glutamate from the synaptic terminals of vertebrate retinal photoreceptors, provides a feedback mechanism that reduces calcium entry and the concomitant vesicular release of glutamate. We hypothesized that zinc feedback may serve to protect the retina from glutamate excitotoxicity, and conducted in vivo experiments on the retina of the skate (Raja erinacea) to determine the effects of removing endogenous zinc by chelation. These studies showed that removal of zinc by injecting the zinc chelator histidine results in inner retinal damage similar to that induced by the glutamate receptor agonist kainic acid. In contrast, when an equimolar quantity of zinc followed the injection of histidine, the retinal cells were unaffected. Our results are a good indication that zinc, co‐released with glutamate by photoreceptors, provides an auto‐feedback system that plays an important cytoprotective role in the retina.

  相似文献   


10.
The diagnosis of Parkinson's disease (PD) still lacks objective diagnostic markers independent of clinical criteria. Cerebrospinal fluid (CSF) samples from 36 PD and 42 age‐matched control patients were subjected to inductively coupled plasma‐sector field mass spectrometry and a total of 28 different elements were quantified. Different machine learning algorithms were applied to the dataset to identify a discriminating set of elements yielding a novel biomarker signature. Using 19 stably detected elements, the extreme gradient tree boosting model showed the best performance in the discrimination of PD and control patients with high specificity and sensitivity (78.6% and 83.3%, respectively), re‐classifying the training data to 100%. The 10 times 10‐fold cross‐validation yielded a good area under the receiver operating characteristic curve of 0.83. Arsenic, magnesium, and selenium all showed significantly higher mean CSF levels in the PD group compared to the control group (p  = 0.01, p  = 0.04, and p  = 0.03). Reducing the number of elements to a discriminating minimum, we identified an elemental cluster (Se, Fe, As, Ni, Mg, Sr), which most importantly contributed to the sample discrimination. Selenium was identified as the element with the highest impact within this cluster directly followed by iron. After prospective validation, this elemental fingerprint in the CSF could have the potential to be used as independent biomarker for the diagnosis of PD. Next to their value as a biomarker, these data also argue for a prominent role of these highly discriminating six elements in the pathogenesis of PD.

  相似文献   

11.
In vitro and in vivo studies have suggested that reduced astrocytic uptake of neuronally released glutamate, alterations in expression of glial fibrillary acidic protein (GFAP) and aquaporin‐4 (AQP‐4) contribute to brain edema in acute liver failure (ALF). However, there is no evidence to date to suggest that these alterations occur in patients with ALF. We analyzed the mRNA expression of excitatory amino acid transporters (EAAT‐1, EAAT‐2), GFAP, and AQP‐4 in the cerebral cortex obtained at autopsy from eight patients with ALF and from seven patients with no evidence of hepatic or neurological disorders by real‐time PCR, and protein expression was assessed using immunoblotting and immunohistochemistry. We demonstrated a significant decrease in GFAP mRNA and protein levels in ALF patients compared to controls. While the loss of EAAT‐2 protein in ALF samples was post‐translational in nature, EAAT‐1 protein remained within normal limits. Immunohistochemistry confirmed that, in all cases, the losses of EAAT‐2 and GFAP were uniquely astrocytic in their localization. AQP‐4 mRNA expression was significantly increased and its immunohistochemistry demonstrated increased AQP‐4 immunoreactivity in the glial end‐feet process surrounding the microvessels. These findings provide evidence of selective alterations in the expression of genes coding for key astrocytic proteins implicated in central nervous system (CNS) excitability and brain edema in human ALF.

  相似文献   


12.
Subcellular trafficking of neuronal receptors is known to play a key role in synaptic development, homeostasis, and plasticity. We have developed a ligand‐targeted and photo‐cleavable probe for delivering a synthetic fluorophore to AMPA receptors natively expressed in neurons. After a receptor is bound to the ligand portion of the probe molecule, a proteinaceous nucleophile reacts with an electrophile on the probe, covalently bonding the two species. The ligand may then be removed by photolysis, returning the receptor to its non‐liganded state while leaving intact the new covalent bond between the receptor and the fluorophore. This strategy was used to label polyamine‐sensitive receptors, including calcium‐permeable AMPA receptors, in live hippocampal neurons from rats. Here, we describe experiments where we examined specificity, competition, and concentration on labeling efficacy as well as quantified receptor trafficking. Pharmacological competition during the labeling step with either a competitive or non‐competitive glutamate receptor antagonist prevented the majority of labeling observed without a blocker. In other experiments, labeled receptors were observed to alter their locations and we were able to track and quantify their movements.

  相似文献   


13.
14.
The microtubule‐associated protein tau has primarily been associated with axonal location and function; however, recent work shows tau release from neurons and suggests an important role for tau in synaptic plasticity. In our study, we measured synaptic levels of total tau using synaptosomes prepared from cryopreserved human postmortem Alzheimer's disease (AD) and control samples. Flow cytometry data show that a majority of synaptic terminals are highly immunolabeled with the total tau antibody (HT7) in both AD and control samples. Immunoblots of synaptosomal fractions reveal increases in a 20 kDa tau fragment and in tau dimers in AD synapses, and terminal‐specific antibodies show that in many synaptosome samples tau lacks a C‐terminus. Flow cytometry experiments to quantify the extent of C‐terminal truncation reveal that only 15–25% of synaptosomes are positive for intact C‐terminal tau. Potassium‐induced depolarization demonstrates release of tau and tau fragments from pre‐synaptic terminals, with increased release from AD compared to control samples. This study indicates that tau is normally highly localized to synaptic terminals in cortex where it is well‐positioned to affect synaptic plasticity. Tau cleavage may facilitate tau aggregation as well as tau secretion and propagation of tau pathology from the pre‐synaptic compartment in AD.

  相似文献   


15.
Purines are metabolic building blocks essential for all living organisms on earth. De novo purine biosynthesis occurs in the brain and appears to play important roles in neural development. Phosphoribosyl formylglycinamidine synthase (FGAMS , also known as PFAS or FGARAT ), a core enzyme involved in the de novo synthesis of purines, may play alternative roles in viral pathogenesis. To date, no thorough investigation of the endogenous expression and localization of de novo purine biosynthetic enzymes has been conducted in human neurons or in virally infected cells. In this study, we characterized expression of FGAMS using multiple neuronal models. In differentiated human SH ‐SY 5Y neuroblastoma cells, primary rat hippocampal neurons, and in whole‐mouse brain sections, FGAMS immunoreactivity was distributed within the neuronal cytoplasm. FGAMS immunolabeling in vitro demonstrated extensive distribution throughout neuronal processes. To investigate potential changes in FGAMS expression and localization following viral infection, we infected cells with the human pathogen herpes simplex virus 1. In infected fibroblasts, FGAMS immunolabeling shifted from a diffuse cytoplasmic location to a mainly perinuclear localization by 12 h post‐infection. In contrast, in infected neurons, FGAMS localization showed no discernable changes in the localization of FGAMS immunoreactivity. There were no changes in total FGAMS protein levels in either cell type. Together, these data provide insight into potential purine biosynthetic mechanisms utilized within neurons during homeostasis as well as viral infection.

Cover Image for this Issue: doi: 10.1111/jnc.14169 .
  相似文献   

16.
Methyl‐β‐cyclodextrin (MβCD) is a reagent that depletes cholesterol and disrupts lipid rafts, a type of cholesterol‐enriched cell membrane microdomain. Lipid rafts are essential for neuronal functions such as synaptic transmission and plasticity, which are sensitive to even low doses of MβCD. However, how MβCD changes synaptic function, such as N‐methyl‐d ‐aspartate receptor (NMDA‐R) activity, remains unclear. We monitored changes in synaptic transmission and plasticity after disrupting lipid rafts with MβCD. At low concentrations (0.5 mg/mL), MβCD decreased basal synaptic transmission and miniature excitatory post‐synaptic current without changing NMDA‐R‐mediated synaptic transmission and the paired‐pulse facilitation ratio. Interestingly, low doses of MβCD failed to deplete cholesterol or affect α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPA‐R) and NMDA‐R levels, while clearly reducing GluA1 levels selectively in the synaptosomal fraction. Low doses of MβCD decreased the inhibitory effects of NASPM, an inhibitor for GluA2‐lacking AMPA‐R. MβCD successfully decreased NMDA‐R‐mediated long‐term potentiation but did not affect the formation of either NMDA‐R‐mediated or group I metabotropic glutamate receptor‐dependent long‐term depression. MβCD inhibited de‐depression without affecting de‐potentiation. These results suggest that MβCD regulates GluA1‐dependent synaptic potentiation but not synaptic depression in a cholesterol‐independent manner.

  相似文献   


17.
The statin atorvastatin (ATV) given as a post‐treatment has been reported beneficial in stroke, although the mechanisms involved are not well understood so far. Here, we investigated in vitro the effect of post‐treatment with ATV and its main bioactive metabolite ortho‐hydroxy ATV (o‐ATV) on neuroprotection after oxygen and glucose deprivation (OGD), and the role of the pro‐survival cAMP response element‐binding protein (CREB). Post‐OGD treatment of primary cultures of rat cortical neurons with o‐ATV, but not ATV, provided neuroprotection to a specific subset of cortical neurons that were large and positive for glutamic acid decarboxylase (large‐GAD(+) neurons, GABAergic). Significantly, only these GABAergic neurons showed an increase in phosphorylated CREB (pCREB) early after neuronal cultures were treated post‐OGD with o‐ATV. We found that o‐ATV, but not ATV, increased the neuronal uptake of glutamate from the medium; this provides a rationale for the specific effect of o‐ATV on pCREB in large‐GABAergic neurons, which have a higher ratio of synaptic (pCREB‐promoting) vs extrasynaptic (pCREB‐reducing) N‐methyl‐D‐aspartate (NMDA) receptors (NMDAR) than that of small‐non‐GABAergic neurons. When we pharmacologically increased pCREB levels post‐OGD in non‐GABAergic neurons, through the selective activation of synaptic NMDAR, we observed as well long‐lasting neuronal survival. We propose that the statin metabolite o‐ATV given post‐OGD boosts the intrinsic pro‐survival factor pCREB in large‐GABAergic cortical neurons in vitro, this contributing to protect them from OGD.

  相似文献   

18.
The mammalian target of rapamycin (mTOR) signalling cascade is involved in the intracellular regulation of protein synthesis, specifically for proteins involved in controlling neuronal morphology and facilitating synaptic plasticity. Research has revealed that the activity of the mTOR cascade is influenced by several extracellular and environmental factors that have been implicated in schizophrenia. Therefore, there is reason to believe that one of the downstream consequences of dysfunction or hypofunction of these factors in schizophrenia is disrupted mTOR signalling and hence impaired protein synthesis. This results in abnormal neurodevelopment and deficient synaptic plasticity, outcomes which could underlie some of the positive, negative and cognitive symptoms of schizophrenia. This review will discuss the functional roles of the mTOR cascade and present evidence in support of a novel mTOR‐based hypothesis of the neuropathology of schizophrenia.

  相似文献   


19.
Glutamate is the major excitatory neurotransmitter, and is inactivated by cellular uptake catalyzed mostly by the glutamate transporter subtypes GLT‐1 (EAAT2) and GLAST (EAAT1). Astrocytes express both GLT‐1 and GLAST, while axon terminals in the neocortex only express GLT‐1. To evaluate the role of GLT‐1 in glutamate homeostasis, we injected GLT‐1 knockout (KO) mice and wild‐type littermates with [1‐13C]glucose and [1,2‐13C]acetate 15 min before euthanization. Metabolite levels were analyzed in extracts from neocortex and cerebellum and 13C labeling in neocortex. Whereas the cerebellum in GLT‐1‐deficient mice had normal levels of glutamate, glutamine, and 13C labeling of metabolites, glutamate level was decreased but labeling from [1‐13C] glucose was unchanged in the neocortex. The contribution from pyruvate carboxylation toward labeling of these metabolites was unchanged. Labeling from [1,2‐13C] acetate, originating in astrocytes, was decreased in glutamate and glutamine in the neocortex indicating reduced mitochondrial metabolism in astrocytes. The decreased amount of glutamate in the cortex indicates that glutamine transport into neurons is not sufficient to replenish glutamate lost because of neurotransmission and that GLT‐1 plays a role in glutamate homeostasis in the cortex.

  相似文献   


20.
Cholinergic neurons in the CNS are involved in synaptic plasticity and cognition. Both muscarinic and nicotinic acetylcholine receptors (nAChRs) influence plasticity and cognitive function. The mechanism underlying nAChR‐induced plasticity, however, has remained elusive. Here, we demonstrate morphological changes in dendritic spines following activation of α4β2* nAChRs, which are expressed on glutamatergic pre‐synaptic termini of cultured hippocampal neurons. Exposure of the neurons to nicotine resulted in a lateral enlargement of spine heads. This was abolished by dihydro‐β‐erythroidine, an antagonist of α4β2* nAChRs, but not by α‐bungarotoxin, an antagonist of α7 nAChRs. Tetanus toxin or a mixture of 2‐amino‐5‐phosphonovaleric acid and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, antagonists of NMDA‐ and AMPA‐type glutamate receptors, blocked the nicotine‐induced spine remodeling. In addition, nicotine exerted full spine‐enlarging response in the post‐synaptic neuron whose β2 nAChR expression was knocked down. Finally, pre‐treatment with nicotine enhanced the Ca2+‐response of the neurons to glutamate. These data suggest that nicotine influences the activity of glutamatergic neurotransmission through the activation of pre‐synaptic α4β2 nAChRs, resulting in the modulation of spinal architecture and responsiveness. The present findings may represent one of the cellular mechanisms underlying cholinergic tuning of brain function.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号