首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen L  Xie X  Zhang X  Jia W  Jian J  Song C  Jin B 《Life sciences》2003,73(18):2373-2382
CD226 is a 67 kDa type I transmembrane glycoprotein mainly expressed on activated T cells, NK cells and platelets, and involved in the differentiation of cytotoxic T lymphocytes (CTL) and NK, as well as platelet activation and aggregation. Here we found that the expression of CD226 protein and CD226mRNA were very weak in resting HUVEC and ECV304 cells, whereas high level expression could be observed when these cells were stimulated. The binding activities between activated endothelial cells and activated Jurkat cells could be partly blocked by CD226/Ig fusion protein. Similarly, CD226/Ig could also partly block the adhesion between activated endothelial cells and some leukocytes or colo205 cells. These data provided the evidence that activated endothelial cells could express high level of CD226, and CD226 was involved in the endothelial cells' adhesion. The above findings suggested that CD226 is a novel inducible adhesion molecule on human endothelial cells.  相似文献   

2.
Lai KC  Kuo CL  Ho HC  Yang JS  Ma CY  Lu HF  Huang HY  Chueh FS  Yu CC  Chung JG 《Phytomedicine》2012,19(7):625-630
To elevate chemo-resistance of human cancer cells is a major obstacle in the treatment and management of malignant cancers. Diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DATS) are presented in the Alliaceae family particularly in garlic. Although DAS, DADS and DATS have been shown to exhibit anticancer activities, there is little information on effects of these compounds on drug resistant genes in human colon cancer cells in vitro and in vivo. Herein, we are the first to show that DAS, DADS and DATS at 25 μM for 24-h and 48-h incubations promoted expression of drug resistant genes in colo 205 human colon cancer cells. In vitro experiments indicated that DATS promoted gene expression of multidrug resistant 1 (Mdr1) (p<0.05), and DAS and DADS promoted MRP3 gene expression and DATS alone stimulated gene expression of multidrug resistance-associated protein-1 (MRP1) (p<0.05) in colo 205 cells. In vivo studies demonstrated that DADS and DATS induced Mdr1 and MRP1 gene expression (p<0.05). DADS promoted MRP3 gene expression (p<0.05) as well as DADS and DATS increased MRP4 and MRP6 gene expression (p<0.05) in the colo 205 xenograft mice. Based on our in vitro and in vivo results, diallyl polysulfides (DAS, DADS and DATS) affected the gene expression of the multidrug resistance in colo 205 human colon cancer cells in vitro and in vivo.  相似文献   

3.
The human epithelial cell adhesion molecule (EpCAM) is highly expressed in a variety of clinical tumour entities. Although an antibody against EpCAM has successfully been used as an adjuvant therapy in colon cancer, this therapy has never gained wide-spread use. We have therefore investigated the possibilities and limitations for EpCAM as possible molecular imaging target using a panel of preclinical cancer models. Twelve human cancer cell lines representing six tumour entities were tested for their EpCAM expression by qPCR, flow cytometry analysis and immunocytochemistry. In addition, EpCAM expression was analyzed in vivo in xenograft models for tumours derived from these cells. Except for melanoma, all cell lines expressed EpCAM mRNA and protein when grown in vitro. Although they exhibited different mRNA levels, all cell lines showed similar EpCAM protein levels upon detection with monoclonal antibodies. When grown in vivo, the EpCAM expression was unaffected compared to in vitro except for the pancreatic carcinoma cell line 5072 which lost its EpCAM expression in vivo. Intravenously applied radio-labelled anti EpCAM MOC31 antibody was enriched in HT29 primary tumour xenografts indicating that EpCAM binding sites are accessible in vivo. However, bound antibody could only be immunohistochemically detected in the vicinity of perfused blood vessels. Investigation of the fine structure of the HT29 tumour blood vessels showed that they were immature and prone for higher fluid flux into the interstitial space. Consistent with this hypothesis, a higher interstitial fluid pressure of about 12 mbar was measured in the HT29 primary tumour via "wick-in-needle" technique which could explain the limited diffusion of the antibody into the tumour observed by immunohistochemistry.  相似文献   

4.
The huKS-IL2 immunocytokine (IC) consists of IL2 fused to a mAb against EpCAM, while the hu14.18-IL2 IC recognizes the GD2 disialoganglioside. They are under evaluation for treatment of EpCAM(+) (ovarian) and GD2(+) (neuroblastoma and melanoma) malignancies because of their proven ability to enhance tumor cell killing by antibody-dependent cell-mediated cytotoxicity (ADCC) and by antitumor cytotoxic T cells. Here, we demonstrate that huKS-IL2 and hu14.18-IL2 bind to tumor cells via their antibody components and increase adhesion and activating immune synapse (AIS) formation with NK cells by engaging the immune cells' IL-2 receptors (IL2R). The NK leukemia cell line, NKL (which expresses high affinity IL2Rs), shows fivefold increase in binding to tumor targets when treated with IC compared to matching controls. This increase in binding is effectively inhibited by blocking antibodies against CD25, the α-chain of the IL2R. NK cells isolated from the peritoneal environment of ovarian cancer patients, known to be impaired in mediating ADCC, bind to huKS-IL2 via CD25. The increased binding between tumor and effector cells via ICs is due to the formation of AIS that are characterized by the simultaneous polarization of LFA-1, CD2 and F-actin at the cellular interface. AIS formation of peritoneal NK and NKL cells is inhibited by anti-CD25 blocking antibody and is 50-200% higher with IC versus the parent antibody. These findings demonstrate that the IL-2 component of the IC allows IL2Rs to function not only as receptors for this cytokine but also as facilitators of peritoneal NK cell binding to IC-coated tumor cells.  相似文献   

5.
Summary Cytorhodin-S, an anthracycline derivative, was covalently coupled to a monoclonal antibody (mAb) CA208, against carcinoembryonic antigen (CEA) in order to achieve selective killing of a CEA-producing colon carcinoma cell line, COLO 205. The conjugate (15 molecules of drugs/antibody) retained substantial antibody activity as well as drug activity as assessed by enzyme-linked immunosorbent assay and 24-h L1210 proliferation assay, respectively. Furthermore, the conjugate inhibited the growth of COLO 205 cells in a short-term cytostatic assay. This cytostatic effect of the immunoconjugate on COLO 205 cells was inhibited in a dose-dependent manner by pretreatment of the cells with unconjugated CA208 mAb. In addition, chloroquine, a lysosomotropic agent, inhibited the cytostatic effect of the immunoconjugate, indicating the involvement of lysosomal enzymes in releasing drugs from the immunoconjugate. The antibody (CA208) was significantly incorporated into the cytoplasm of COLO 205 cells as demonstrated by immuno-electron microscopy. These in vitro results indicate that cytorhodin-S may be a good partner in immunoconjugates. However, in vivo animal experiments with the immunoconjugate revealed that the immunoconjugate was not so effective in prolonging survival. Thus, in vivo efficacy of this immunoconjugate remains to be further improved in application to cancer immunotherapy.  相似文献   

6.
The epithelial cell adhesion molecule (EpCAM) is a Type I transmembrane superficial glycoprotein antigen that is expressed on the surface of basolateral membrane of multiple epithelial cells with some exceptions such as epidermal keratinocytes, hepatocytes, thymic cortical epithelial cells, squamous stratified epithelial cells, and myoepithelial cells that do not express the molecule. The molecule plays a pivotal role in the structural integrity, adhesion of the epithelial tissues and their interaction with the underlying layers. EpCAM prevents claudin-7 and claudin-1 molecules from degradation, thereby, decreasing the number of tight junctions and cellular interconnections, and promoting the cells toward carcinogenic transformation. Moreover, the mutations in the EpCAM gene lead to congenital tufting enteropathy, severe intestinal epithelium homeostasis disorders, and Lynch and Lynch syndrome. Overexpression of EpCAM on stem cells of some cancers and the presence of this molecule on circulating tumor cells (CTCs) makes it a promising candidate for cancer diagnosis as well as tracing and isolation of CTCs.  相似文献   

7.
EpCAM is expressed at low levels in a variety of normal human epithelial tissues, but is overexpressed in 70–90% of carcinomas. From a clinico-pathological point of view, this has both prognostic and therapeutic significance. EpCAM was first suggested as a therapeutic target for the treatment of epithelial cancers in the 1990s. However, following several immunotherapy trials, the results have been mixed. It has been suggested that this is due, at least in part, to an unknown level of EpCAM expression in the tumors being targeted. Thus, selection of patients who would benefit from EpCAM immunotherapy by determining EpCAM status in the tumor biopsies is currently undergoing vigorous evaluation. However, current EpCAM antibodies are not robust enough to be able to detect EpCAM expression in all pathological tissues. Here we report a newly developed EpCAM RNA aptamer, also known as a chemical antibody, which is not only specific but also more sensitive than current antibodies for the detection of EpCAM in formalin-fixed paraffin-embedded primary breast cancers. This new aptamer, together with our previously described aptamer, showed no non-specific staining or cross-reactivity with tissues that do not express EpCAM. They were able to reliably detect target proteins in breast cancer xenograft where an anti-EpCAM antibody (323/A3) showed limited or no reactivity. Our results demonstrated a more robust detection of EpCAM using RNA aptamers over antibodies in clinical samples with chromogenic staining. This shows the potential of aptamers in the future of histopathological diagnosis and as a tool to guide targeted immunotherapy.  相似文献   

8.
Surface plasmon resonance imaging (SPRi) is most frequently used for the label-free measurement of biomolecular interactions. Here we explore the potential of SPRi to measure antibody production of individual hybridoma cells. As a model system, cells from a hybridoma, producing monoclonal antibodies recognizing epithelial cell adhesion molecule (EpCAM), were used. Recombinant human EpCAM protein was immobilized on an SPR sensor and hybridoma cells were introduced into an IBIS MX96 SPR imager and the SPRi response was followed for 10 h. SPRi responses were detected on the spots of the sensor only where ligands of the produced antibody were present. By measuring the SPRi signals on individual cells the antibody production of the individual cells was measured and production rates were calculated. For 53 single EpCAM hybridoma cells the production ranged from 0.16 to 11.95 pg (mean 2.96 pg per cell, SD 2.51) over a period of 10 h. Antibody excretion per cell per hour ranged from 0.02 to 1.19 pg (mean 0.30, SD 0.25). Here we demonstrate for the first time that antibody production of individual cells can be measured and quantified by SPRi, opening a new avenue for measuring excretion products of individual cells.  相似文献   

9.

Background

Epithelial cell adhesion molecule (EpCAM) is frequently and highly expressed on human carcinomas. The emerging role of EpCAM as a signalling receptor and activator of the wnt pathway, and its expression on tumor-initiating cells, further add to its attractiveness as target for immunotherapy of cancer. Thus far, five conventional monoclonal IgG antibodies have been tested in cancer patients. These are murine IgG2a edrecolomab and its murine/human chimeric IgG1 antibody version, and humanized, human-engineered and fully human IgG1 antibodies 3622W94, ING-1, and adecatumumab (MT201), respectively. Here we compared all anti-EpCAM antibodies in an attempt to explain differences in clinical activity and safety.

Methods

We recombinantly produced all antibodies but murine edrecolomab and investigated them for binding affinity, EpCAM epitope recognition, ADCC and CDC, and inhibition of breast cancer cell proliferation.

Results

ING-1 and 3622W94 bound to EpCAM with much higher affinity than adecatumumab and edrecolomab. Edrecolomab, ING-1, and 3622W94 all recognized epitopes in the exon 2-encoded N-terminal domain of EpCAM, while adecatumumab recognized a more membrane proximal epitope encoded by exon 5. All antibodies induced lysis of EpCAM-expressing cancer cell lines by both ADCC and CDC with potencies that correlated with their binding affinities. The chimeric version of edrecolomab with a human Fcγ1 domain was much more potent in ADCC than the murine IgG2a version. Only adecatumumab showed a significant inhibition of MCF-7 breast cancer cell proliferation in the absence of complement and immune cells.

Conclusion

A moderate binding affinity and recognition of a distinct domain of EpCAM may best explain why adecatumumab showed a larger therapeutic window in cancer patients than the two high-affinity IgG1 antibodies ING-1 and 3622W94, both of which caused acute pancreatitis.  相似文献   

10.
In this study we developed, characterized and validated in vitro a functional superparagmagnetic iron-oxide based magnetic resonance contrast agent by conjugating a commercially available iron oxide nanoparticle, Molday ION Rhodamine-B Carboxyl (MIRB), with a deimmunized mouse monoclonal antibody (muJ591) targeting prostate-specific membrane antigen (PSMA). This functional contrast agent is intended for the specific and non-invasive detection of prostate cancer cells that are PSMA positive, a marker implicated in prostate tumor progression and metastasis. The two-step carbodiimide reaction used to conjugate the antibody to the nanoparticle was efficient and we obtained an elemental iron content of 1958±611 per antibody. Immunofluorescence microscopy and flow cytometry showed that the conjugated muJ591:MIRB complex specifically binds to PSMA-positive (LNCaP) cells. The muJ591:MIRB complex reduced cell adhesion and cell proliferation on LNCaP cells and caused apoptosis as tested by Annexin V assay, suggesting anti-tumorigenic characteristics. Measurements of the T2 relaxation time of the muJ591:MIRB complex using a 400 MHz Innova NMR and a multi-echo spin-echo sequence on a 3T MRI (Achieva, Philips) showed a significant T2 relaxation time reduction for the muJ591:MIRB complex, with a reduced T2 relaxation time as a function of the iron concentration. PSMA-positive cells treated with muJ591:MIRB showed a significantly shorter T2 relaxation time as obtained using a 3T MRI scanner. The reduction in T2 relaxation time for muJ591:MIRB, combined with its specificity against PSMA+LNCaP cells, suggest its potential as a biologically-specific MR contrast agent.  相似文献   

11.
目的:原核表达EpCAM蛋白并制备抗EpCAM特异性单克隆抗体,初步鉴定相应单克隆抗体的特性。方法:PCR扩增EpCAM基因胞外区,将目的基因亚克隆至载体pET-28a(+),转化至大肠埃希菌株BL21,IPTG诱导表达,组氨酸亲和层析法纯化表达产物。纯化蛋白免疫BALB/c小鼠,将成功免疫的小鼠脾细胞与骨髓瘤SP2/0细胞融合,经ELISA筛选得到分泌特异性抗EpCAM的单克隆抗体的细胞株,免疫BALB/c小鼠进一步制备相应的单克隆抗体,并通过Western blot(蛋白质印记)和FACS(流式细胞分析)鉴定单抗的特异性及生物学活性。结果:成功构建重组表达载体pET28a-EpCAM并在大肠杆菌中获得表达,经His-tag亲和层析法获得纯化的EpCAM重组蛋白。EpCAM重组蛋白免疫的BALB/c小鼠的脾细胞与SP2/0细胞融合、筛选,获得两株稳定分泌EpCAM抗体的杂交瘤细胞株,分别命名为4B2、2F2并免疫BALB/c小鼠获得相应的单克隆抗体。Western blot结果显示4B2腹水纯化所得单抗能够识别FaDu细胞系(人咽鳞癌细胞)中的EpCAM蛋白,但2F2未能识别FaDu细胞中的变性的EpCAM蛋白。FACS结果显示两者均能和FaDu细胞中天然的EpCAM蛋白结合。讨论:成功制备了抗EpCAM的单克隆抗体,并能够识别人咽鳞癌细胞系FaDu中表达的EpCAM,为进一步研究EpCAM抗体在肿瘤治疗中的作用提供基础。  相似文献   

12.
Melanoma chondroitin sulfate proteoglycan (MCSP; also called CSPG4, NG2, HMW-MAA, MSK16, MCSPG, MEL-CSPG, or gp240) is a surface antigen frequently expressed on human melanoma cells, which is involved in cell adhesion, invasion and spreading, angiogenesis, complement inhibition, and signaling. MCSP has therefore been frequently selected as target antigen for development of antibody- and vaccine-based therapeutic approaches. We have here used a large panel of monoclonal antibodies against human MCSP for generation of single-chain MCSP/CD3-bispecific antibodies of the BiTE (for bispecific T cell engager) class. Despite similar binding affinity to MCSP, respective BiTE antibodies greatly differed in their potency of redirected lysis of CHO cells stably transfected with full-length human MCSP, or with various MCSP deletion mutants and fusion proteins. BiTE antibodies binding to the membrane proximal domain D3 of MCSP were more potent than those binding to more distal domains. This epitope distance effect was corroborated with EpCAM/CD3-bispecific BiTE antibody MT110 by testing various fusion proteins between MCSP and EpCAM as surface antigens. CHO cells expressing small surface target antigens were generally better lysed than those expressing larger target antigens, indicating that antigen size was also an important determinant for the potency of BiTE antibody. The present study for the first time relates the positioning of binding domains and size of surface antigens to the potency of target cell lysis by BiTE-redirected cytotoxic T cells. In case of the MCSP antigen, this provides the basis for selection of a maximally potent BiTE antibody candidate for development of a novel melanoma therapy.  相似文献   

13.
The Epithelial Cell Adhesion Molecule (EpCAM) is overexpressed in many cancers including ovarian cancer and EpCAM overexpression correlates with decreased survival of patients. It was the aim of this study to achieve a targeted methylation of the EpCAM promoter and silence EpCAM gene expression using an engineered zinc finger protein that specifically binds the EpCAM promoter fused to the catalytic domain of the Dnmt3a DNA methyltransferase. We show that transient transfection of this construct increased the methylation of the EpCAM promoter in SKOV3 cells from 4–8% in untreated cells to 30%. Up to 48% methylation was observed in stable cell lines which express the chimeric methyltransferase. Control experiments confirmed that the methylation was dependent on the fusion of the Zinc finger and the methyltransferase domains and specific for the target region. The stable cell lines with methylated EpCAM promoter showed a 60–80% reduction of EpCAM expression as determined at mRNA and protein level and exhibited a significantly reduced cell proliferation. Our data indicate that targeted methylation of the EpCAM promoter could be an approach in the therapy of EpCAM overexpressing cancers.  相似文献   

14.
 Cytokine-induced killer cells (CIK), generated in vitro from peripheral blood mononuclear cells (PBMC) by addition of interferon γ (IFNγ), interleukin-2 (IL-2), IL-1 and a monoclonal antibody (mAb) against CD3, are highly efficient cytotoxic effector cells with the CD3+CD56+ phenotype. In this study, we evaluated whether the cytotoxicity of these natural-killer-like T lymphocytes against the colorectal tumor cell line HT29 can be enhanced by the addition of a bispecific single-chain antibody (bsAb) directed against EpCAM/CD3. For determination of bsAb-redirected cellular cytotoxicity we used a new flow-cytometric assay, which directly counts viable tumor cells and can assess long-term cytotoxicity. We found that this bsAb induced distinct cytotoxicity at a concentration above 100 ng/ml with both PBMC and CIK at an effector-to-target cell ratio as low as 1:1. CIK cells revealed higher bsAb-redirected cytotoxicity than PBMC. Cellular cytotoxicity appeared after 24 h whereas PBMC showed the highest bsAb-redirected cytotoxicity after 72 h. The addition of the cytokines IL-2 and IFNα but not granulocyte/macrophage-colony-stimulating factor enhanced bsAb-redirected cytotoxicity of both PBMC and CIK. When the bsAb was combined with the murine mAb BR55-2, which recognizes the Lewisy antigen, bsAb-redirected cytotoxicity was partly augmented, whereas murine mAb 17-1A, which binds to EpCAM as well, slightly suppressed bsAb-redirected cytotoxicity induced by the bsAb. We conclude that CIK generated in vitro or in vivo combined with this new EpCAM/CD3 bsAb and the cytokine IL-2 should be evaluated for the treatment of EpCAM-expressing tumors. Received: 9 December 1999 / Accepted: 18 May 2000  相似文献   

15.
The transmembrane glycoprotein epithelial cell adhesion molecule (EpCAM) is overexpressed in most epithelial cancers including breast cancer, where it plays an important role in cancer progression. Previous study has demonstrated that knockdown of EpCAM inhibits breast cancer cell growth and metastasis via inhibition of the Ras/Raf/ERK signaling pathway and matrix metallopeptidase-9 (MMP-9). Although glycosylation is believed to be associated with the function of EpCAM, the contribution of N-glycosylation to this function remains unclear. We constructed the N-glycosylation mutation plasmid of EpCAM and used it to treat breast cancer cells. Loss of N-glycosylation at all three sites EpCAM had no effect on its level of expression or membrane localization. However, mutation at glycosylation sites significantly reduced the ability of EpCAM to promote epithelial to mesenchymal transition in breast cancer. N-glycosylation mutation of EpCAM led to decrease phosphorylation of Raf, ERK, and Akt, and inhibited the Ras/Raf/ERK and PI3K/Akt signaling pathways. Furthermore, we demonstrated that N-glycosylation mutation of EpCAM-mediated invasion and metastasis of breast carcinoma cells required the downregulation of MMP-9 via inhibition of these two signaling pathways. Our results identified the characteristics and function of EpCAM glycosylation. These data could illuminate molecular regulation of EpCAM by glycosylation and promote our understanding of the application of glycosylated EpCAM as a target for breast cancer therapy.  相似文献   

16.
Epithelial cell adhesion molecule (EpCAM) is best known as a tumor-associated protein highly expressed in carcinomas. The function of this cell surface protein during embryonic development and its potential role in cancer are still poorly understood. We identified EpCAM in a gain-of-function screen for inducers of abnormal tissue mixing during gastrulation. Elevated EpCAM levels in either the ectoderm or the mesoderm confer "invasive" properties to cells in both populations. We found that this phenotype represents an "overstimulation" of an essential activity of EpCAM in controlling cell movements during embryonic development. Surprisingly, this property is independent of the putative adhesive function of EpCAM, and rather relies on a novel signaling function that operates through down-regulation of PKC activity. We show that inhibition of novel PKCs accounts entirely for the invasive phenotype induced by abnormally high levels of EpCAM as well as for its normal function in regulating cell rearrangement during early development.  相似文献   

17.
Hampar, Berge (National Institute of Dental Research, Bethesda, Md.), and Mary Lou Copeland. Persistent herpes simplex virus infection in vitro with cycles of cell destruction and regrowth. J. Bacteriol. 90:205-212. 1965.-The susceptibility of two Chinese hamster cell lines to herpes simplex virus (HSV) was studied from the time of their initiation through successive subcultures. The cells' susceptibility to the cytocidal effects of HSV decreased as the number of cell passages increased. During the early cell passages, the decrease in cell susceptibility to HSV was characterized by an increased time after infection for complete cell destruction to occur, with a concomitant increase in the period when virus could be recovered from supernatant fluids. This was followed by a number of cell passages during which persistent HSV infections were established. The persistent infections were characterized by (i) cycles of virus synthesis and cell destruction followed by regrowth of the cells, (ii) initiation and maintenance under conditions optimal for cell growth in the absence of antibody, (iii) the cells' ability to be passaged while still maintaining their cycling patterns, (iv) a relationship between virus synthesis and cell proliferation, and (v) inability of long-term treatment with antibody to "cure" the persistent infections. The unique characteristics of this HSV infection were compared with other persistent in vitro viral infections.  相似文献   

18.
Resistance to fluoropyrimidine-based chemotherapy is the main reason for the failure of cancer treatment, and drug resistance is associated with an inability of tumor cells to undergo apoptosis in response to treatment. Alterations in the expression of epithelial cell adhesion molecule (EpCAM) affect the sensitivity or resistance of tumor cells to anticancer treatment and the activity of intracellular signaling pathways. However, the role of EpCAM in the induction of apoptosis in breast cancer cells remains unclear. Here, we investigated the effect of EpCAM gene knockdown on chemosensitivity to 5-fluorouracil (5-FU) in MCF-7 cells and explored the underlying mechanisms. Our results showed that knockdown of EpCAM promoted apoptosis, inhibited cell proliferation and caused cell-cycle arrest. EpCAM knockdown enhanced the cytotoxic effect of 5-FU, promoting apoptosis by downregulating the expression of the anti-apoptotic protein Bcl-2 and upregulating the expression of the pro-apoptotic proteins Bax, and caspase3 via the ERK1/2 and JNK MAPK signaling pathways in MCF-7 cells. These results indicate that knockdown of EpCAM may have a tumor suppressor effect and suggest EpCAM as a potential target for the treatment of breast cancer.  相似文献   

19.
The co-ordinated regulation of oncogenes along with miRNAs play crucial role in carcinogenesis. In retinoblastoma (RB), several miRNAs are known to be differentially expressed. Epithelial cell adhesion molecule (EpCAM) gene is involved in many epithelial cancers including, retinoblastoma (RB) tumorigenesis. EpCAM silencing effectively reduces the oncogenic miR-17-92 cluster. In order to investigate whether EpCAM has wider effect as an inducer or silencer of miRNAs, we performed a global microRNA expression profile in EpCAM siRNA knockdown Y79 cells. MicroRNA profiling in EpCAM silenced Y79 cells showed seventy-three significantly up regulated and thirty-six down regulated miRNAs. A subset of these miRNAs was also validated in tumors. Functional studies on Y79 and WERI-Rb-1 cells transfected with antagomirs against two miRNAs of miR-181c and miR-130b showed striking changes in tumor cell properties in RB cells. Treatment with anti-miR-181c and miR-130b showed significant decrease in cell viability and cell invasion. Increase in caspase-3 level was noticed in antagomir transfected cell lines indicating the induction of apoptosis. Possible genes altered by EpCAM influenced microRNAs were predicted by bioinformatic tools. Many of these belong to pathways implicated in cancer. The study shows significant influence of EpCAM on global microRNA expression. EpCAM regulated miR-181c and miR-130b may play significant roles in RB progression. EpCAM based targeted therapies may reduce carcinogenesis through several miRNAs and target genes.  相似文献   

20.
Peripheral blood and tissue eosinophilia is a prominent feature in allergic diseases and helminth infections. In cancer patients, tumor-associated tissue eosinophilia is frequently observed. Tumor-associated tissue eosinophilia can be associated with a favorable prognosis, notably in colorectal carcinoma. However, underlying mechanisms of eosinophil contribution to antitumor responses are poorly understood. We have in this study investigated the direct interactions of human eosinophils with Colo-205, a colorectal carcinoma cell line, and show that eosinophils induce apoptosis and directly kill tumor cells. Using blocking Abs, we found that CD11a/CD18 complex is involved in the tumoricidal activity. Coculture of eosinophils with Colo-205 led to the release of eosinophil cationic protein and eosinophil-derived neurotoxin as well as TNF-α secretion. Moreover, eosinophils expressed granzyme A, which was released upon interaction with Colo-205, whereas cytotoxicity was partially inhibited by FUT-175, an inhibitor of trypsin-like enzymatic activity. Our data present the first demonstration, to our knowledge, that granzyme A is a cytotoxic mediator of the eosinophil protein arsenal, exerting eosinophil tumoricidal activity toward Colo-205, and provide mechanistic evidence for innate responses of eosinophil against tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号