首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During two consecutive years the effects of intercropping fresh market white cabbage with two species of clover on pest populations and yield were studied. White cabbage cv. Minicole was intercropped withTrifolium repens (white clover) andTrifolium subterraneum (subterranean clover) as compared to the monocrop. During the season observations were made on pest population developments, especially ofMamestra brassicae L. (cabbage moth),Brevicoryne brassicae L. (cabbage aphid),Delia brassicae L. (cabbage root fly), and evaluation of caterpillar feeding injury. At harvest the yield in quantity and quality was determined to be able to assess the gross financial result. Intercropping effects in terms of suppression of oviposition and larval populations of various pests were found. Although no pesticides were used and competition reduced the weight, the quality of the intercropped cabbages lead to a better financial result compared to the monocropped cabbage crop. The results are discussed in the perspective of the practical implications in the context of IPM.  相似文献   

2.
  • 1 The relative importance of the resource concentration hypothesis and the enemies hypothesis was investigated for the turnip root fly Delia floralis in a cabbage–red clover intercropping system compared with a cabbage monoculture.
  • 2 Delia floralis egg densities were measured as well as the activity‐densities of generalist predators in a field experiment during two growing seasons. In the second year, a study of egg predation with artificially placed eggs was conducted, in addition to a predator exclusion experiment, to estimate total predation during the season. Parasitization rates were estimated from samples of pupae.
  • 3 Delia floralis oviposition was greater in the monoculture during both years. The predator activity‐densities differed between treatments and study years. The known natural enemies of Delia spp., Bembidion spp. and Aleochara bipustulata showed a strong response to a cultivation system with higher activity‐densities in the monoculture. The response, however, appeared to be caused primarily by habitat preferences and not by D. floralis egg densities.
  • 4 The reduction in the number of D. floralis pupae in the intercropping may be explained by a disruption in oviposition behaviour caused by the presence of clover because neither predation, nor parasitization rates differed between cultivation systems.
  相似文献   

3.
Thus far not many studies focussed on how herbivory in one plant part affects plant defence in the other. The effects of root damage and a leaf-feeding herbivore (Mamestra brassicae) on pyrrolizidine alkaloid (PA) levels of Senecio jacobaea were investigated in a controlled environment. Three cloned S. jacobaea genotypes, which differed in PA concentrations, received four treatments: (1) no damage, (2) root damage (removing half of the root system), (3) shoot herbivory by M. brassicae larvae, (4) root damage and shoot herbivory.Shoot herbivory did not significantly affect shoot biomass, while root damage decreased both root and shoot biomass. Shoot herbivory decreased PA concentrations in the roots. Conversely, root damage increased PA concentrations in the roots. Alkaloid concentrations in the shoot showed a weak response to root damage, shoot herbivory had no effect on PA levels in the shoot. The effect of damage on the allocation of PAs to shoot and roots depended on genotype. One genotype allocated more PAs to the damaged site, another genotype did not change allocation and the third genotype allocated more PAs to the shoot if the roots were damaged. Changes in PA composition were observed in one genotype. Shoot herbivory increased erucifoline concentrations in the shoot and decreased concentrations of senecionine in the roots. In conclusion, we have shown that even in an alleged constitutively defended plant, damage of one compartment affects secondary metabolite level in the other.  相似文献   

4.
Parasitism of the cabbage root fly, Delia radicum (L.) by the staphylinid Aleochara bilineata Gyllenhal and the cynipid Trybliographa rapae Westwood was examined in a cabbage monoculture and a mixed stand of cabbage undersown with white clover. Number of overwintering cabbage root fly pupae per plant was consistently reduced in the mixed stand, and the incidence of plants attacked by cabbage root fly was either reduced or not different in the mixed stand compared to cabbage monoculture. For both parasitoids, the probability of D. radicum attacked plants having at least one parasitized pupa increased with density of cabbage root fly pupae around the plant. For A. bilineata, this positive relation between presence of parasitism and host density was consistently stronger in cabbage monoculture than in cabbage undersown with clover. Location of a host plant by T. rapae was not consistently affected by the presence of clover. D. radicum attacked plants situated in the cabbage and clover mixture were found by T. rapae as easily as in cabbage monoculture. Overall, the total risk of parasitism for a cabbage root fly pupa by A. bilineata was reduced in the mixed stand compared to the cabbage monoculture, whereas the risk of parasitism by T. rapae was not consistently affected by clover. For both parasitoids, intensity of parasitism showed a variable relationship with host density on individual plants attacked by the cabbage root fly. Overall, in spite of consistently lower total density of pupae in the mixed cabbage—clover than in cabbage monoculture, the density of unparasitized pupae was reduced by the presence of non-host plants only in two of the four experiments. The results emphasize the need to include not only herbivore and crop, but also other plant species as well as natural enemies when evaluating management methods.  相似文献   

5.
Knowledge of insect behaviour is essential for accurately interpreting studies of diversification and to develop diversified agroecosystems that have a reliable pest‐suppressive effect. In this study, we investigated the egg‐laying behaviour of the turnip root fly, Delia floralis (Fall.) (Diptera: Anthomyiidae), in an intercrop‐monoculture system. We examined both the main effect of intercropping and the effect on oviposition in the border zone between a cabbage monoculture [Brassica oleracea L. var. capitata (Brassicaceae)] and a cabbage‐red clover intercropping system [Trifolium pratense L. (Fabaceae)]. To investigate the border‐effect, oviposition was measured along a transect from the border between the treatments to the centre of experimental plots. Intercropping reduced the total egg‐laying of D. floralis with 42% in 2003 and 55% in 2004. In 2004, it was also found that the spatial distribution of eggs within the experimental plots was affected by distance from the adjoining treatment. The difference in egg‐laying between monoculture and intercropping was most pronounced close to the border, where egg‐laying was 68% lower on intercropped plants. This difference in egg numbers decreased gradually up to a distance of 3.5 m from the border, where intercropped plants had 43% fewer eggs than the corresponding monocultured plants. The reason behind this oviposition pattern is most likely that flies in intercropped plots have a higher probability of entering the monoculture if they are close to the border than if they are in the centre of a plot. When entering the monoculture, flies can pursue their egg‐laying behaviour without being disrupted by the clover. As the final decision to land is visually stimulated, flies could also be attracted to fly from the intercropped plots into the monoculture, where host plants are more visually apparent. Visual cues could also hinder flies in a monoculture from entering an intercropped plot. Other possible patterns of insect attack due to differences in insect behaviour are discussed, as well as the practical application of the results of this study.  相似文献   

6.
Greenhouse studies were conducted to investigate plant-mediated interactions between an above-ground and a below-ground herbivore when sharing a common host plant, rice (Oryza sativa L). Two common pests of rice were used: the rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel, as the root herbivore, and the fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) as the foliage-feeding herbivore. Rice water weevil larval performance was assessed by measuring larval density and average weight in response to different levels of defoliation by FAW larvae. The reciprocal experiment was done to evaluate FAW performance (growth rate) in response to RWW feeding. Severe defoliation by FAW decreased RWW densities by 32% and reduced larval weights by 48% compared to larvae on roots of non-defoliated plants. Effects in the converse experiments were not as strong. FAW growth rates were reduced 9–37% when feeding on rice leaves from plants damaged by RWW compared to larvae feed leaves from the no damage treatment. These reciprocal negative effects show that RWW and FAW are potential competitors when sharing a rice plant. Because RWW and FAW did not interact directly, competition was plant-mediated.  相似文献   

7.
The majority of studies exploring interactions between above- and below-ground biota have been focused on the effects of root-associated organisms on foliar herbivorous insects. This study examined the effects of foliar herbivory by Pieris brassicae L. (Lepidoptera: Pieridae) on the performance of the root herbivore Delia radicum L. (Diptera: Anthomyiidae) and its parasitoid Trybliographa rapae (Westwood) (Hymenoptera: Figitidae), mediated through a shared host plant Brassica nigra L. (Brassicaceae). In the presence of foliar herbivory, the survival of D. radicum and T. rapae decreased significantly by more than 50%. In addition, newly emerged adults of both root herbivores and parasitoids were significantly smaller on plants that had been exposed to foliar herbivory than on control plants. To determine what factor(s) may have accounted for the observed results, we examined the effects of foliar herbivory on root quantity and quality. No significant differences in root biomass were found between plants with and without shoot herbivore damage. Moreover, concentrations of nitrogen in root tissues were also unaffected by shoot damage by P. brassicae larvae. However, higher levels of indole glucosinolates were measured in roots of plants exposed to foliar herbivory, suggesting that the development of the root herbivore and its parasitoid may be, at least partly, negatively affected by increased levels of these allelochemicals in root tissues. Our results show that foliar herbivores can affect the development not only of root-feeding insects but also their natural enemies. We argue that such indirect interactions between above- and below-ground biota may play an important role in the structuring and functioning of communities.  相似文献   

8.
Hunt-Joshi TR  Blossey B 《Oecologia》2005,142(4):554-563
Interspecific interactions of herbivores sharing a host plant may be important in structuring herbivore communities. We investigated host plant-mediated interactions of root (Hylobius transversovittatus) and leaf herbivores (Galerucella calmariensis), released to control purple loosestrife (Lythrum salicaria) in North America, in field and potted plant experiments. In the potted plant experiments, leaf herbivory by G. calmariensis reduced H. transversovittatus larval survival (but not larval development) but did not affect oviposition preference. Root herbivory by H. transversovittatus did not affect either G. calmariensis fitness or oviposition preference. In field cage experiments, we found no evidence of interspecific competition between root and leaf herbivores over a 4-year period. Our data suggest that large populations of leaf beetles can negatively affect root-feeding larvae when high intensity of leaf damage results in partial or complete death of belowground tissue. Such events may be rare occurrences (or affected by experimental venue) since field data differed from data obtained from potted plant experiments, particularly at high leaf beetle densities. Interspecific interactions between G. calmariensis and H. transversovittatus are possible and may negatively affect either species, but this is unlikely to occur unless heavy feeding damage results in partial or complete plant death.  相似文献   

9.
10.
Summary Centaurea maculosa seedlings were grown in pots to study the effects of root herbivory by Agapeta zoegana L. (Lep.: Cochylidae) and Cyphocleonus achates Fahr. (Col.: Curculionidae), grass competition and nitrogen shortage (each present or absent), using a full factorial design. The aims of the study were to analyse the impact of root herbivory on plant growth, resource allocation and physiological processes, and to test if these plant responses to herbivory were influenced by plant competition and nitrogen availability. The two root herbivores differed markedly in their impact on plant growth. While feeding by the moth A. zoegana in the root cortex had no effect on shoot and root mass, feeding by the weevil C. achates in the central vascular tissue greatly reduced shoot mass, but not root mass, leading to a reduced shoot/root ratio. The absence of significant effects of the two herbivores on root biomass, despite considerable consumption, indicates that compensatory root growth occurred. Competition with grass affected plant growth more than herbivory and nutrient status, resulting in reduced shoot and root growth, and number of leaves. Nitrogen shortage did not affect plant growth directly but greatly influenced the compensatory capacity of Centaurea maculosa to root herbivory. Under high nitrogen conditions, shoot biomass of plants infested by the weevil was reduced by 30% compared with uninfested plants. However, under poor nitrogen conditions a 63% reduction was observed compared with corresponding controls. Root herbivory was the most important stress factor affecting plant physiology. Besides a relative increase in biomass allocation to the roots, infested plants also showed a significant increase in nitrogen concentration in the roots and a concomitant reduction in leaf nitrogen concentration, reflecting a redirection of the nitrogen to the stronger sink. The level of fructans was greatly reduced in the roots after herbivore feeding. This is thought to be a consequence of their mobilisation to support compensatory root growth. A preliminary model linking the effects of these root herbivores to the physiological processes of C. maculosa is presented.  相似文献   

11.
The presence of the exotic Argentine ant, Linepithema humile Mayr (Hymenoptera: Dolichoderinae), nitrogen enrichment, and early-season herbivory by the specialist beetle Trirhabda bacharidis (Coleoptera: Chrysomelidae) have been shown, through separate experiments, to affect the densities of insect herbivores of the coastal shrub Baccharis halimifolia (Asteraceae), in Florida. Using a fully-factorial field experiment, we examined the relative importance of all three of these factors to the six most common insect herbivore species utilizing this host plant in a West Central Florida coastal habitat. The presence of ants affected more herbivore species than either early-season herbivory by larval T. bacharidis or nitrogen enrichment. Experimental reductions of L. humile resulted in reductions of an aphid, its coccinellid predators, and adult T. bacharidis, and increases of two species of leafminers and one species of stemborer. Due to the strong negative effects of stemborer herbivory on host plant survival, the increase in stemborer abundance led to increased host plant mortality. Early-season herbivory by larval T. bacharidis only affected the abundance of aphids and their predators, both of which were more abundant on trees with reduced early-season herbivory. Nitrogen fertilization had the most limited effects and only T. bacharidis larvae achieved higher densities on fertilized trees. Our results indicate that aphid tending by the exotic L. humile affects other insects on B. halimifolia more so than herbivory by the exploitative competitor T. bacharidis or nitrogen as a limiting nutrient.  相似文献   

12.
Experiments investigating plant-herbivore interactions have primarily focused on above-ground herbivory, with occasional studies evaluating the effect of below-ground herbivores on plant performance. This study investigated the growth of the wetland perennial Lythrum salicaria (purple loosestrife) under three levels of root herbivory by the weevil Hylobiustransversovittatus and three levels of plant competition by the grass Phleumpratense in a common garden. Plant growth, flowering phenology, and biomass allocation patterns of purple loosestrife were recorded for two growing seasons. During the first year, root herbivory reduced plant height; plant competition delayed flowering; and the interaction of root herbivory and plant competition resulted in reductions in plant height, shoot weight and total dry biomass. Plant competition or larval feeding did not affect the biomass allocation pattern in the first year. These results indicate the importance of interactions of plant competition and herbivory in reducing plant performance – at least during the establishment period of purple loosestrife. In the second growing season, root herbivory reduced plant height, biomass of all plant parts, delayed and shortened the flowering period, and changed the biomass allocation patterns. Plant competition delayed flowering and reduced the dry weight of fine roots. The interaction of root herbivory and plant competition delayed flowering. Root herbivory was more important than plant competition in reducing the performance of established purple loosestrife plants. This was due, in part, to intense intraspecific competition among the grass individuals effectively preventing shoot elongation of P. pratense and resulting in a carpet like growth. Received: 3 April 1997 / Accepted: 27 July 1997  相似文献   

13.
Kyle J. Haynes  Thomas O. Crist 《Oikos》2009,118(10):1477-1486
Habitat area, fragmentation, and the surrounding matrix influence levels of herbivory in various ecosystems, but the relative importance of these effects has rarely been assessed. We compared levels of herbivory and densities of dominant arthropod herbivores (the hemipteran insects Agallia constricta, Empoasca fabae, Therioaphis trifolii, Lygus lineolaris and Halticus bractatus ) among experimental plots that varied in the area and fragmentation of clover habitat and the composition of the matrix (bare ground or grass) surrounding clover habitat. To assess levels of herbivory, we compared clover biomass within herbivore exclosures to the biomass accessible to herbivores. The area and fragmentation of clover habitat, as well as matrix composition, significantly influenced the collective densities of herbivores, although each species exhibited unique responses to habitat structure. Herbivory was strongest in plots with large (64  m2) as compared to small (16  m2) amounts of clover habitat. The difference in clover biomass between the inside and outside of exclosures increased significantly with increasing density of Empoasca fabae but was unrelated to the densities of the other herbivores, suggesting that Empoasca fabae was an exceptionally important herbivore in this system. This study supports the view that herbivore densities and herbivory generally increase with increasing area of plant monocultures, but emphasizes that levels of herbivory may be driven primarily by one or a few key herbivore species.  相似文献   

14.
Adult clover root weevil Sitona lepidus show a feeding preference for white clover Trifolium repens over red clover Trifolium pratense. The effects on S. lepidus of three red clover T. pratense lines, selected for high, medium, or low levels of the isoflavone formononetin in foliage, were compared in three experiments using white clover as a control. In a no‐choice slant board experiment, weevil larval weights were greater for larvae feeding on white clover roots than those feeding on roots of the red clovers. The effect of larval root herbivory on plant growth was similar for all four clovers. Following root herbivory, a large increase in root and shoot formononetin levels was observed in the high‐formononetin selection of red clover but little change in the low‐formononetin red clover. In a no‐choice experiment with sexually mature female adult weevils feeding on foliage of the four clovers, all the red clovers had increased weevil mortality. Female weevils eating the high‐formononetin red clover laid fewer eggs than weevils eating white clover. The red clover diet caused a large accumulation of abdominal fat and/or oil in the weevils, whereas weevils feeding on white clover did not accumulate fat/oil. When sexually immature adult weevils were given a choice of foliage from all four clovers, white clover was eaten preferentially, and the low‐formononetin red clover was preferred to the high‐formononetin red clover. The results suggest that formononetin and associated metabolites in red clover may act as chemical defences against adult S. lepidus and that distribution in forage legumes can be manipulated by plant breeding to improve root health.  相似文献   

15.
  • 1 Cross‐effects between a herbivorous insect and a phytopathogenic fungus on their common host plant were examined. Specifically, we addressed the questions whether (i) infection of Chinese cabbage leaves by the fungus Alternaria brassicae affects the development and host selection behaviour of the leaf beetle Phaedon cochleariae and (ii) whether herbivory influences host suitability of Chinese cabbage for A. brassicae.
  • 2 Feeding on fungus‐infected leaves prolonged larval development and reduced pupal weight of P. cochleariae. Adult beetles avoided feeding and egg deposition on fungus‐infected leaves. In contrast to these local effects, no systemic effect of phytopathogenic infection on the herbivore was detected.
  • 3 Herbivory did not influence fungal growth neither locally nor systemically.
  • 4 Thus, our results demonstrate an asymmetric relationship between herbivore and fungus. Whereas herbivory had no visible impact on fungal growth, fungal infection of the plant induced local resistance against P. cochleariae.
  相似文献   

16.
Temporal changes in the pre‐ and post‐alighting responses of mated female diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), to two species of Brassica (Brassicaceae) host plants induced by larval feeding were studied using olfactometer and oviposition assays. Females displayed strong olfactory and oviposition preferences for herbivore‐induced common cabbage (Brassica oleracea var. capitata L. cv. sugarloaf) plants over intact plants; these preferences decreased with time and disappeared by the 7th day after induction. In herbivore‐induced common cabbage plants, eggs were clustered near feeding damage on the younger leaves (leaves 5–7), whereas in intact plants, eggs were clustered on the stem and lower leaves (leaves 1–4) . However, as the time interval between larval feeding and oviposition increased, more eggs were laid on the lower leaves of induced plants. This demonstrates a change in egg distribution from the pattern associated with induced plants to that associated with intact plants. In contrast, females displayed strong olfactory and oviposition preferences for intact Chinese cabbage [Brassica rapa ssp. pekinensis (Lour.) Hanelt cv. Wombok] plants over induced plants; these preferences decreased with time and disappeared by the 5th day after induction. More eggs were laid on the upper leaves (leaves 4–6) than on the lower leaves (leaves 1–3) of intact Chinese cabbage plants at first, but the distribution changed over time until there were no significant differences in the egg count between upper and lower leaves by the 4th day post induction. For both host plant species, pre‐alighting responses of moths were reliable indicators of post‐alighting responses on the first 2 days post induction. The results suggest that temporal changes in a plant's profile (chemical or otherwise) following herbivory may influence attractiveness to an insect herbivore and be accompanied by changes in olfactory and oviposition preferences.  相似文献   

17.
1. The plant–herbivore arms race has been postulated to be a major driver for generating biological and biochemical diversity on Earth. Herbivore feeding is reduced by the production of chemical and physical barriers, but increases plant resistance against subsequent attack. Accordingly, specialisation is predicted to be an outcome of herbivores being able to circumvent plant‐induced defences. 2. Using a specialised plant–herbivore system, in which adult chrysomelid beetles (Chrysochus auratus) feed on leaves and larvae feed on roots of dogbane (Apocynum spp.), this study investigated whether root latex and cardenolides are effective against the soil‐dwelling larvae, and whether such defences could be circumvented by the herbivore. 3. Across two Apocynum species, C. auratus larvae were not affected by latex production or cardenolide amounts and diversity. By contrast, cardenolide apolarity was detrimental to larval growth. Yet larval feeding decreased average root cardenolide apolarity in A. cannabinum and larvae performed better on those plants. Finally, above‐ground induction rendered the plants more toxic by increasing root cardenolide apolarity and maintaining it, even during subsequent larval herbivory. 4. Therefore, the intimate relationship and interaction between Chrysochus and Apocynum are maintained by a delicate balance of herbivore manipulation and plant chemical induction.  相似文献   

18.
Eight genotypes of swede (Brassica napus L. ssp. rapifera [Metz.] Sinsk.) at the 8–10 true leaf stage were inoculated with five, 10 or 20 eggs of the turnip root fly Delia floralis (Fall). The roots were sampled, with control roots, after 6 weeks of larval development. D. floralis root damage, as measured by reduction in root weight, was found to be linked to inoculation level. Neither D. floralis egg numbers nor swede genotype had a significant effect on the percentage of larvae developing to pupation. Mean pupal weight varied by a factor of ×1.4 and consistently decreased with increasing egg inoculation level. Changes in the root concentrations of glucose, sucrose and fructose were measured. All swede genotypes showed a similar response in their sugar concentrations after root damage. Glucose and fructose concentrations were reduced whilst sucrose concentration remained unaffected. The concentrations of glucose and fructose were highly correlated. Pupal weight, used as a measure of larval development, was significantly correlated with the concentrations of individual and total sugars in the roots. The implications of sugar responses to damage in brassicas, and the correlation between sugar concentrations in the roots and D. floralis pupal weights are discussed.  相似文献   

19.
To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics.  相似文献   

20.
The thale cress, Arabidopsis thaliana, is considered to be an important model species in studying a suite of evolutionary processes. However, the species has been criticized on the basis of its comparatively small size at maturity (and consequent limitations in the amount of available biomass for herbivores) and on the duration and timing of its life cycle in nature. In the laboratory, we studied interactions between A. thaliana and the cabbage butterfly, Pieris rapae, in order to determine if plants are able to support the complete development of the herbivore. Plants were grown in pots from seedlings in densities of one, two, or four per pot. In each treatment, one, two, or five newly hatched larvae of P. rapae were placed on fully developed rosettes of A. thaliana. In a separate experiment, the same densities of P. rapae larvae were reared from hatching on single mature cabbage (Brassica oleracea) plants. Pupal fresh mass and survival of P. rapae declined with larval density when reared on A. thaliana but not on B. oleracea. However, irrespective of larval density and plant number, some P. rapae were always able to complete development on A. thaliana plants. A comparison of the dry mass of plants in different treatments with controls (= no larvae) revealed that A. thaliana partially compensated for plant damage when larval densities of P. rapae were low. By contrast, single cress plants with 5 larvae generally suffered extensive damage, whereas damage to B. oleracea plants was negligible. Rosettes of plants that were monitored in spring, when A. thaliana naturally grows, were not attacked by any insect herbivores, but there was often extensive damage from pulmonates (slugs and snails). Heavily damaged plants flowered less successfully than lightly damaged plants. Small numbers of generalist plant-parasitic nematodes were also recovered in roots and root soil. By contrast, plants monitored in a sewn summer plot were heavily attacked by insect herbivores, primarily flea beetles (Phyllotreta spp.). These results reveal that, in natural populations of A. thaliana, there is a strong phenological mismatch between the plant and most of its potential specialist insect herbivores (and their natural enemies). However, as the plant is clearly susceptible to attack from non-insect generalist invertebrate herbivores early in the season, these may be much more suitable for studies on direct defense strategies in A. thaliana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号