首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four modern cultivars of winter wheat (Triticum aestivum L.) were grown under elevated ozone concentration (E‐O3) in fully open‐air field conditions in China for three consecutive growth seasons from 2007 to 2009. Results indicated that a mean 25% enhancement above the ambient ozone concentration (A‐O3, 45.7 p.p.b.) significantly reduced the grain yield by 20% with significant variation in the range from 10% to 35% among the combinations of cultivar and season. The varietal difference in the yield response to E‐O3 became nonsignificant when the anova was done by omitting one cultivar which showed unstable response to E‐O3 among the seasons. The reduction of individual grain mass accounted mostly for the yield loss by E‐O3, and showed significant difference between the cultivars. The response of relative yield to E‐O3 was not significantly different from those reported in China, Europe and India on the basis of experiments in open‐top chambers. Our results thus confirmed the rising threat of surface O3 on wheat production worldwide in the near future. Various countermeasures are urgently needed against the crop losses due to O3 such as mitigation of the increase in surface O3 with stricter pollution control, and enhancement of the wheat tolerance against O3 by breeding and management.  相似文献   

2.
Exposure to elevated tropospheric ozone concentration ([O3]) accelerates leaf senescence in many C3 crops. However, the effects of elevated [O3] on C4 crops including maize (Zea mays L.) are poorly understood in terms of physiological mechanism and genetic variation in sensitivity. Using free air gas concentration enrichment, we investigated the photosynthetic response of 18 diverse maize inbred and hybrid lines to season‐long exposure to elevated [O3] (~100 nl L?1) in the field. Gas exchange was measured on the leaf subtending the ear throughout the grain filling period. On average over the lifetime of the leaf, elevated [O3] led to reductions in photosynthetic CO2 assimilation of both inbred (?22%) and hybrid (?33%) genotypes. There was significant variation among both inbred and hybrid lines in the sensitivity of photosynthesis to elevated [O3], with some lines showing no change in photosynthesis at elevated [O3]. Based on analysis of inbred line B73, the reduced CO2 assimilation at elevated [O3] was associated with accelerated senescence decreasing photosynthetic capacity and not altered stomatal limitation. These findings across diverse maize genotypes could advance the development of more O3 tolerant maize and provide experimental data for parameterization and validation of studies modeling how O3 impacts crop performance.  相似文献   

3.
In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO2] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, gs, gm, Ci/Ca, Ci/Cc, Vcmax, Jmax, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid‐anthesis and the late grain‐filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid‐anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO2]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non‐structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO2] appeared to enhance the rate of N degradation and senescence so that by late‐grain fill, photosynthetic acclimation to elevated [CO2] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO2] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation.  相似文献   

4.
Winter wheat (Triticum aestivum L. cv. Jingdong 8) was exposed to short-term high ozone treatment after anthesis and then was either well irrigated with soil water content (SWC) of 80–85 % (O3+W) or drought treated (SWC 35–40 %, O3+D). Short-term ozone exposure significantly decreased irradiance-saturated net photosynthetic rate (P N) of winter wheat. Under good SWC, P N of the O3-treated plant was similar to that of control on 2 d after O3-exposure (6 DAA), but decreased significantly after 13 DAA, indicating that O3 exposure accelerated leaf senescence. Meanwhile, green flag leaf area was reduced faster than that of control. As a result, grain yield of O3+W was significantly decreased. P N of O3+D was further notably decreased and green flag leaf area was reduced more than that in O3+W. Consequently, substantial yield loss of O3+D was observed compared to that of O3+W. Although P N was significantly positively correlated with stomatal conductance, it also had notable positive correlation with the maximum photochemical efficiency in the dark adapted leaves (Fv/Fm), electron transport rate (ETR), photochemical quenching (qP), as well as content of chlorophyll, suggesting that the depression of P N was mainly caused by non-stomatal limitation. Hence optimal soil water condition should be considered in order to reduce the yield loss caused by O3 pollution.  相似文献   

5.
The current concentrations of O3 have been shown to cause significant negative effects on crop yield. The present levels of ozone may not induce visible symptoms in most of plants, but can result in substantial losses in reproductive output. This paper considers the impact of ambient O3 on gas exchange, photosynthetic pigments, chlorophyll (Chl) fluorescence and carbohydrate levels in the flag leaf of wheat plants during various stages of reproductive development using open-top chambers. Mean O3 concentration was 45.7 ppb during wheat growth and 50.2 ppb after flag leaf development. Reproductive stage showed higher exceedence of O3 above 40 ppb compared to the vegetative stage. Diurnal variations in net photosynthetic rate (P N) and stomatal conductance (g s), intercellular CO2 concentration (C i), Fv/Fm ratio, photosynthetic pigments, soluble sugars, and starch were measured at 10, 30, and 50 days after flag leaf expansion (DAFE). The results showed reductions in P N, g s, Fv/Fm ratio, photosynthetic pigments and starch, and increases in C i, F0, and soluble sugars in nonfiltered chambers (NFCs) compared to filtered chambers (FCs). Maximum changes in measured parameters were observed at 50 DAFE (i.e. grain filling and setting phase). Diurnal variation in P N showed double peaked curve in both FCs and NFCs, but delayed peak and early depression in NFCs. Stomatal conductance was significantly lower in NFCs. The study suggests that higher prevalence of ambient O3 during reproductive development led to significant alteration in physiological vitality of wheat having potential negative influence on yield.  相似文献   

6.
There is continuing controversy over whether a degree of C4 photosynthetic metabolism exists in ears of C3 cereals. In this context, CO2 exchange and the initial products of photosynthesis were examined in flag leaf blades and various ear parts of two durum wheat (Triticum durum Desf.) and two six-rowed barley (Hordeum vulgare L.) cultivars. Three weeks after anthesis, the CO2 compensation concentration at 210 mmol mol?1 O2 in durum wheat and barley ear parts was similar to or greater than that in flag leaves. The O2 dependence of the CO2 compensation concentration in durum wheat ear parts, as well as in the flag leaf blade, was linear, as expected for C3 photosynthesis. In a complementary experiment, intact and attached ears and flag leaf blades of barley and durum wheat were radio-labelled with 14CO2 during a 10s pulse, and the initial products of fixation were studied in various parts of the ears (awns, glumes, inner bracts and grains) and in the flag leaf blade. All tissues assimilated CO2 mainly by the Calvin (C3) cycle, with little fixation of 14CO2 into the C4 acids malate and aspartate (about 10% or less). These collective data support the conclusion that in the ear parts of these C3 cereals C4 photosynthetic metabolism is nil.  相似文献   

7.
A combined stomatal–photosynthesis model was extended to simulate the effects of ozone exposure on leaf photosynthesis and leaf duration in relation to CO2. We assume that ozone has a short‐term and a long‐term effect on the Rubisco‐limited rate of photosynthesis, Ac. Elevated CO2 counteracts ozone damage via stomatal closure. Ozone is detoxified at uptake rates below a threshold value above which Ac decreases linearly with the rate of ozone uptake. Reduction in Ac is transient and depends on leaf age. Leaf duration decreases depending on accumulated ozone uptake. This approach is introduced into the mechanistic crop simulation model AFRCWHEAT2. The derived model, AFRCWHEAT2‐O3, is used to test the capability of these assumptions to explain responses at the plant and crop level. Simulations of short‐term and long‐term responses of leaf photosynthesis, leaf duration and plant and crop growth to ozone exposure in response to CO2 are analysed and compared with experimental data derived from the literature. The model successfully reproduced published responses of leaf photosynthesis, leaf duration, radiation use efficiency and final biomass of wheat to elevated ozone and CO2. However, simulations were unsatisfactory for cumulative radiation interception which had some impact on the accuracy of predictions of final biomass. There were responses of leaf‐area index to CO2 and ozone as a result of effects on tillering which were not accounted for in the present model. We suggest that some model assumptions need to be tested, or analysed further to improve the mechanistic understanding of the combined effects of changes in ozone and CO2 concentrations on leaf photosynthesis and senescence. We conclude that research is particularly needed to improve the understanding of leaf‐area dynamics in response to ozone exposure and elevated CO2.  相似文献   

8.
The photosynthetic performance (leaf gas exchange and chlorophyll a (Chla) fluorescence), activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX)] and the concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the flag leaves of plants from two wheat cultivars with contrasting levels of resistance to spot blotch was assessed. Spot blotch severity was significantly lower in plants from cv. BR‐18 compared to cv. Guamirim. Net carbon assimilation rate, stomatal conductance and concentrations of Chla, Chlab and carotenoids were significantly decreased from fungal infection. In contrast, internal CO2 concentration was significantly increased from fungal infection in comparison to their non‐inoculated counterparts. Similarly, inoculation significantly reduced photochemical performance in the inoculated flag leaves in comparison to their non‐inoculated counterparts. However, plants from cv. BR‐18 were able to sustain greater functionality of the photosynthetic apparatus during fungal infection process compared to cv. Guamirim. The activities of SOD, POX, APX and CAT increased in inoculated flag leaves from both cultivars compared to non‐inoculated plants, and the highest increases were measured in cv. BR‐18. The greater activities of these enzymes were associated with a reduced H2O2 concentration in the inoculated flag leaves from cv. BR‐18, resulting, therefore, in a lower MDA concentration. Thus, a more efficient antioxidative system in flag leaves from cv. BR‐18 plays a pivotal role in removing the excess reactive oxygen species that were generated during the infection process of Bipolaris sorokiniana, therefore limiting cellular damage and largely preserving the photosynthetic efficiency of the infected flag leaves.  相似文献   

9.

Background and aims

Rising ozone (O3) concentrations poses a great threat to crop growth and ecosystem carbon storage, but the underlying mechanism remains unclear. Identifying the impact of elevated O3 on soil microbial residues may advance our knowledge of microbial-mediated soil organic matter (SOM) turnover. In this paper, we aimed to investigate the effects of elevated O3 on the accumulation of amino sugars in the soil of the two wheat cultivars (Tritcium aestivum L.) with different ozone-tolerances.

Methods

Using the O3-Free Air Concentration Enrichment technique, we investigated the response of amino sugars to elevated O3 in a soil planted with two wheat cultivars of different ozone-tolerance [ozone-sensitive Yannong 19 (Y19) and ozone-tolerant Yangmai 16 (Y16)]. This study was conducted during the wheat growing season (jointing stage and ripening stage) of 2010 after exposure to elevated O3 for 3 years. Soil amino sugars were measured by gas chromatography technique.

Results

After exposure to elevated O3, the contents of total amino sugars decreased at the wheat jointing stage, and increased at the wheat ripening stage in the Y16 cultivar. In contrast, no significant effect of elevated O3 was found in the Y19 cultivar. The Glucosamine/Galactosamine and fungal carbon/bacterial carbon ratios decreased under elevated O3. The findings indicated that elevated O3 altered the microbial process of SOM turnover and bacteria contributed more to SOM cycling than fungi under elevated O3 conditions.

Conclusions

The effect of elevated O3 on the SOM turnover was wheat cultivar-specific. Thus, belowground processes of SOM turnover should be considered when selecting a tolerant wheat cultivar under elevated O3 regimes from a view of long-term ecosystem stability.  相似文献   

10.
In order to study the responses of winter wheat cultivars released in different years to short-term high O3 exposure, an old cultivar (‘Nongda 311’, released in 1960s) and a modern one (‘Yannong 19’, released in 1990s) were treated with an O3 exposure (145 ± 12 mm3 m−3, 4 h d−1 for 3 d) shortly after anthesis stage (> 50 % main stems blossomed). During the O3 exposure, light-saturated photosynthetic rate (P N) and stomatal conductance (g s) of both cultivars decreased considerably. Elevated O3 did not decrease dark-adapted maximum photochemical efficiency, but induced significant reduction in actual photochemical efficiency and thereby considerably increase in non-photochemical quenching. P N, g s of the modern cultivar ‘Yannong 19’ decreased more than the older one ‘Nongda 311’, indicating the former exhibited higher sensitivity to O3 than the latter. After O3 exposure, P N, g s and chlorophyll (Chl) content in flag leaf decreased more quickly than control, indicating induction of faster premature leaf senescence. As a result, the short-term O3 exposure caused substantial yield loss, with larger reduction in ‘Yannong 19’ (−19.2 %) than in ‘Nongda 311’ (−8.4 %). Our results indicated that high O3 exposure at grain filling stage would have greater negative impacts on the high yielding modern cultivar relative to the old one with lower yield.  相似文献   

11.
We investigated the effects of elevated ozone concentration (E‐O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II‐you 084 (IIY084), under fully open‐air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A‐O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3‐induced reduction in the whole‐plant biomass (?13.2%), root biomass (?34.7%), and maximum tiller number (?10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E‐O3, a larger decrease in CH4 emission with IIY084 (?33.2%) than that with YD6 (?7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E‐O3. Additionally, E‐O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E‐O3 was not significantly different from those reported in open‐top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem.  相似文献   

12.
Wheat leaf non-sequential senescence at the late grain-filling stage involves the early senescence of younger flag leaves compared to that observed in older second leaves. On the other hand, sequential senescence involves leaf senescence that follows an age-related pattern, in which flag leaves are the latest to undergo senescence. The characteristics of sugar metabolism in two sequential senescence cultivars and two non-sequential senescence cultivars under both natural and drought conditions were studied to elucidate the underlying mechanism of drought tolerance in two different senescence modes. The results showed that compared to sequential senescence wheat cultivars, under natural and drought conditions, non-sequential senescence wheat cultivars showed a higher leaf net photosynthetic rate, higher soluble sugar levels in leaves, leaf sheaths, and internodes, higher leaf sucrose synthase (SS) and sucrose phosphate synthase (SPS) activity, and higher grain SS activity, thereby suggesting that non-sequential senescence wheat cultivars had stronger source activity. Spike weight, grain weight per spike, and 100-grain weight of non-sequential senescence cultivars at maturity were significantly higher than those of sequential senescence cultivars under both natural and drought conditions. These findings indicate that the higher rate of accumulation and the higher mobilization of soluble sugar in the leaves, leaf sheaths and internodes of non-sequential senescence cultivars improve grain weight and drought tolerance. At the late grain-filling stage, drought conditions adversely affected leaf chlorophyll content, net photosynthetic rate, soluble sugar and sucrose content, SS and SPS activity, gain SS activity, and weight. This study showed that higher rates of soluble sugar accumulation in the source was one of the reasons of triggering leaf non-sequential senescence, and higher rates of soluble sugar mobilization during leaf non-sequential senescence promoted high and stable wheat yield and drought tolerance.  相似文献   

13.
Ozone (O3) concentrations in periurban areas in East Asia are sufficiently high to decrease crop yield. However, little is known about the genotypic differences in O3 sensitivity in winter wheat in relation to year of cultivar release. This paper reports genotypic variations in O3 sensitivity in 20 winter wheat cultivars released over the past 60 years in China highlighting O3‐induced mechanisms. Wheat plants were exposed to elevated O3 (82 ppb O3, 7 h day?1) or charcoal‐filtered air (<5 ppb O3) for 21 days in open top chambers. Responses to O3 were assessed by the levels of antioxidative activities, protein alteration, membrane lipid peroxidation, gas exchange, leaf chlorophyll, dark respiration and growth. We found that O3 significantly reduced foliar ascorbate (?14%) and soluble protein (?22%), but increased peroxidase activity (+46%) and malondialdehyde (+38%). Elevated O3 depressed light saturated net photosynthetic rate (?24%), stomatal conductance (?8%) and total chlorophyll (?11%), while stimulated dark respiration (+28%) and intercellular CO2 concentration (+39%). O3 also reduced overall plant growth, but to a greater extent in root (?32%) than in shoot (?17%) biomass. There was significant genotypic variation in potential sensitivity to O3 that did not correlate to observed O3 tolerance. Sensitivity to O3 in cultivars of winter wheat progressed with year of release and correlated with stomatal conductance and dark respiration in O3‐exposed plants. O3‐induced loss in photosynthetic rate was attributed primarily to impaired activity of mesophyll cells and loss of integrity of cellular membrane as evidenced by increased intercellular CO2 concentration and lipid peroxidation. Our findings demonstrated that higher sensitivity to O3 in the more recently released cultivars was induced by higher stomatal conductance, larger reduction in antioxidative capacity and lower levels of dark respiration leading to higher oxidative damage to proteins and integrity of cellular membranes.  相似文献   

14.
不同水分处理对耐旱性不同小麦品种旗叶衰老的影响   总被引:13,自引:1,他引:12  
在防雨池栽条件下,研究了不同土壤水分处理对不同耐旱性小麦品种旗叶衰老的影响。结果表明,开花后小麦旗叶叶绿素含量、iPAs含量和光合速率均随土壤水分含量降低而降低,而MDA和ABA含量升高,旗叶衰老进程加快,产量降低。旱地品种菜农8834比水浇地品种鲁麦7号上述指标随土壤水分含量降低而下降或升高的幅度小,这是旱地小麦品种莱农8834在水分亏缺条件下产量较高的内在生理基础。  相似文献   

15.
A role of non‐glandular emergences in avoiding ozone (O3) damages by preventing its entrance into leaf tissues has been suggested in the O3‐tolerant species Croton floribundus (Euphorbiaceae). However, this function against O3 damage has been underestimated due to the covering wax layer, mostly composed of saturated hydrocarbon, which has low O3 reactivity. To evaluate the role of these emergences in conferring tolerance to O3, we mechanically removed the non‐glandular emergences from leaf blades of C. floribundus, submitted the plants to acute O3 fumigation, and assessed morphological and microscopic alterations. Plants with intact leaves treated with O3 showed the same phenotype as control samples but showed microscopic indicators of accelerated senescence. These alterations indicated a whole‐plant response to O3. In contrast, plants whose leaves had got their emergences removed exhibited specific morphological symptoms as well as microscopic O3 damage. We thus conclude that the leaf emergences constitute a barrier for volatile contention, preventing O3 damage to leaf tissues in C. floribundus. When these structures have been removed, defense volatiles are possibly quickly dispersed, makes this species vulnerable to O3. This study highlights the relevance of surface structures for plant resistance to O3 damages, complementing biochemical defenses.  相似文献   

16.
Two silver birch (Betula pendula Roth) clones K1659 and V5952 were grown in open‐top chambers over 3 years (age 7–9 years). The treatments were increased CO2 concentration (+CO2, 72 Pa), increased O3 concentration (+O3, 2 × ambient O3 with seasonal AOT40 up to 28 p.p.m. h) and in combination (+CO2 + O3). Thirty‐seven photosynthetic parameters were measured in the laboratory immediately after excising leaves using a computer‐operated routine of gas exchange and optical measurements. In control leaves the photosynthetic parameters were close to the values widely used in a model (Farquhar, von Caemmerer and Berry, Planta 149, 78–90, 1980). The distribution of chlorophyll between photosystem II and photosystem I, intrinsic quantum yield of electron transport, uncoupled turnover rate of Cyt b6f, Rubisco specificity and Km (CO2) were not influenced by treatments. Net photosynthetic rate responded to +CO2 with a mean increase of 17% in both clones. Dry weight of leaves increased, whereas protein, especially Rubisco content and the related photosynthetic parameters decreased. Averaged over 3 years, eight and 17 mechanistically independent parameters were significantly influenced by the elevated CO2 in clones K1659 and V5952, respectively. The elevated O3 caused a significant decrease in the average photosynthetic rate of clone V5952, but not of clone K1659. The treatment caused changes in one parameter of clone K1659 and in 11 parameters of clone V5952. Results of the combined treatment indicated that +O3 had less effect in the presence of +CO2 than alone. Interestingly, changes in the same photosynthetic parameters were observed in chamberless grown trees of clone V5952 as under +O3 treatment in chambers, but this was not observed for clone K1659. These results suggest that during chronic fumigation, at concentrations below the threshold of visible leaf injuries, ozone influenced the photosynthetic parameters as a general stress factor, in a similar manner to weather conditions that were more stressful outside the chambers. According to this hypothesis, the sensitivity of a species or a clone to ozone is expected to depend on the growth conditions: the plant is less sensitive to ozone if the conditions are close to optimal and it is more sensitive to ozone under conditions of stress.  相似文献   

17.
  • Tropospheric ozone (O3) is considered a major air pollutant having negative effects on plant growth and productivity. Background concentrations are expected to rise in several regions of the world in the next 50 years, affecting plant responses to diseases, thus requiring new management strategies for food production.
  • The effects of elevated O3 on the severity of a bacterial disease, and the effectiveness of a chemical defence inducer, were examined in two cultivars of tomato, Roma and Moneymaker, which present different tolerance to this pollutant. The two cultivars differ in their ability to produce and accumulate reactive oxygen species (ROS) in leaf tissues. Tomato plants were challenged with a strain of Xanthomonas vesicatoria, Xv9, which is pathogenic on tomato.
  • Ozone consistently increased severity of the disease by over 40% in both cultivars. In the more tolerant cultivar, O3 pollution increased disease intensity, even after applying a commercially available product to enhance resistance (acibenzolar‐S‐methyl, BTH). In the more susceptible cultivar, level of disease attained depended on the oxidative balance that resulted from other stress factors.
  • The antioxidant capacity of the plant at the time of infection was relevant for controlling development of the disease. Our results suggest that development of O3 tolerance in commercial crops might impose a penalty cost in terms of disease management under projected higher O3 concentrations.
  相似文献   

18.
19.
Cultivar differences in leaf photosynthesis of rice bred in Japan   总被引:9,自引:0,他引:9  
The grain yield of rice (Oryza sativa L.), as well as of other cereal crops, is limited to a large extent, by the supply of photosynthates produced during grain filling period. In this study, flag leaf photosynthesis (LPS) after heading was compared among 32 cultivars bred during the past century in Japan, to determine if the improvement of LPS has occurred with the breeding advance of high yielding cultivars. Measurement of LPS was made for 5 consecutive years in the paddy field, on the flag leaf of the main stem, at heading (LPS-0), and 2 weeks (LPS-2) and 4 weeks (LPS-4) after heading. LPS decreased with advance of leaf senescence from LPS-0 to LPS-2, and then to LPS-4. However, if nitrogen was top-dressed at the heading time, high LPS-2 was maintained, particularly in the newer cultivars. A significant positive correlation between LPS and the released year of cultivar was found at LPS-2, especially in the nitrogen top-dressed plot, but not at LPS-0 or LPS-4. Cultivar difference in LPS of the senescing leaves were not stable through the different years, whereas LPS-0 was stable over years, suggesting that the LPS in the senescent leaf is susceptible to the environmental variation due to the effects on leaf senescence. Cultivar difference in LPS at any stage was closely associated with mesophyll conductance to CO2, and stomatal conductance was also associated with cultivar difference in such a high LPS as LPS-0 and nitrogen top-dressed LPS-2. Significant correlation between LPS and specific leaf weight was not observed at any stage of the flag leaf.Abbreviations CV coefficient of variation - gm mesophyll conductance - gs stomatal conductance - LPS apparent photosynthetic rate per unit leaf area (leaf photosynthesis) - LPS-0 LPS at heading - LPS-2 LPS at active grain filling - LPS-4 LPS at maturity of grain - NT non-top dressed plot - PPFD photosynthetic photon flux density - rm mesophyll resistance - rs stomatal diffusion resistance against CO2 - rs(H2O) stomatal diffusion resistance against H2O - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - SLW specific leaf weight - TD nitrogen top-dressed plot  相似文献   

20.
We quantitatively evaluated the effects of elevated concentration of ozone (O3) on growth, leaf chemistry, gas exchange, grain yield, and grain quality relative to carbon‐filtered air (CF) by means of meta‐analysis of published data. Our database consisted of 53 peer‐reviewed studies published between 1980 and 2007, taking into account wheat type, O3 fumigation method, rooting environment, O3 concentration ([O3]), developmental stage, and additional treatments such as drought and elevated carbon dioxide concentration ([CO2]). The results suggested that elevated [O3] decreased wheat grain yield by 29% (CI: 24–34%) and aboveground biomass by 18% (CI: 13–24%), where CI is the 95% confidence interval. Even in studies where the [O3] range was between 31 and 59 ppb (average 43 ppb), there was a significant decrease in the grain yield (18%) and biomass (16%) relative to CF. Despite the increase in the grain protein content (6.8%), elevated [O3] significantly decreased the grain protein yield (?18%). Relative to CF, elevated [O3] significantly decreased photosynthetic rates (?20%), Rubisco activity (?19%), stomatal conductance (?22%), and chlorophyll content (?40%). For the whole plant, rising [O3] induced a larger decrease in belowground (?27%) biomass than in aboveground (?18%) biomass. There was no significant response difference between spring wheat and winter wheat. Wheat grown in the field showed larger decreases in leaf photosynthesis parameters than wheat grown in < 5 L pots. Open‐top chamber fumigation induced a larger reduction than indoor growth chambers, when plants were exposed to elevated [O3]. The detrimental effect was progressively greater as the average daily [O3] increased, with very few exceptions. The impact of O3 increased with developmental stages, with the largest detrimental impact during grain filling. Both drought and elevated [CO2] significantly ameliorated the detrimental effects of elevated [O3], which could be explained by a significant decrease in O3 uptake resulting from decreased stomatal conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号