首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Wang  Zhi-Min  Wei  Ai-Li  Zheng  Dan-Man 《Photosynthetica》2001,39(2):239-244
Chlorophyll content, photosystem 2 functioning (Fv/Fm, Fv/F0), activity of ribulose-1,5-bisphosphate carboxylase/oxygenase, and net photosynthetic rates (P N) of flag leaf blade, sheath, peduncle, and ear organs were assessed in large-ear type (Pin 7) and small-ear type (ND93) wheat cultivars. Some differences were found in photosynthetic properties between different green plant parts, the values of all studied parameters in ear parts being higher in Pin7 than in ND93. Furthermore, ear surface areas and ear P N in 26 wheat genotypes measured at anthesis showed highly significant positive correlation with grain mass per ear. Hence a greater capability of ear photosynthesis may result in a greater grain yield in large-ear type cultivars.  相似文献   

2.
Experimental investigations of ozone (O3) effects on plants have commonly used short, acute [O3] exposure (>100 ppb, on the order of hours), while in field crops damage is more likely caused by chronic exposure (<100 ppb, on the order of weeks). How different are the O3 effects induced by these two fumigation regimes? The leaf‐level photosynthetic response of soybean to acute [O3] (400 ppb, 6 h) and chronic [O3] (90 ppb, 8 h d?1, 28 d) was contrasted via simultaneous in vivo measurements of chlorophyll a fluorescence imaging (CFI) and gas exchange. Both exposure regimes lowered leaf photosynthetic CO2 uptake about 40% and photosystem II (PSII) efficiency (Fq′/Fm′) by 20% compared with controls, but this decrease was far more spatially heterogeneous in the acute treatment. Decline in Fq′/Fm′ in the acute treatment resulted equally from decreases in the maximum efficiency of PSII (Fv′/Fm′) and the proportion of open PSII centres (Fq′/Fv′), but in the chronic treatment decline in Fq′/Fm′ resulted only from decrease in Fq′/Fv′. Findings suggest that acute and chronic [O3] exposures do not induce identical mechanisms of O3 damage within the leaf, and using one fumigation method alone is not sufficient for understanding the full range of mechanisms of O3 damage to photosynthetic production in the field.  相似文献   

3.
To assess photosynthesis and yield components’ response of field-grown wheat to increasing ozone (O3) concentration (based on diurnal pattern of ambient O3) in China, winter wheat (Triticum aestivum L.) cv. Jia 403 was planted in open top chambers and exposed to three different O3 concentrations: O3-free air (CF), ambient air (NF), and O3-free air with additional O3 (CF+O3). Diurnal changes of gas exchange and net photosynthetic rate (P N) in response to photosynthetic photon flux density (PPFD) of flag leaves were measured at the filling grain stage, and yield components were investigated at harvest. High O3 concentration altered diurnal course of gas exchange [P N, stomatal conductance (g s), and intercellular CO2 concentration (C i)] and decreased significantly their values except for C i. Apparent quantum yield (AQY), compensation irradiance (CI), and saturation irradiance (SI) were significantly decreased, suggesting photosynthetic capacity was also altered, characterized as reduced photon-saturated photosynthetic rate (P Nmax). The limit of photosynthetic activity was probably dominated by non-stomatal factors in combination with stomatal closure. The significant reduction in yield was observed in CF+O3 treatment as a result of a marked decrease in the ear length and the number of grains per ear, and a significant increase in the number of infertile florets per ear. Even though similar responses were also observed in plants exposed to ambient O3 concentration, no statistical difference was observed at current ambient O3 concentration in China.  相似文献   

4.
Two modern cultivars [Yangmai16 (Y16) and Yangfumai 2 (Y2)] of winter wheat (Triticum aestivum L.) with almost identical phenology were investigated to determine the impacts of elevated ozone concentration (E‐O3) on physiological characters related to photosynthesis under fully open‐air field conditions in China. The plants were exposed from the initiation of tillering to final harvest, with E‐O3 of 127% of the ambient ozone concentration (A‐O3). Measurements of pigments, gas exchange rates, chlorophyll a fluorescence and lipid oxidation were made in three replicated plots throughout flag leaf development. In cultivar Y2, E‐O3 significantly accelerated leaf senescence, as indicated by increased lipid oxidation as well as faster declines in pigment amounts and photosynthetic rates. The lower photosynthetic rates were mainly due to nonstomatal factors, e.g. lower maximum carboxylation capacity, electron transport rates and light energy distribution. In cultivar Y16, by contrast, the effects of E‐O3 were observed only at the very last stage of flag leaf ageing. Since the two cultivars had almost identical phenology and very similar leaf stomatal conductance before senescence, the greater impacts of E‐O3 on cultivars Y2 than Y16 cannot be explained by differential ozone uptake. Our findings will be useful for scientists to select O3‐tolerant wheat cultivars against the rising surface [O3] in East and South Asia.  相似文献   

5.
Winter wheat (Triticum aestivum L. cv. Jingdong 8) was exposed to short-term high ozone treatment after anthesis and then was either well irrigated with soil water content (SWC) of 80–85 % (O3+W) or drought treated (SWC 35–40 %, O3+D). Short-term ozone exposure significantly decreased irradiance-saturated net photosynthetic rate (P N) of winter wheat. Under good SWC, P N of the O3-treated plant was similar to that of control on 2 d after O3-exposure (6 DAA), but decreased significantly after 13 DAA, indicating that O3 exposure accelerated leaf senescence. Meanwhile, green flag leaf area was reduced faster than that of control. As a result, grain yield of O3+W was significantly decreased. P N of O3+D was further notably decreased and green flag leaf area was reduced more than that in O3+W. Consequently, substantial yield loss of O3+D was observed compared to that of O3+W. Although P N was significantly positively correlated with stomatal conductance, it also had notable positive correlation with the maximum photochemical efficiency in the dark adapted leaves (Fv/Fm), electron transport rate (ETR), photochemical quenching (qP), as well as content of chlorophyll, suggesting that the depression of P N was mainly caused by non-stomatal limitation. Hence optimal soil water condition should be considered in order to reduce the yield loss caused by O3 pollution.  相似文献   

6.
This contribution is a practical guide to the measurement of the different chlorophyll (Chl) fluorescence parameters and gives examples of their development under high-irradiance stress. From the Chl fluorescence induction kinetics upon irradiation of dark-adapted leaves, measured with the PAM fluorometer, various Chl fluorescence parameters, ratios, and quenching coefficients can be determined, which provide information on the functionality of the photosystem 2 (PS2) and the photosynthetic apparatus. These are the parameters Fv, Fm, F0, Fm′, Fv′, NF, and ΔF, the Chl fluorescence ratios Fv/Fm, Fv/F0, ΔF/Fm′, as well as the photochemical (qP) and non-photochemical quenching coefficients (qN, qCN, and NPQ). qN consists of three components (qN = qE + qT + qI), the contribution of which can be determined via Chl fluorescence relaxation kinetics measured in the dark period after the induction kinetics. The above Chl fluorescence parameters and ratios, many of which are measured in the dark-adapted state of leaves, primarily provide information on the functionality of PS2. In fully developed green and dark-green leaves these Chl fluorescence parameters, measured at the upper adaxial leaf side, only reflect the Chl fluorescence of a small portion of the leaf chloroplasts of the green palisade parenchyma cells at the upper outer leaf half. Thus, PAM fluorometer measurements have to be performed at both leaf sides to obtain information on all chloroplasts of the whole leaf. Combined high irradiance (HI) and heat stress, applied at the upper leaf side, strongly reduced the quantum yield of the photochemical energy conversion at the upper leaf half to nearly zero, whereas the Chl fluorescence signals measured at the lower leaf side were not or only little affected. During this HL-stress treatment, qN, qCN, and NPQ increased in both leaf sides, but to a much higher extent at the lower compared to the upper leaf side. qN was the best indicator for non-photochemical quenching even during a stronger HL-stress, whereas qCN and NPQ decreased with progressive stress even though non-photochemical quenching still continued. It is strongly recommended to determine, in addition to the classical fluorescence parameters, via the PAM fluorometer also the Chl fluorescence decrease ratio RFd (Fd/Fs), which, when measured at saturation irradiance is directly correlated to the net CO2 assimilation rate (P N) of leaves. This RFd-ratio can be determined from the Chl fluorescence induction kinetics measured with the PAM fluorometer using continuous saturating light (cSL) during 4–5 min. As the RFd-values are fast measurable indicators correlating with the photosynthetic activity of whole leaves, they should always be determined via the PAM fluorometer parallel to the other Chl fluorescence coefficients and ratios.  相似文献   

7.
The effects of nitrogen [75 and 150 kg (N) ha−1] and elevated CO2 on growth, photosynthetic rate, contents of soluble leaf proteins and activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and nitrate reductase (NR) were studied on wheat (Triticum aestivum L. cv. HD-2285) grown in open top chambers under either ambient (AC) or elevated (EC) CO2 concentration (350 ± 50, 600 ± 50 μmol mol−1) and analyzed at 40, 60 and 90 d after sowing. Plants grown under EC showed greater photosynthetic rate and were taller and attained greater leaf area along with higher total plant dry mass at all growth stages than those grown under AC. Total soluble and Rubisco protein contents decreased under EC but the activation of Rubisco was higher at EC with higher N supply. Nitrogen increased the NR activity whereas EC reduced it. Thus, EC causes increased growth and PN ability per unit uptake of N in wheat plants, even if N is limiting.  相似文献   

8.
To understand the interactive effects of O3 and CO2 on rice leaves; gas exchange, chlorophyll (Chl) fluorescence, ascorbic acid and glutathione were examined under acute (5 h), combined exposures of O3 (0, 0.1, or 0.3 cm3 m−3, expressed as O0, O0.1, or O0.3, respectively), and CO2 (400 or 800 cm3 m−3, expressed as C400 or C800, respectively) in natural-light gas-exposure chambers. The net photosynthetic rate (P N), maximum (Fv/Fm) and operating (Fq′/Fm′) quantum efficiencies of photosystem II (PSII) in young (8th) leaves decreased during O3 exposure. However, these were ameliorated by C800 and fully recovered within 3 d in clean air (O0 + C400) except for the O0.3 + C400 plants. The maximum PSII efficiency at 1,500 μmol m−2 s−1 PPFD (Fv′/Fm′) for the O0.3 + C400 plants decreased for all measurement times, likely because leaves with severely inhibited P N also had a severely damaged PSII. The P N of the flag (16th) leaves at heading decreased under O3 exposure, but the decline was smaller and the recovery was faster than that of the 8th leaves. The Fq′/Fm′ of the flag leaves in the O0.3 + C400 and O0.3 + C800 plants decreased just after gas exposure, but the Fv/Fm was not affected. These effects indicate that elevated CO2 interactively ameliorated the inhibition of photosynthesis induced by O3 exposure. However, changes in antioxidant levels did not explain the above interaction.  相似文献   

9.
Harnos  N.  Tuba  Z.  Szente  K. 《Photosynthetica》2002,40(2):293-300
Winter wheat plants were grown in open top chambers either at 365 µmol mol–1 (AC) or at 700 µmol mol–1 (EC) air CO2 concentrations. The photosynthetic response of flag leaves at the beginning of flowering and on four vertical leaf levels at the beginning of grain filling were measured. Net photosynthetic rates (P N) were higher at both developmental phases in plants grown at EC coupled with larger leaf area and photosynthetic pigment contents. The widely accepted Farquhar net photosynthesis model was parameterised and tested using several observed data. After parameterisation the test results corresponded satisfactorily with observed values under several environmental conditions.  相似文献   

10.
该试验在玉米单作茬口、玉米-花生间作茬口(间作茬口)、花生单作茬口共3种茬口,以及0 kg P_2O_5·hm~(-2)(P_0)和180 kg P_2O_5·hm~(-2)(P_1) 2个磷水平下,研究了间作茬口与施磷对冬小麦分蘖、叶面积指数(LAI)、干物质积累、光合特性及产量的影响机制,为玉米花生间作与小麦-玉米复种轮作提供理论依据。结果表明:(1)间作茬口较玉米茬口显著提高了冬小麦有效分蘖数、LAI、净光合速率和干物质积累量,并提高了冬小麦旗叶的SPAD值、CO_2饱和点、光饱和点及最大净光合速率(P_(nmax))、表观量子效率(AQY)、羧化效率(CE)、最大羧化速率(V_(cmax))、最大RUBP再生的电子传递速率(J_(max))和最大磷酸丙糖利用速率(V_(TPU)),且CE、V_(cmax)、V_(TPU)的增幅均达到显著水平(P0.05),有效改善了冬小麦产量构成,显著提高籽粒产量(P0.05)。(2)间作茬口较花生茬口提高了冬小麦乳熟期的P_(nmax)、AQY、CE,增加了穗粒数和粒重,提高了产量。(3)与不施磷相比,施磷180 kg P_2O_5·hm~(-2)显著促进间作茬口冬小麦生长,显著提高冬小麦旗叶的SPAD值、P_(nmax)、AQY、CE、V_(cmax)、J_(max)、V_(TPU)和籽粒产量(P0.05)。研究发现,间作茬口较玉米茬口能有效增强冬小麦旗叶表观量子效率和CO_2羧化能力,显著提高小麦花后光合能力,促进冬小麦生长,从而增加穗粒数、粒重和籽粒产量,且间作茬口结合施磷180 kg P_2O_5·hm~(-2)效果更好。  相似文献   

11.
Differences in acclimation to elevated growth CO2 (700 μmol mol−1, EC) and elevated temperature (ambient +4 °C, ET) in successive leaves of wheat were investigated in field chambers. At a common measurement CO2, EC increased photosynthesis and the quantum yield of electron transport (Φ) early on in the growth of penultimate leaves, and later decreased them. In contrast, EC did not change photosynthesis, and increased Φ at later growth stages in the flag leaf. Contents of chlorophyll (Chl), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and total soluble protein were initially higher and subsequently lower in penultimate than flag leaves. EC decreased RuBPCO protein content relative to soluble protein and Chl contents throughout the development of penultimate leaves. On the other hand, EC initially increased the RuBPCO:Chl and Chl a/b ratios, but later decreased them in flag leaves. In the flag leaves but not in the penultimate leaves, ET initially decreased initial and specific RuBPCO activities at ambient CO2 (AC) and increased them at EC. Late in leaf growth, ET decreased Chl contents under AC in both kinds of leaves, and had no effect or a positive one under EC. Thus the differences between the two kinds of leaves were due to resource availability, and to EC-increased allocation of resources to photon harvesting in the penultimate leaves, but to increased allocation to carboxylation early on in growth, and to light harvesting subsequently, in the flag leaves.  相似文献   

12.
Jiang  D.  Dai  T.  Jing  Q.  Cao  W.  Zhou  Q.  Zhao  H.  Fan  X. 《Photosynthetica》2004,42(3):439-446
Based on a 20-year fertilization experiment with wheat-maize double cropping system, the effects of different long-term fertilization treatments on leaf photosynthetic characteristics and grain yield in different winter wheat (Triticum aestivum L.) cultivars were studied in the growing seasons of 2000–2001 and 2001–2002. A total of nine fertilization treatments were implemented, i.e. no fertilizer (CK), N fertilizer (N), N and P fertilizers (NP), N and K fertilizers (NK), N, P, and K fertilizers (NPK), only organic manure (M), organic manure and N fertilizer (MN), organic manure and N and P fertilizers (MNP), and organic manure and N, P, and K fertilizers (MNPK). With the treatments of combined organic manure and inorganic fertilizers (TMI), net photosynthetic rate (P N), maximal activity of photosystem 2, PS2 (Fv/Fm), and chlorophyll content (SPAD value) of flag leaves and leaf area index (LAI) were much higher at the mid grain filling stage (20 or 23 d post anthesis, DPA), and exhibited slower declines at the late grain filling stage (30 DPA), compared with the treatments of only inorganic fertilizers (TI). The maximal canopy photosynthetic traits expressed as P N×LAI and SPAD×LAI at the mid grain filling stage were also higher in TMI than those in TI, which resulted in different grain yields in TMI and TI. Among the treatments of TMI or among the treatments of TI, both flag leaf and canopy photosynthetic abilities and yield levels increased with the supplement of inorganic nutrients (N, P, and K fertilizers), except for the treatment of NK. Under NK, soil contents of N and K increased while that of P decreased. Hence the unbalanced nutrients in soil from the improper input of nutrients in NK treatment were probably responsible for the reduced flag leaf and canopy photosynthetic characteristics and LAI, and for the fast declining of flag leaf photosynthetic traits during grain filling, resulting in the reduced yield of NK similar to the level of CK.  相似文献   

13.
A field study was performed on triticale, field bean, maize and amaranth, to find differences between studied species in physiological alterations resulting from progressive response as injuries and/or acclimation to long-term soil drought during various stages of plant development. The measurements of leaf water potential, electrolyte leakage, chlorophyll a fluorescence, leaf gas exchange and yield analysis were done. A special emphasis was given to the measurements of the blue, green, red and far-red fluorescence. Beside, different ratios of the four fluorescence bands (red/far-red: F 690/F 740, blue/red: F 440/F 690, blue/far-red: F 440/F 740 and blue/green: F 440/F 520) were calculated. Based on both yield analysis and measurements of physiological processes it can be suggested that field bean and maize responded with better tolerance to the water deficit in soil due to the activation of photoprotective mechanism probably connected with synthesis of the phenolic compounds, which can play a role of photoprotectors in different stages of plant development. The photosynthetic apparatus of those two species scattered the excess of excitation energy more effectively, partially through its transfer to PS I. In this way, plants avoided irreversible and/or deep injuries to PS II. The observed changes in the red fluorescence emission and in the F v/F m for triticale and amaranth could have occurred due to serious and irreversible photoinhibitory injuries. Probably, field bean and maize acclimatized more effectively to soil drought through the development of effective mechanisms for utilising excitation energy in the photosynthetic conversion of light accompanied by the mechanism protecting the photosynthetic apparatus against the excess of this energy.  相似文献   

14.
Uniculm wheat (Triticum aestivum L.) was grown to maturity at four concentrations of nitrogen corresponding to 3 (N1), 6 (N2), 9 (N3) and 12 (N4) g m–2. Penultimate and flag leaves were examined throughout the ontogeny. Sub-optimal concentrations of N resulted in sharp decline in both area and dry mass of the leaves. Decline in leaf area was due to fewer mesophyll cells. Net photosynthetic rate (PN) increased up to full expansion, remained constant for about a week and then declined. PN, nitrogen, ribulose-1,5-bis-phosphate carboxylase/oxygenase (RuBPCO) amount and activity, chlorophyll and soluble protein contents were similar at all the N concentrations. Both amount and activity of RuBPCO in the flag leaf were about two fold higher as compared to penultimate leaf, but PN was similar. This indicates the presence of an excess amount of RuBPCO in the flag leaf.  相似文献   

15.
Agronomic traits, photosynthetic pigments, gas exchange, and chlorophyll (Chl) fluorescence parameters of red stem buckwheat (Fagopyrum dibotrys Hara) mutants induced by γ-radiation were compared with green control at seedling stage. Plant height, number of first-class branches, and rhizome biomass were inhibited significantly (p<0.01). Chl a, Chl b, and Chl a+b contents decreased with elevated dose of γ-rays, while increasing carotenoid content indicated that buckwheat was capable of adjusting to the radiation damage. Decrease in net photosynthetic rate was the result of both stomatal and non-stomatal limitations. Fluorescence parameters, such as F0, Fm, Fv/Fm, Fv/F0, ΦPS2, electron transport rate, and photochemical quenching declined significantly (p<0.01) as compared with control due to photoinhibition, while non-photochemical quenching increased to enhance thermal dissipation. Lower parameters implied that leaf tissue was damaged significantly by high dose of γ-radiation and therefore leaf senescence was accelerated.  相似文献   

16.
A sand-culture experiment was conducted in open-top chambers which were constructed in a greenhouse to investigate the responses of salt-stressed wheat (Triticum aestivum L.) to O3. Plant seeding of JN17 (a popular winter wheat cultivar) was grown in saltless (−S) and saline (+S, 100 mM NaCl) conditions combined with charcoal-filtered air (CF, < 5 ppb O3) and elevated O3 (+O3, 80 ± 5 ppb, 8 h day−1) for 30 d. O3 significantly reduced net photosynthetic rate (PN), stomatal conductance, chlorophyll contents and plant biomass in -S treatment, but no considerable differences were noted in those parameters between +O3+S and CF+S treatments. O3-induced loss in cellular membrane integrity was significant in -S plants, but not in +S plants evidenced by significant elevations being measured in electrolyte leakage (EL) and malondialdehyde (MDA) content in -S plants, but not in +S plants. Both O3 and salinity increased proline content and stimulated antioxidant enzymes activities. Soluble protein increased by salinity but decreased by O3. Abscisic acid (ABA) was significantly elevated by O3 in -S plants but not in +S plants. The results of this study suggested that the specificity of different agricultural environments should be considered in order to develop reliable prediction models on O3 damage to wheat plants.  相似文献   

17.
In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO2] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, gs, gm, Ci/Ca, Ci/Cc, Vcmax, Jmax, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid‐anthesis and the late grain‐filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid‐anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO2]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non‐structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO2] appeared to enhance the rate of N degradation and senescence so that by late‐grain fill, photosynthetic acclimation to elevated [CO2] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO2] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation.  相似文献   

18.
For the first time, the adaptive role of the rolling leaf trait for tolerance of wheat plants (Triticum aestivum L.) to the main factor of drought, high temperature, was demonstrated. Cv. Otan with high degree of this trait expression was more tolerant to temperature stress (40°C, 4 h during 2 days (2h/day)). Changes in parameters of chlorophyll fluorescence, F v/F m and R Fd690, suggest that cv. Otan was tolerant to inhibition of photochemical activities of photosystem II (PSII) and photosystem I (PSI). Furthermore, high temperature had no effect on the rate of net photosynthesis (P N) in cv. Otan, although it decreased this parameter in the other wheat cultivars. The main factors, which provid for this tolerance, were adaptation of the photosynthetic pigment system by active accumulation of carotenoids, more stable structural organization of PSII and PSI, and their high photosynthetic activities, as well as efficient stomatal regulation of transpiration and supplying of mesophyll cells with CO2. It is hypothesized that the physiological role of the rolling leaf trait is the maintenance of adaptation potential by increasing the efficiency of water metabolism in the flag leaves of wheat under high temperature.  相似文献   

19.
Winter wheat is a grass species widely planted in northern and central China, where the increase of aerosols, air pollutants and population density are causing significant reduction in solar irradiance. In order to investigate the adaptation of winter wheat (Triticum aestivum L., cv. Yangmai 13) to low irradiance conditions occurring in the downstream plain of the Yangtze River (China), plants were subjected to four solar irradiance treatments (100%, 60%, 40%, and 20% of environmental incident solar irradiance). Significant increases in chlorophyll (Chl) and xanthophyll (Xan) pigments, and decreases in Chl a/b and Xan/Chl ratios were observed in plants under low light. Light-response curves showed higher net photosynthetic rates (P N) in fully irradiated plants, that also showed a higher light-compensation point. Shaded plants maintained high values of minimal fluorescence of dark-adapted state (Fo) and maximum quantum efficiency of PSII photochemistry (Fv/Fm) that assess a lower degree of photoinhibition under low light. Reduced irradiance caused decreases in effective quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), and nonphotochemical quenching coefficient (qN), and the promotion of excitation pressure of PSII (1 − qP). The activities of the antioxidant enzymes superoxide dismutase and peroxidase were high under reduced light whereas no light-dependent changes in catalase activity were observed. Thiobarbituric acid reactive species content and electrolyte leakage decreased under shaded plants that showed a lower photooxidative damage. The results suggest that winter wheat cv. Yangmai 13 is able to maintain a high photosynthetic efficiency under reduced solar irradiance and acclimates well to shading tolerance. The photosynthetic and antioxidant responses of winter wheat to low light levels could be important for winter wheat cultivation and productivity.  相似文献   

20.
We investigated net photosynthetic rate (PN) of ear and two uppermost (flag and penultimate) leaves of wheat cultivars Hongmangmai (drought resistant) and Haruhikari (drought sensitive) during post-anthesis under irrigated and non-irrigated field conditions. The PNof ear and flag leaf were significantly higher and less affected by drought in Hongmangmai than in Haruhikari. The rate of reduction in stomatal conductance (gs) was similar for the two cultivars, but intercellular CO2concentration (Ci) in the flag leaf of Hongmangmai was lower than that of Haruhikari in non-irrigated treatment. No differences were observed in leaf water potential (1) and osmotic adjustment of the flag leaf of the cultivars. These results imply that differences in photosynthetic inhibition on the flag leaf at low leaf 1between the cultivars were primarily due to non-stomatal effects. Hence the main physiological factor associated with yield stability of Hongmangmai under drought stress may be attributed to the capacity for chloroplast activity in the flag leaf, which apparently allows sustained PNof flag leaf during grain filling under drought stress. The higher PNof ear in Hongmangmai under drought could also be related to its drought resistance.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号