首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of anthropogenic climate change on biodiversity are well known for some high‐profile Australian marine systems, including coral bleaching and kelp forest devastation. Less well‐published are the impacts of climate change being observed in terrestrial ecosystems, although ecological models have predicted substantial changes are likely. Detecting and attributing terrestrial changes to anthropogenic factors is difficult due to the ecological importance of extreme conditions, the noisy nature of short‐term data collected with limited resources, and complexities introduced by biotic interactions. Here, we provide a suite of case studies that have considered possible impacts of anthropogenic climate change on Australian terrestrial systems. Our intention is to provide a diverse collection of stories illustrating how Australian flora and fauna are likely responding to direct and indirect effects of anthropogenic climate change. We aim to raise awareness rather than be comprehensive. We include case studies covering canopy dieback in forests, compositional shifts in vegetation, positive feedbacks between climate, vegetation and disturbance regimes, local extinctions in plants, size changes in birds, phenological shifts in reproduction and shifting biotic interactions that threaten communities and endangered species. Some of these changes are direct and clear cut, others are indirect and less clearly connected to climate change; however, all are important in providing insights into the future state of terrestrial ecosystems. We also highlight some of the management issues relevant to conserving terrestrial communities and ecosystems in the face of anthropogenic climate change.  相似文献   

2.
We investigated the independent and combined effects of experimental warming and grazing on plant species diversity on the north‐eastern Tibetan Plateau, a region highly vulnerable to ongoing climate and land use changes. Experimental warming caused a 26–36% decrease in species richness, a response that was generally dampened by experimental grazing. Higher species losses occurred at the drier sites where N was less available. Moreover, we observed an indirect effect of climate change on species richness as mediated by plant–plant interactions. Heat stress and warming‐induced litter accumulation are potential explanations for the species’ responses to experimental warming. This is the first reported experimental evidence that climate warming could cause dramatic declines in plant species diversity in high elevation ecosystems over short time frames and supports model predictions of species losses with anthropogenic climate change.  相似文献   

3.
4.
5.
Remote alpine regions were considered to be largely unimpacted by anthropogenic disturbance, but it is now clear these areas are changing rapidly. It is often difficult to identify the causal processes underpinning ecological change because the main drivers (direct and indirect climate forcing, land use change and atmospheric deposition) are acting simultaneously. In addition, alpine landscapes are morphometrically complex with strong local environmental gradients creating natural heterogeneity which acts as a variable filter to climate and anthropogenic forcing, emphasizing the need for analyzing responses at multiple sites. The eastern margin of Tibet is a hotspot of global biodiversity and is affected by both atmospheric N and dust deposition, whereas regional climate warming is comparatively recent. Here we use 210Pb and 137Cs dated sediment records from nine alpine lakes, and statistical measures of diatom ecological change (turnover and PCA axis 1 scores) to determine regional scale patterns in community response to global environmental change forcing over approximately the last 150 years. The study lakes showed contrasting ecological responses with increased nutrient input as the primary driver of change, mediated by lake morphology and catchment characteristics. Turnover rates of diatom composition, although low, are significantly associated with lake volume, lake area, altitude and DOC.  相似文献   

6.
Permafrost, covering approximately 25% of the land area in the Northern Hemisphere, is one of the key components of terrestrial ecosystem in cold regions. As a product of cold climate, permafrost is extremely sensitive to climate change. Climate warming over past decades has caused degradation in permafrost widely and quickly. Permafrost degradation has the potential to significantly change soil moisture content, alter soil nutrients availability and influence on species composition. In lowland ecosystems the loss of ice-rich permafrost has caused the conversion of terrestrial ecosystem to aquatic ecosystem or wetland. In upland ecosystems permafrost thaw has resulted in replacement of hygrophilous community by xeromorphic community or shrub. Permafrost degradation resulting from climate warming may dramatically change the productivity and carbon dynamics of alpine ecosystems. This paper reviewed the effects of permafrost degradation on ecosystem structure and function. At the same time, we put forward critical questions about the effects of permafrost degradation on ecosystems on Qinghai–Tibetan Plateau, included: (1) carry out research about the effects of permafrost degradation on grassland ecosystem and the response of alpine ecosystem to global change; (2) construct long-term and located field observations and research system, based on which predict ecosystem dynamic in permafrost degradation; (3) pay extensive attention to the dynamic of greenhouse gas in permafrost region on Qinghai–Tibetan Plateau and the feedback of greenhouse gas to climate change; (4) quantitative study on the change of water-heat transport in permafrost degradation and the effects of soil moisture and heat change on vegetation growth.  相似文献   

7.
Pine barrens include an assortment of pyrogenic plant communities occurring on glacial outwash or rocky outcrops scattered along the Atlantic coastal plain from New Jersey to Maine, and inward across New England, New York, Pennsylvania, and the northern Great Lakes region. At least historically, pine barrens provided some of the highest quality terrestrial shrublands and young forests in the eastern North American sub‐boreal and northern temperate region. However, the mosaic open‐canopy, sparse‐shrub, and grassland early successional state is generally lacking in contemporary pine barrens. Many sites in the northeastern United States have converted to overgrown scrub oak (Quercus ilicifolia, Quercus prinoides) thickets and closed canopied pitch pine (Pinus rigida)‐dominated forests. Thinning pitch pine is a contentious issue for the imperiled pitch pine‐scrub oak barrens community type (G2 Global Rarity Rank, 6–20 occurrences). Here we provide a historical, ecological, and resource management rationale for thinning pitch pine forest to restore savanna‐like open barrens with a mosaic of scrub oaks, heath shrubs, and prairie‐like vegetation. We postulate that the contemporary dominance of pitch pine forest is largely of recent anthropogenic origin, limits habitat opportunities for at‐risk shrubland fauna, and poses a serious wildfire hazard. We suggest maintaining pitch pine‐scrub oak barrens at 10–30% average pitch pine cover to simultaneously promote shrubland biodiversity and minimize fire danger.  相似文献   

8.
Aims Vegetation dynamics are simultaneously regulated by climate change and anthropogenic activities. Since the 1980s, climate has been warming on the Tibetan Plateau (TP) at a rate higher than North Hemisphere average. Anthropogenic activities, including grazing, farming, and urbanization, are also influencing the alpine ecosystem on the TP. Especially, an ensemble of large engineering projects, such as power transported from west to east by State Grid, has been in operation on the TP. While studies disentangling effects of climate and anthropogenic activities interference are still lacking for the forest ecosystems on the TP. The overarching objectives of this study were to separate effects of natural climates and human interferences on forest ecosystem dynamics on the TP.  相似文献   

9.
Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late‐successional conifers to early‐successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age‐dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age‐dependent succession, the relative abundances of early‐successional deciduous broadleaves and early‐successional conifers have increased at the expense of late‐successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO2 promoted early‐successional conifers and deciduous broadleaves, and warming increased early‐successional conifers at the expense of late‐successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO2 and warming will continue in the 21st century.  相似文献   

10.
青藏高原湖泊纳木错水域生态学研究现状与展望   总被引:1,自引:0,他引:1  
徐军  康世昌 《生态科学》2010,29(3):298-305
青藏高原湖泊群是世界上海拔最高、分布最密的湖群区。藏北地区的纳木错是世界上海拔最高的大湖,同时也是我国仅次于青海湖的第二大咸水湖。在纳木错开展全面的水域生态学研究,对青藏高原湖群区具有重要借鉴和示范意义。论文综述了关于纳木错水域生态系统的已有研究。鉴于纳木错水域生态系统的基本特征尚未得到全面认识的现状,建议纳木错生态研究应集中在生物地球化学循环与食物网营养动力学研究、流域人类活动的生态学效应研究、纳木错生态系统对气候变化的响应、纳木错与藏北湖泊的比较湖沼学研究等几个范畴。  相似文献   

11.
The rates of anthropogenic climate change substantially exceed those at which forest ecosystems – dominated by immobile, long‐lived organisms – are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest‐dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate‐induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate‐induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process‐based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid‐ to low‐elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning.  相似文献   

12.
Successional dynamics in Mediterranean forests have been modulated by anthropogenic disturbances during thousands of years, especially in areas densely populated since ancient times. Our objective is to determine whether pine tree cover (early-successional species) and oak tree cover (late-successional species), used as a surrogate of successional stage of peri-urban fragmented forests in the Vallès lowlands (Catalonia, NE, Spain), are primarily determined by (1) climate and topography; (2) anthropogenic disturbances; (3) patch structure; or (4) patch dynamics from 1956 to 1993. Quercus spp. and Pinus spp. tree cover were separately recorded on 252 randomly selected plots of 100 m2, within forest patches ranging in size from 0.25 to 218 ha. Multiple linear regressions indicated that forest patch history is the most important variable determining oak and pine tree cover: new forest patches showed higher pine and lower oak tree cover than recently split patches (i.e. those that became fragmented from large forest areas after 1956). Patches already existing as such in 1956 (pre-existent patches) showed higher pine cover than recently split patches. Oak cover increased and pine cover decreased with increasing forest connectivity of the patch. Finally, highly frequented forests were related to high cover of pines. Climatic and topographic variables were not significant. We conclude that pine and oak cover in these peri-urban forests are mainly determined by recent patch dynamics, but also by the spatial pattern of patches. However, human-induced disturbance can modulate this as there is some evidence for pine being associated with a high human frequentation.  相似文献   

13.
The exchange of organisms and energy among ecosystems has major impacts on food web structure and dynamics, yet little is known about how climate warming combines with other pervasive anthropogenic perturbations to affect such exchanges. We used an outdoor freshwater mesocosm experiment to investigate the interactive effects of warming, eutrophication, and changes in top predators on the flux of biomass between aquatic and terrestrial ecosystems. We demonstrated that predatory fish decoupled aquatic and terrestrial ecosystems by reducing the emergence of aquatic organisms and suppressing the decomposition of terrestrial plant detritus. In contrast, warming and nutrients enhanced cross‐ecosystem exchanges by increasing emergence and decomposition, and these effects were strongest in the absence of predators. Furthermore, we found that warming advanced while predators delayed the phenology of insect emergence. Our results demonstrate that anthropogenic perturbations may extend well beyond ecosystem boundaries by influencing cross‐ecosystem subsidies. We find that these changes are sufficient to substantially impact recipient communities and potentially alter the carbon balance between aquatic and terrestrial ecosystems and the atmosphere.  相似文献   

14.
The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dynamics and species‐specific responses to multiple drivers. We compared the long‐term (1966–2006) forest persistence and land cover change among evergreen (cork oak and holm oak) and deciduous oak forests and evaluated the importance of anthropogenic and environmental drivers on observed changes for Portugal. We used National Forest Inventories to quantify the changes in oak forests and explored the drivers of change using multinomial logistic regression analysis and an information theoretical approach. We found distinct trends among oak forest types, reflecting the differences in oak economic value, protection status and management schemes: cork oak forests were the most persistent (62%), changing mostly to pines and eucalypt; holm oak forests were less persistent (53.2%), changing mostly to agriculture; and deciduous oak forests were the least persistent (45.7%), changing mostly to shrublands. Drivers of change had distinct importance across oak forest types, but drivers from anthropogenic origin (wildfires, population density, and land accessibility) were always among the most important. Climatic extremes were also important predictors of oak forest changes, namely extreme temperatures for evergreen oak forests and deficit of precipitation for deciduous oak forests. Our results indicate that under increasing human pressure and forecasted climate change, evergreen oak forests will continue declining and deciduous oak forests will be replaced by forests dominated by more xeric species. In the long run, multiple disturbances may change competitive dominance from oak forests to pyrophytic shrublands. A better understanding of forest dynamics and the inclusion of anthropogenic drivers on models of vegetation change will improve predicting the future of Mediterranean oak forests.  相似文献   

15.
Hong Qian  Ayako Shimono 《Plant Ecology》2012,213(8):1357-1364
Understanding the underlying mechanisms that generate species turnover or beta diversity among biological communities is a central theme in ecology. Here, we distinguish the effects of geographic distance and climatic dissimilarity on species turnover of vascular plants in alpine meadow communities on the Tibetan Plateau in China. We calculated species turnover between each pair of 17 sites, using the Jaccard??s and Simpson??s indices. We selected six variables to quantify climate at each site, and subjected values of the climatic variables to a principal component analysis. We applied a variance partitioning approach to disentangle the effects of geographic distance and climatic dissimilarity on species turnover in alpine meadow communities. We also examined the effect of elevation variation on species turnover. Geographic distance and climate dissimilarity together explained 49.1?% of the variation in compositional difference between alpine meadow communities; the amount of the variation explained purely by geographic distance and purely by climatic dissimilarity was 6.8?% and 2.8?%, respectively. When geographic distance, climate dissimilarity, and elevation difference were included in an analysis, they together explained 55?% of the variation in compositional difference between alpine meadow communities; the pure effect of each of the three sets of explanatory variables was 4.8, 4.3, and 3.5?%, respectively. The fact that the vast majority of the variation explained by geographic distance and climatic dissimilarity cannot be independently attributed to either factor suggests that the two factors operate together in determining regional patterns of species composition in alpine meadows on the Tibetan Plateau.  相似文献   

16.
We studied the influence of anthropogenic drivers on the distribution and regeneration of tree species in vegetation at different stages of succession from grasslands to oak forests in mid-montane Central Himalaya. We found fire, grazing, and lopping as the main factors hindering a progressive successional regime towards a late-successional oak community. Succession was studied in five vegetation formations (grasslands, pine, pine–oak, open oak, and dense oak), with similar site conditions, representing a theoretical successional sequence from early- to late-successional stages. A structured survey with uniform distribution of sampling plots in the five selected vegetation formations was conducted to gather information abut the vegetation communities. Early-successional grasslands and pine forests were found to harbour high densities of pine and oak seedling and sapling regeneration. However, recurring fires and chronic unsustainable levels of grazing in these vegetation formations obstructed progressive succession by eliminating regenerating seedling and saplings from the forest understorey. Similarly, in intermediate- and late-successional stages (including pine–oak, open oak, and dense oak), overexploitation of existing oaks trees via lopping and grazing of regenerating oak seedlings and saplings hampered oak regeneration and development. The possibility to convert pine forests into oak as well as the conservation of existing oak forests through controlled grazing and lopping are management options that can contribute to an enhanced functioning of forest ecosystems in the study area. We conclude that with strategic management that restricts the current anthropogenic disturbances, the extent of oak forest in the study area can be increased.  相似文献   

17.
Different tree species growing in the same area may have different, or even contrasting growth responses to climate change. Korean pine (Pinus koraiensis) and Mongolia oak (Quercus mongolica) are two crucial tree species in temperate forest ecosystems. Six tree-ring chronologies for Korean pine and Mongolia oak were developed by using the zero-signal method to explore their growth response to the recent climate warming in northeast China. Results showed that Mongolia oak radial growth was mainly limited by precipitation in the growing season, while Korean pine growth depended on temperature condition, especially monthly minimum temperature. With the latitude decrease, the relationships between Korean pine growth and monthly precipitation changed from negative to positive correlation, while the positive correlation with monthly temperature gradually weakened. In the contrary, Mongolia oak growth at the three sampling sites was significantly and positively correlated with precipitation in the growing season, while it was negatively correlated with temperature and this relationship decreased with the latitude decrease. The radial growth of Korean pine at different sites showed a clearly discrepant responses to the recent warming since 1980. Korean pine growth in the north site increased with the temperature increase, decreased in the midwest site, and almost unchanged in the southeast site. Conversely, Mongolia oak growth was less affected by the recent climate warming. Our finding suggested that tree species trait and sites are both key factors that affect the response of tree growth to climate change. In addition, the suitable distribution area of Korean pine may be moved northward with the continued global warming in the future, but Mongolia oak may not shift in the same way.  相似文献   

18.
An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner‐Alpine regions, the species composition in low elevation forests is changing: The sub‐boreal Scots pine (Pinus sylvestris L.) dominating the dry forests is showing high mortality rates. Concurrently the sub‐Mediterranean pubescent oak (Quercus pubescens Willd.) has locally increased in abundance. However, it remains unclear whether this local change in species composition is part of a larger‐scale vegetation shift. To study variability in mortality and regeneration in these dry forests we analysed data from the Swiss national forest inventory (NFI) on a regular grid between 1983 and 2003, and combined it with annual mortality data from a monitoring site. Pine mortality was found to be highest at low elevation (below 1000 m a.s.l.). Annual variation in pine mortality was correlated with a drought index computed for the summer months prior to observed tree death. A generalized linear mixed‐effects model indicated for the NFI data increased pine mortality on dryer sites with high stand competition, particularly for small‐diameter trees. Pine regeneration was low in comparison to its occurrence in the overstorey, whereas oak regeneration was comparably abundant. Although both species regenerated well at dry sites, pine regeneration was favoured at cooler sites at higher altitude and oak regeneration was more frequent at warmer sites, indicating a higher adaptation potential of oaks under future warming. Our results thus suggest that an extended shift in species composition is actually occurring in the pine forests in the Valais. The main driving factors are found to be climatic variability, particularly drought, and variability in stand structure and topography. Thus, pine forests at low elevations are developing into oak forests with unknown consequences for these ecosystems and their goods and services.  相似文献   

19.
Previous studies based on fossil pollen data have reported significant changes in vegetation on the alpine Tibetan Plateau during the Holocene. However, since the relative proportions of fossil pollen taxa are largely influenced by individual pollen productivities and the dispersal characteristics, such inferences on vegetation have the potential to be considerably biased. We therefore examined the modern pollen–vegetation relationships for four common pollen species on the Tibetan Plateau, using Extended R-value (ERV) models. Assuming an average radius of 100 m for the sampled lakes, we estimated the relevant source area of pollen (RSAP) to be 2200 m (which represents the distance from the lake). Using Poaceae as the reference taxa (Pollen Productivity Estimate, PPE = 1), ERV Submodel 2 derived relative high PPEs for the steppe and desert taxa: 2.079 ± 0.432 for Artemisia and 5.379 ± 1.077 for Chenopodiaceae. Low PPEs were estimated for the Cyperaceae (1.036 ± 0.012), whose plants are characteristic of the alpine Kobresia meadows. Applying these PPEs to four fossil pollen sequences since the Late Glacial, the plant abundances on the central and north-eastern Tibetan Plateau were quantified using the “Regional Estimates of Vegetation Abundance from Large Sites” (REVEALS) model. The proportions of Artemisia and Chenopodiaceae were greatly reduced compared to their original pollen percentages in the reconstructed vegetation, owing to their high productivities and their dispersal characteristics, while Cyperaceae showed a relative increase in the vegetation reconstruction. The reconstructed vegetation assemblages of the four pollen sequence sites always yielded smaller compositional species turnovers than suggested by the pollen spectra, as revealed by Detrended Canonical Correspondence Analyses (DCCA) of the Holocene sections. The strength of the previously reported vegetation changes may therefore have been overestimated, which indicates the importance of taking into account pollen–vegetation relationships when discussing the potential drivers (such as climate, land use, atmospheric CO2 concentrations) and implications (such as for land surface–climate feedbacks, carbon storage, and biodiversity) of vegetation change.  相似文献   

20.
内蒙古阿拉善地区分布着超过20万km2的典型戈壁生态系统, 且这些戈壁生态系统正遭受着持续性气候变暖与极端天气的影响。然而, 土壤、气候、空间变量等因子对阿拉善戈壁大尺度植物β多样性及其关键组分的相对影响还没有得到系统研究。本文通过对阿拉善典型戈壁生境的276个样方进行植物群落组成调查, 并结合气候、土壤等数据, 探讨了地理距离和环境因子对阿拉善戈壁区植物群落β多样性及其组分的影响。研究表明: (1)在阿拉善戈壁区, 随着地理距离的增加, 植物群落β多样性及物种周转组分显著增加, 而且β多样性主要源于物种周转组分, 物种嵌套组分的贡献非常有限; (2)偏Mantel分析显示环境因子和地理距离对β多样性及其物种周转组分均有显著的单独作用; 方差分解结果进一步表明, 环境因子和地理距离共同解释了植物β多样性及其物种周转组分10.84%-17.67% (Bray-Curtis)和15.47%-24.81% (Sørensen)的变异, 但环境因子可以单独解释更多的变异(6.62%-9.97% (Bray-Curtis)和8.98%-14.51% (Sørensen))。在众多环境因子中, 气温日较差、土壤含水量和地表砾石盖度对植物群落β多样性和物种周转组分的贡献更大。以上结果表明, 环境过滤、扩散限制以及其他未知过程可能共同影响阿拉善戈壁区植物群落β多样性格局, 其中环境过滤可能具有更大的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号