首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Semi-arid and arid ecosystems dominated by shrubs (“dry shrublands”) are an important component of the global C cycle, but impacts of climate change and elevated atmospheric CO2 on biogeochemical cycling in these ecosystems have not been synthetically assessed. This study synthesizes data from manipulative studies and from studies contrasting ecosystem processes in different vegetation microsites (that is, shrub or herbaceous canopy versus intercanopy microsites), to assess how changes in climate and atmospheric CO2 affect biogeochemical cycles by altering plant and microbial physiology and ecosystem structure. Further, we explore how ecosystem structure impacts on biogeochemical cycles differ across a climate gradient. We found that: (1) our ability to project ecological responses to changes in climate and atmospheric CO2 is limited by a dearth of manipulative studies, and by a lack of measurements in those studies that can explain biogeochemical changes, (2) changes in ecosystem structure will impact biogeochemical cycling, with decreasing pools and fluxes of C and N if vegetation canopy microsites were to decline, and (3) differences in biogeochemical cycling between microsites are predictable with a simple aridity index (MAP/MAT), where the relative difference in pools and fluxes of C and N between vegetation canopy and intercanopy microsites is positively correlated with aridity. We conclude that if climate change alters ecosystem structure, it will strongly impact biogeochemical cycles, with increasing aridity leading to greater heterogeneity in biogeochemical cycling among microsites. Additional long-term manipulative experiments situated across dry shrublands are required to better predict climate change impacts on biogeochemical cycling in deserts.  相似文献   

2.
The area of forest established through afforestation/reforestation has been increasing on a global scale, which is particularly important as these planted forests attenuate climate change by sequestering carbon. However, the determinants of soil organic carbon (SOC) sequestration and their contribution to the ecosystem carbon sink of planted forests remain uncertain. By using globally distributed data extracted from 154 peer‐reviewed publications and a total of 355 sampling points, we investigated above‐ground biomass carbon (ABC) sequestration and SOC sequestration across three different climatic zones (tropical, warm temperate, and cold temperate) through correlation analysis, regression models, and structural equation modeling (SEM). We found that the proportion of SOC sequestration in the ecosystem C sequestration averaged 14.1% globally, being the highest (27.0%) in the warm temperate and the lowest (10.7%) in the tropical climatic zones. The proportion was mainly affected by latitude. The sink rate of ABC (RABC) in tropical climates (2.48 Mg C ha?1 year?1) and the sink rate of SOC (RSOC) in warm temperate climates (0.96 Mg C ha?1 year?1) were higher than other climatic zones. The main determinants of RSOC were the number of frost‐free days, latitude, mean annual precipitation (MAP), and SOC density (SOCD) at the initial observation; however, these variables depended on the climatic zone. According to the SEM, frost‐free period, mean annual temperature (MAT) and MAP are the dominant driving factors affecting RSOC in Chinese plantations. MAT has a positive effect on RSOC, and global warming may increase RSOC of temperate plantations in China. Our findings highlight the determinants of SOC sequestration and quantitatively reveal the substantial global contribution of SOC sequestration to ecosystem carbon sink provided by planted forests. Our results help managers identify and control key factors to increase carbon sequestration in forest ecosystems.  相似文献   

3.
With the large extent and great amount of soil carbon (C) storage, drylands play an important role in terrestrial C balance and feedbacks to climate change. Yet, how dryland soils respond to gradual and concomitant changes in multiple global change drivers [e.g., temperature (Ts), precipitation (Ppt), and atmospheric [CO2] (CO2)] has rarely been studied. We used a process‐based ecosystem model patch arid land simulator to simulate dryland soil respiration (Rs) and C pool size (Cs) changes to abrupt vs. gradual and single vs. combined alterations in Ts, Ppt and CO2 at multiple treatment levels. Results showed that abrupt perturbations generally resulted in larger Rs and had longer differentiated impacts than did gradual perturbations. Rs was stimulated by increases in Ts, Ppt, and CO2 in a nonlinear fashion (e.g., parabolically or asymptotically) but suppressed by Ppt reduction. Warming mainly stimulated heterotrophic Rs (i.e., Rh) whereas Ppt and CO2 influenced autotrophic Rs (i.e., Ra). The combined effects of warming, Ppt, and CO2 were nonadditive of primary single‐factor effects as a result of substantial interactions among these factors. Warming amplified the effects of both Ppt addition and CO2 elevation whereas Ppt addition and CO2 elevation counteracted with each other. Precipitation reduction either magnified or suppressed warming and CO2 effects, depending on the magnitude of factor's alteration and the components of Rs (Ra or Rh) being examined. Overall, Ppt had dominant influence on dryland Rs and Cs over Ts and CO2. Increasing Ppt individually or in combination with Ts and CO2 benefited soil C sequestration. We therefore suggested that global change experimental studies for dryland ecosystems should focus more on the effects of precipitation regime changes and the combined effects of Ppt with other global change factors (e.g., Ts, CO2, and N deposition).  相似文献   

4.
Arid ecosystems, which occupy about 35% of the Earth's terrestrial surface area, are believed to be among the most responsive to elevated [CO2]. Net ecosystem CO2 exchange (NEE) was measured in the eighth year of CO2 enrichment at the Nevada Desert Free‐Air CO2 Enrichment (FACE) Facility between the months of December 2003–December 2004. On most dates mean daily NEE (24 h) (μmol CO2 m?2 s?1) of ecosystems exposed to elevated atmospheric CO2 were similar to those maintained at current ambient CO2 levels. However, on sampling dates following rains, mean daily NEEs of ecosystems exposed to elevated [CO2] averaged 23 to 56% lower than mean daily NEEs of ecosystems maintained at ambient [CO2]. Mean daily NEE varied seasonally across both CO2 treatments, increasing from about 0.1 μmol CO2 m?2 s?1 in December to a maximum of 0.5–0.6 μmol CO2 m?2 s?1 in early spring. Maximum NEE in ecosystems exposed to elevated CO2 occurred 1 month earlier than it did in ecosystems exposed to ambient CO2, with declines in both treatments to lowest seasonal levels by early October (0.09±0.03 μmol CO2 m?2 s?1), but then increasing to near peak levels in late October (0.36±0.08 μmol CO2 m?2 s?1), November (0.28±0.03 μmol CO2 m?2 s?1), and December (0.54±0.06 μmol CO2 m?2 s?1). Seasonal patterns of mean daily NEE primarily resulted from larger seasonal fluctuations in rates of daytime net ecosystem CO2 uptake which were closely tied to plant community phenology and precipitation. Photosynthesis in the autotrophic crust community (lichens, mosses, and free‐living cyanobacteria) following rains were probably responsible for the high NEEs observed in January, February, and late October 2004 when vascular plant photosynthesis was low. Both CO2 treatments were net CO2 sinks in 2004, but exposure to elevated CO2 reduced CO2 sink strength by 30% (positive net ecosystem productivity=127±17 g C m?2 yr?1 ambient CO2 and 90±11 g C m?2 yr?1 elevated CO2, P=0.011). This level of net C uptake rivals or exceeds levels observed in some forested and grassland ecosystems. Thus, the decrease in C sequestration seen in our study under elevated CO2– along with the extensive coverage of arid and semi‐arid ecosystems globally – points to a significant drop in global C sequestration potential in the next several decades because of responses of heretofore overlooked dryland ecosystems.  相似文献   

5.
Soil respiration in six temperate forests in China   总被引:14,自引:0,他引:14  
Scaling soil respiration (RS), the major CO2 source to the atmosphere from terrestrial ecosystems, from chamber‐based measurements to ecosystems requires studies on variations and correlations of RS from various biomes and across geographic regions. However, few studies on RS are available for Chinese temperate forest despite the importance of this forest in the national and global carbon budgets. In this study, we conducted 18‐month RS measurements during 2004–2005 in six temperate forest types, representing the typical secondary forest ecosystems across various site conditions in northeastern China: Mongolian oak (Quercus mongolica Fisch.), aspen‐birch (Populous davidiana Dode and Betula platyphylla Suk.), mixed deciduous (no dominant tree species), hardwood (dominated by Fraxinus mandshurica Rupr., Juglans mandshurica Maxim., and Phellodendron amurense Rupr.) forests, Korean pine (Pinus koraiensis Sieb. et Zucc.) and Dahurian larch (Larix gmelinii Rupr.) plantations. Our specific objectives were to: (1) explore relationships of RS against soil temperature and water content for the six forest ecosystems, (2) quantify annual soil surface CO2 flux and its relations to belowground carbon storage, (3) examine seasonal variations in RS and related environmental factors, and (4) quantify among‐ and within‐ecosystem variations in RS. The RS was positively correlated to soil temperature in all forest types, and was significantly influenced by the interactions of soil temperature and water content in the pine, larch, and mixed deciduous forests. The sensitivity of RS to soil temperature at 10 cm depth (Q10) ranged from 2.61 in the oak forest to 3.75 in the aspen‐birch forests. The Q10 tended to increase with soil water content until reaching a threshold, and then decline. The annual RS for the larch, pine, hardwood, oak, mixed deciduous, and aspen‐birch forests averaged 403, 514, 781, 785, 786, and 813 g C m?2 yr?1, respectively. The annual RS of the broadleaved forests was 72% greater than that of the coniferous forests. The annual RS was positively correlated to soil organic carbon (SOC) concentration at O horizon (R2=0.868) and total biomass of roots <0.5 cm in diameter (R2=0.748). The coefficient of variation (CV) of RS among forest types averaged 25% across the 18‐month measurements. The CV of RS within plots varied from 20% to 27%, significantly (P<0.001) greater than those among plots (9–15%), indicating the importance of the fine‐scaled heterogeneity in RS. This study emphasized that variations in soil respiration and potential sampling bias should be appropriately tackled for accurate soil CO2 flux estimates.  相似文献   

6.
Short‐term measurements of carbon dioxide, water, and energy fluxes were collected at four locations along a mean annual precipitation gradient in southern Africa during the wet (growing) season with the purpose of determining how the observed vegetation–atmosphere exchange properties are functionally related to the long‐term climatic conditions. This research was conducted along the Kalahari Transect (KT), one in the global set of International Geosphere‐Biosphere Program transects, which covers a north–south aridity gradient, all on a homogenous sand formation. Eddy covariance instruments were deployed on a permanent tower in Mongu, Zambia (879 mm of rainfall per year), as well as on a portable tower in Maun (460 mm yr?1), Okwa River Crossing (407 mm yr?1), and Tshane (365 mm yr?1), Botswana for several days at each site. The relationships between CO2 flux, Fc, and photosynthetically active radiation were described well by a hyperbolic fit to the data at all locations except for Mongu, the wettest site. Here, there appeared to be an air temperature effect on Fc. While daytime values of Fc routinely approached or exceeded ?20 μmol m?2 s?1 at Mongu, the magnitude of Fc remained less than ?10 μmol m?2 s?1 when the air temperature was above 27°C. Canopy resistances to water vapor transfer, rc, displayed an overall decline from the wetter sites to the more arid sites, but the differences in rc could be almost exclusively accounted for by the decrease in leaf area index (LAI) from north to south along the KT. Ecosystem water use efficiency (WUE), defined as the ratio of net carbon flux to evapotranspiration, showed a general decrease with increasing vapor pressure deficit, D, for all of the sites. The magnitudes of WUE at a given D, however, were dissimilar for the individual sites and were found to be stratified according to the position of the sites along the long‐term aridity gradient. For example, Mongu, which has the wettest climate, has a much lower WUE for like levels of D than Tshane, which historically has the most arid climate. Given the similar inferred stomatal resistances between the sites, the disparate carbon uptake behavior for the grass vs. woody vegetation is the likely cause for the observed differences in WUE along the aridity gradient. The short‐term flux measurements provide a framework for evaluating the vegetation's functional adaptation to the long‐term climate and provide information that may be useful for predicting the dynamic response of the vegetation to future climate change.  相似文献   

7.
We examine the influence of climate, soil properties and vegetation characteristics on soil organic carbon (SOC) along a transect of West African ecosystems sampled across a precipitation gradient on contrasting soil types stretching from Ghana (15°N) to Mali (7°N). Our findings derive from a total of 1108 soil cores sampled over 14 permanent plots. The observed pattern in SOC stocks reflects the very different climatic conditions and contrasting soil properties existing along the latitudinal transect. The combined effects of these factors strongly influence vegetation structure. SOC stocks in the first 2 m of soil ranged from 20 Mg C ha?1 for a Sahelian savanna in Mali to over 120 Mg C ha?1 for a transitional forest in Ghana. The degree of interdependence between soil bulk density (SBD) and soil properties is highlighted by the strong negative relationships observed between SBD and SOC (r> 0.84). A simple predictive function capable of encompassing the effect of climate, soil properties and vegetation type on SOC stocks showed that available water and sand content taken together could explain 0.84 and 0.86 of the total variability in SOC stocks observed to 0.3 and 1.0 m depth respectively. Used in combination with a suitable climatic parameter, sand content is a good predictor of SOC stored in highly weathered dry tropical ecosystems with arguably less confounding effects than provided by clay content. There was an increased contribution of resistant SOC to the total SOC pool for lower rainfall soils, this likely being the result of more frequent fire events in the grassier savannas of the more arid regions. This work provides new insights into the mechanisms determining the distribution of carbon storage in tropical soils and should contribute significantly to the development of robust predictive models of biogeochemical cycling and vegetation dynamics in tropical regions.  相似文献   

8.
This study investigated the impact of predicted future climatic and atmospheric conditions on soil respiration (RS) in a Danish Calluna‐Deschampsia‐heathland. A fully factorial in situ experiment with treatments of elevated atmospheric CO2 (+130 ppm), raised soil temperature (+0.4 °C) and extended summer drought (5–8% precipitation exclusion) was established in 2005. The average RS, observed in the control over 3 years of measurements (1.7 μmol CO2 m?2 sec?1), increased 38% under elevated CO2, irrespective of combination with the drought or temperature treatments. In contrast, extended summer drought decreased RS by 14%, while elevated soil temperature did not affect RS overall. A significant interaction between elevated temperature and drought resulted in further reduction of RS when these treatments were combined. A detailed analysis of short‐term RS dynamics associated with drought periods showed that RS was reduced by ~50% and was strongly correlated with soil moisture during these events. Recovery of RS to pre‐drought levels occurred within 2 weeks of rewetting; however, unexpected drought effects were observed several months after summer drought treatment in 2 of the 3 years, possibly due to reduced plant growth or changes in soil water holding capacity. An empirical model that predicts RS from soil temperature, soil moisture and plant biomass was developed and accounted for 55% of the observed variability in RS. The model predicted annual sums of RS in 2006 and 2007, in the control, were 672 and 719 g C m?2 y?1, respectively. For the full treatment combination, i.e. the future climate scenario, the model predicted that soil respiratory C losses would increase by ~21% (140–150 g C m?2 y?1). Therefore, in the future climate, stimulation of C storage in plant biomass and litter must be in excess of 21% for this ecosystem to not suffer a reduction in net ecosystem exchange.  相似文献   

9.
Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (rC, Mg C ha?1 yr?1). Among these variables, we found that the most influential variables on rC were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on rC, followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining rC. The direct correlation of rC with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process‐based SOC models.  相似文献   

10.
A positive soil carbon (C)‐climate feedback is embedded into the climatic models of the IPCC. However, recent global syntheses indicate that the temperature sensitivity of soil respiration (RS) in drylands, the largest biome on Earth, is actually lower in warmed than in control plots. Consequently, soil C losses with future warming are expected to be low compared with other biomes. Nevertheless, the empirical basis for these global extrapolations is still poor in drylands, due to the low number of field experiments testing the pathways behind the long‐term responses of soil respiration (RS) to warming. Importantly, global drylands are covered with biocrusts (communities formed by bryophytes, lichens, cyanobacteria, fungi, and bacteria), and thus, RS responses to warming may be driven by both autotrophic and heterotrophic pathways. Here, we evaluated the effects of 8‐year experimental warming on RS, and the different pathways involved, in a biocrust‐dominated dryland in southern Spain. We also assessed the overall impacts on soil organic C (SOC) accumulation over time. Across the years and biocrust cover levels, warming reduced RS by 0.30 μmol CO2 m?2 s?1 (95% CI = ?0.24 to 0.84), although the negative warming effects were only significant after 3 years of elevated temperatures in areas with low initial biocrust cover. We found support for different pathways regulating the warming‐induced reduction in RS at areas with low (microbial thermal acclimation via reduced soil mass‐specific respiration and β‐glucosidase enzymatic activity) vs. high (microbial thermal acclimation jointly with a reduction in autotrophic respiration from decreased lichen cover) initial biocrust cover. Our 8‐year experimental study shows a reduction in soil respiration with warming and highlights that biocrusts should be explicitly included in modeling efforts aimed to quantify the soil C–climate feedback in drylands.  相似文献   

11.
Soil respiration (Rs) is the second‐largest terrestrial carbon (C) flux. Although Rs has been extensively studied across a broad range of biomes, there is surprisingly little consensus on how the spatiotemporal patterns of Rs will be altered in a warming climate with changing precipitation regimes. Here, we present a global synthesis Rs data from studies that have manipulated precipitation in the field by collating studies from 113 increased precipitation treatments, 91 decreased precipitation treatments, and 14 prolonged drought treatments. Our meta‐analysis indicated that when the increased precipitation treatments were normalized to 28% above the ambient level, the soil moisture, Rs, and the temperature sensitivity (Q10) values increased by an average of 17%, 16%, and 6%, respectively, and the soil temperature decreased by ?1.3%. The greatest increases in Rs and Q10 were observed in arid areas, and the stimulation rates decreased with increases in climate humidity. When the decreased precipitation treatments were normalized to 28% below the ambient level, the soil moisture and Rs values decreased by an average of ?14% and ?17%, respectively, and the soil temperature and Q10 values were not altered. The reductions in soil moisture tended to be greater in more humid areas. Prolonged drought without alterations in the amount of precipitation reduced the soil moisture and Rs by ?12% and ?6%, respectively, but did not alter Q10. Overall, our synthesis suggests that soil moisture and Rs tend to be more sensitive to increased precipitation in more arid areas and more responsive to decreased precipitation in more humid areas. The responses of Rs and Q10 were predominantly driven by precipitation‐induced changes in the soil moisture, whereas changes in the soil temperature had limited impacts. Finally, our synthesis of prolonged drought experiments also emphasizes the importance of the timing and frequency of precipitation events on ecosystem C cycles. Given these findings, we urge future studies to focus on manipulating the frequency, intensity, and seasonality of precipitation with an aim to improving our ability to predict and model feedback between Rs and climate change.  相似文献   

12.
Expansion of woody vegetation in grasslands is a worldwide phenomenon with implications for C and N cycling at local, regional and global scales. Although woody encroachment is often accompanied by increased annual net primary production (ANPP) and increased inputs of litter, mesic ecosystems may become sources for C after woody encroachment because stimulation of soil CO2 efflux releases stored soil carbon. Our objective was to determine if young, sandy soils on a barrier island became a sink for C after encroachment of the nitrogen‐fixing shrub Morella cerifera, or if associated stimulation of soil CO2 efflux mitigated increased litterfall. We monitored variations in litterfall in shrub thickets across a chronosequence of shrub expansion and compared those data to previous measurements of ANPP in adjacent grasslands. In the final year, we quantified standing litter C and N pools in shrub thickets and soil organic matter (SOM), soil organic carbon (SOC), soil total nitrogen (TN) and soil CO2 efflux in shrub thickets and adjacent grasslands. Heavy litterfall resulted in a dense litter layer storing an average of 809 g C m?2 and 36 g N m?2. Although soil CO2 efflux was stimulated by shrub encroachment in younger soils, soil CO2 efflux did not vary between shrub thickets and grasslands in the oldest soils and increases in CO2 efflux in shrub thickets did not offset contributions of increased litterfall to SOC. SOC was 3.6–9.8 times higher beneath shrub thickets than in grassland soils and soil TN was 2.5–7.7 times higher under shrub thickets. Accumulation rates of soil and litter C were highest in the youngest thicket at 101 g m?2 yr?1 and declined with increasing thicket age. Expansion of shrubs on barrier islands, which have low levels of soil carbon and high potential for ANPP, has the potential to significantly increase ecosystem C sequestration.  相似文献   

13.

Background and aims

Future climate scenarios for the Mediterranean imply increasing precipitation variability. This study presents a large-scale water manipulation experiment simulating changes in precipitation variability, aiming at a better understanding of the effects of rainfall patterns on soil C and N cycling and understorey productivity in a Mediterranean oak woodland.

Methods

We used rain-out shelters to achieve (1) a normal dry period (7 days), and (2) a dry period increased three-fold (21 days), without altering total annual precipitation inputs.

Results

The temporal patterns of soil respiration (R s) and soil inorganic N were not affected by treatment. However, water infiltration and N leaching increased with large infrequent watering events. R s and soil NH4 +-N correlated with soil temperature, with soil NO3 ?-N being influenced by leaching.

Conclusions

The lack of significant treatment effects on either R s or soil inorganic N can be explained by (1) minor differences in plant productivity between the treatments, suggesting equal plant N demand, and (2) the absence of moisture dependence of R s and soil NH4 +-N. Increased N leaching with large infrequent precipitation events may have longer-term consequences for ecosystem functioning. Our results contribute to an improved understanding of possible climate change effects on key ecosystem processes in Mediterranean ecosystems.  相似文献   

14.
Studying the responses of soil respiration (Rs) to soil management changes is critical for enhancing our understanding of the global carbon cycle and has practical implications for grassland management. Therefore, the objectives of this study were (1) quantify daily and seasonal patterns of Rs, (2) evaluate the influence of abiotic factors on Rs, and (3) detect the effects of soil management changes on Rs. We hypothesized that (1) most of daily and seasonal variation in Rs could be explained by soil temperature (Ts) and soil water content (Sw), (2) soil management changes could significantly affect Rs, and (3) soil management changes affected Rs via the significant change in abiotic and biotic factors. In situ Rs values were monitored in an agropastoral ecotone in Inner Mongolia, China, during the growing seasons in 2009 (August to October) and 2010 (May to October). The soil management changes sequences included free grazing grassland (FG), cropland (CL), grazing enclosure grassland (GE), and abandoned cultivated grassland (AC). During the growing season in 2010, cumulative Rs for FG, CL, GE, and AC averaged 265.97, 344.74, 236.70, and 226.42 gC m?2 year?1, respectively. The Ts and Sw significantly influenced Rs and explained 66%–86% of the variability in daily Rs. Monthly mean temperature and precipitation explained 78%–96% of the variability in monthly Rs. The results clearly showed that Rs was increased by 29% with the conversion of FG to CL and decreased by 35% and 11% with the conversion of CL to AC and FG to GE. The factors impacting the change in Rs under different soil management changes sequences varied. Our results confirm the tested hypotheses. The increase in Q10 and litter biomass induced by conversion of FG to GE could lead to increased Rs if the climate warming. We suggest that after proper natural restoration period, grasslands should be utilized properly to decrease Rs.  相似文献   

15.
土壤碳氮含量及其化学计量特征是表征生态系统碳汇能力和土壤质量的重要指标,在支撑生态系统结构功能以及缓解气候变化中起着关键作用。利用中国生态系统研究网络(CERN)长期定位监测数据,分析了土壤碳氮特征沿干旱梯度的时空规律及其对气候变化的响应。结果表明:空间上,典型荒漠草原生态系统随着干旱加剧,土壤有机碳和全氮含量减少,土壤有机碳对干旱响应的敏感性降低,而土壤全氮对干旱响应的敏感性增加,土壤有机碳随土壤全氮含量的增加而增加。时间上,2005—2018年,荒漠草原生态系统土壤有机碳和全氮含量变化速率沿干旱梯度表现出由负转正的增加趋势,其中,干旱区呈减少趋势,半干旱和半湿润地区呈增加趋势,鄂尔多斯站和沙坡头站呈显著增加趋势。从影响因素来看,土壤碳氮特征对降水量增加的敏感性沿干旱梯度呈现出先增强后减弱的“上凸”抛物线趋势,温度变化对土壤碳氮特征的调控没有表现出明显的干旱梯度效应。土壤碳氮比、土壤有机碳含量、土壤全氮含量对降水量和平均温度变化响应的敏感性均依次降低。不同干旱梯度土壤碳氮特征的变化规律为未来气候变化下生态系统结构与功能预测提供科学依据。  相似文献   

16.
We examined a 6‐year record of automated chamber‐based soil CO2 efflux (Fs) and the underlying processes in relation to climate and canopy gas exchange at an AmeriFlux site in a seasonally drought‐stressed pine forest. Interannual variability of Fs was large (CV=17%) with a range of 427 g C m?2 yr?1 around a mean annual Fs of 811 g C m?2 yr?1. On average, 76% of the variation of daily mean Fs could be quantified using an empirical model with year‐specific basal respiration rate that was a linear function of tree basal area increment (BAI) and modulated by a common response to soil temperature and moisture. Interannual variability in Fs could be attributed almost equally to interannual variability in BAI (a proxy for above‐ground productivity) and interannual variability in soil climate. Seasonal total Fs was twice as sensitive to soil moisture variability during the summer months compared with temperature variability during the same period and almost insensitive to the natural range of interannual variability in spring temperatures. A strong seasonality in both root respiration (Rr) and heterotrophic respiration (Rh) was observed with the fraction attributed to Rr steadily increasing from 18% in mid‐March to 50% in early June through early July before dropping rapidly to 10% of Fs by mid‐August. The seasonal pattern in Rr (10‐day averages) was strongly linearly correlated with tree transpiration (r2=0.90, P<0.01) as measured using sap flux techniques and gross ecosystem productivity (GEP, r2=0.83, P<0.01) measured by the eddy‐covariance approach. Rr increased by 0.43 g C m?2 day?1 for every 1 g C m?2 day?1 increase in GEP. The strong linear correlation of Rr to seasonal changes in GEP and transpiration combined with longer‐term interannual variability in the base rate of Fs, as a linear function of BAI (r2=0.64, P=0.06), provides compelling justification for including canopy processes in future models of Fs.  相似文献   

17.
Dryland ecosystems account for ca. 27% of global soil organic carbon (C) reserves, yet it is largely unknown how climate change will impact C cycling and storage in these areas. In drylands, soil C concentrates at the surface, making it particularly sensitive to the activity of organisms inhabiting the soil uppermost levels, such as communities dominated by lichens, mosses, bacteria and fungi (biocrusts). We conducted a full factorial warming and rainfall exclusion experiment at two semiarid sites in Spain to show how an average increase of air temperature of 2–3 °C promoted a drastic reduction in biocrust cover (ca. 44% in 4 years). Warming significantly increased soil CO2 efflux, and reduced soil net CO2 uptake, in biocrust‐dominated microsites. Losses of biocrust cover with warming through time were paralleled by increases in recalcitrant C sources, such as aromatic compounds, and in the abundance of fungi relative to bacteria. The dramatic reduction in biocrust cover with warming will lessen the capacity of drylands to sequester atmospheric CO2. This decrease may act synergistically with other warming‐induced effects, such as the increase in soil CO2 efflux and the changes in microbial communities to alter C cycling in drylands, and to reduce soil C stocks in the mid to long term.  相似文献   

18.
Sexes of dioecious species may have dimorphic responses to environmental variation due to differences in resource requirements and reproductive costs. We analyzed the effect of aridity/relative shrub cover, and vicinity to shrub patches on morpho-chemical traits of sexes of the dioecious perennial grass Poa ligularis in patchy arid ecosystems in northern-central Patagonia. We hypothesized that sexes of P. ligularis have dimorphic responses in morpho-chemical traits in relation to the environmental variation induced by aridity/relative shrub cover and vicinity to shrub patches. We selected seven sites across a gradient of increasing aridity and relative shrub cover. We randomly collected 5–10 P. ligularis plants per site registering the sex (female or male) and location with respect to shrub patches (shrub patch or inter-patch). For each plant, we assessed morpho-chemical traits (height of the vegetative tillers, length/dry weight/area of blades, specific blade area, nitrogen and soluble phenol concentration in blades). Sexes showed dimorphic responses in height of vegetative tillers, blade length, and blade area with respect to vicinity to shrub patches; and in variation of soluble phenolics in blades in relation to aridity/relative shrub cover. Responses in both sexes were opposite to those expected by aridity, highlighting the role of favorable environments induced by shrub canopies on dimorphic responses of sexes of P. ligularis. Resource-rich microsites associated with shrub canopies promoted increased plant performance of females with high reproductive costs while resource-poor open areas, favorable for pollen dispersal, induced improved chemical defenses of males. These results are consistent with the resource availability hypothesis.  相似文献   

19.
Effects of grazing on grassland soil carbon: a global review   总被引:2,自引:0,他引:2  
Soils of grasslands represent a large potential reservoir for storing CO2, but this potential likely depends on how grasslands are managed for large mammal grazing. Previous studies found both strong positive and negative grazing effects on soil organic carbon (SOC) but explanations for this variation are poorly developed. Expanding on previous reviews, we performed a multifactorial meta‐analysis of grazer effects on SOC density on 47 independent experimental contrasts from 17 studies. We explicitly tested hypotheses that grazer effects would shift from negative to positive with decreasing precipitation, increasing fineness of soil texture, transition from dominant grass species with C3 to C4 photosynthesis, and decreasing grazing intensity, after controlling for study duration and sampling depth. The six variables of soil texture, precipitation, grass type, grazing intensity, study duration, and sampling depth explained 85% of a large variation (±150 g m?2 yr?1) in grazing effects, and the best model included significant interactions between precipitation and soil texture (P = 0.002), grass type, and grazing intensity (P = 0.012), and study duration and soil sampling depth (P = 0.020). Specifically, an increase in mean annual precipitation of 600 mm resulted in a 24% decrease in grazer effect size on finer textured soils, while on sandy soils the same increase in precipitation produced a 22% increase in grazer effect on SOC. Increasing grazing intensity increased SOC by 6–7% on C4‐dominated and C4–C3 mixed grasslands, but decreased SOC by an average 18% in C3‐dominated grasslands. We discovered these patterns despite a lack of studies in natural, wildlife‐dominated ecosystems, and tropical grasslands. Our results, which suggest a future focus on why C3 vs. C4‐dominated grasslands differ so strongly in their response of SOC to grazing, show that grazer effects on SOC are highly context‐specific and imply that grazers in different regions might be managed differently to help mitigate greenhouse gas emissions.  相似文献   

20.
Soil respiration is affected by vegetation and environmental conditions. The purpose of this study was to investigate the effect of vegetation type on soil respiration, temperature and water content, and their correlations on a small scale. We measured soil respiration rate (Rs) over a 3-year period at biweekly intervals in three plots in the eastern Loess Plateau of China, with the same soil texture but different vegetation types: pine forest, grassland, and shrub land. Simultaneously, soil temperature (Ts) at 10 cm depth and soil water content (Ws) within 10 cm depth were measured. The seasonal course of Rs and Ts showed a similar temporal variation in the three plots, with higher values in summer and autumn and lower values in winter and spring. No significant differences (P>0.05) were found between plots, except for Ws. The mean cumulative release of CO2 efflux from March to December was 962.5, 1027.5, and 1166.5 g C m? 2 a? 1 for plots 1, 2, and 3, respectively, with no significant difference between plots. The fitted exponential equations of Rs versus Ts from the 3-year data-set were significant (P < 0.05) with an R2 of 0.72, 0.64, and 0.72 for plots 1, 2, and 3, respectively. The calculated Q10 from the parameters of the fitted equation was 3.57, 3.52, and 3.61, and the R10 was 2.36, 2.03, and 2.37 μmol CO2 m? 2 s? 1 for plots 1, 2, and 3, respectively. Compared with the Ts, the correlations between Rs and Ws were not significant for the three plots. However, if the Ts was above 10°C, then their correlation was significant, and Ws had an impact on Rs. Four combined regression equations including two variables of Ts and Ws could be well established to model correlations between Rs and both Ts and Ws. Our study demonstrated that the exponential and power model fitted best and no significant different correlations of combined equations existed between the three plots. These results show that vegetation type had little impact on Rs, Ts, Ws, and their correlations, as well as on related parameters such as Q10 and R10. Therefore, while doing Rs research in a horizontal patchy vegetation conditions on a small area, the sampling location of measurements should focus on vertical dominant vegetation and ignore patch vegetation so as to reduce field work load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号