首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cryptic northern refugia beyond the ice limit of the Pleistocene glaciations may have had significant influence on the current pattern of biodiversity in Arctic regions. In order to evaluate whether northern glacial refugia existed in the Canadian Arctic, we examined mitochondrial DNA phylogeography in the northernmost species of rodents, the collared lemming (Dicrostonyx groenlandicus) sampled across its range of distribution in the North American Arctic and Greenland. The division of the collared lemming into the Canadian Arctic and eastern Beringia phylogroups does not support postglacial colonization of the North American Arctic from a single eastern Beringia refugium. Rather, the phylogeographical structure and sparse fossil records indicate that, during the last glaciation, some biologically significant refugia and important sources of postglacial colonization were located to the northwest of the main ice sheet in the Canadian Arctic.  相似文献   

2.
Aim To investigate the degree of phylogeographical divergence within pygmy whitefish (Prosopium coulterii) and to test hypotheses concerning the origin of disjunct populations within North America. Location North America from western Alaska to Lake Superior. Methods Mitochondrial (ATPase subunit VI) and nuclear (ITS‐1, ITS‐2) DNA sequence variation was assessed across the species’ North American range to test for the existence of distinct phylogeographical groupings of pygmy whitefish associated with known glacial refugia. Coalescent simulations of the mitochondrial DNA (mtDNA) data were used to test hypotheses of population structure. Results This species is composed of two monophyletic mitochondrial clades across its North American range. The two mtDNA clades differed by an average 3.3% nucleotide sequence divergence. These clades were also distinguished by ITS‐2, but the relationships among lineages were not resolved by the ITS‐1 analysis. Coalescent analyses rejected the null hypothesis of the current disjunct distributions being a result of fragmentation of a single widespread ancestral lineage across a variety of effective population sizes and divergence times. Main conclusions The current range disjunctions of pygmy whitefish in North America probably resulted from isolation, genetic divergence, and selective dispersal from at least two major Pleistocene glacial refugia: Beringia and Cascadia. More recent isolation and dispersal from an upper Mississippi refugium is suggested by relationships within one of the clades and by distributional evidence from co‐distributed species. The Beringian and Cascadian refugia have played major roles in the zoogeography of Nearctic temperate aquatics, but the roles of smaller refugia appear more variable among other species.  相似文献   

3.
Hairy woodpeckers Picoides villosus are a common, year round resident with distinct plumage and morphological variation across North America. We genotyped 335 individuals at six variable microsatellite loci and analyzed 322 mtDNA control region sequences in order to examine the role of contemporary and historical barriers to gene flow. In addition we combined genetic analyses with ecological niche modelling to test if hairy woodpeckers were isolated in northern refugia (Alaska, Newfoundland and the Queen Charlotte Islands) during the last glacial maximum. Genetic analyses revealed that gene flow among North American hairy woodpecker populations is restricted, but not to the extent predicted for a sedentary species. Populations clustered into two main genetic groups, east and west of the Great Plains in the south and the Rocky Mountains in the north. Contact zones between the two main genetic groups exist in central British Columbia and Washington, but are narrow. Within each group we found additional population structure with genetic breaks between subgroups in the geographic west corresponding to breaks in forested habitat and physical barriers like open expanses of water. Population genetic patterns for hairy woodpeckers have resulted from isolation in multiple southern refugia with the current distribution of genetic groups resulting from post‐glacial expansion and subsequent reduction in gene flow. While populations in Alaska, Newfoundland and the Queen Charlotte Islands are genetically distinct from other populations, we found no evidence of these areas acting as refugia throughout the Pleistocene. Atlantic Canada populations contained unique haplotypes raising the possibility of a separate colonization from the rest of eastern Canada. The endemic subspecies on the island of Newfoundland is not genetically distinct from their closest mainland population unlike the Queen Charlotte Island subspecies.  相似文献   

4.
Judith L.  Eger 《Journal of Zoology》1995,235(1):143-161
A. H. Macpherson suggested that much of the current geographic diversity in Canadian Arctic mammals resulted from isolation in refugia during the Wisconsin glacial stage. This study evaluates the refugium hypothesis, insofar as it applies to Nearctic Dicrostonyx , by means of a statistical analysis of geographic variation in 13 skull characters. Overall, geographic variation among samples is not significant, although D. hudsonius and D. unalascensis are geographically and morphologically distinct. Some variation in skull shape is correlated with winter temperature. Partitioning tests on other measures of shape variation indicate some discontinuities consistent with the refugial hypothesis. Discrete samples reflect possible refugial populations in northern North America, Eastern Beringia and two southern periglacial refugia, one in eastern North America and at least one in western North America.  相似文献   

5.
Aim Beringia, far north‐eastern Siberia and north‐western North America, was largely unglaciated during the Pleistocene. Although this region has long been considered an ice‐age refugium for arctic herbs and shrubs, little is known about its role as a refugium for boreal trees and shrubs during the last glacial maximum (LGM, c. 28,000–15,000 calibrated years before present). We examine mapped patterns of pollen percentages to infer whether six boreal tree and shrub taxa (Populus, Larix, Picea, Pinus, Betula, Alnus/Duschekia) survived the harsh glacial conditions within Beringia. Methods Extensive networks of pollen records have the potential to reveal distinctive temporal–spatial patterns that discriminate between local‐ and long‐distance sources of pollen. We assembled pollen records for 149 lake, peat and alluvial sites from the Palaeoenvironmental Arctic Sciences database, plotting pollen percentages at 1000‐year time intervals from 21,000 to 6000 calibrated years before present. Pollen percentages are interpreted with an understanding of modern pollen representation and potential sources of long‐distance pollen during the glacial maximum. Inferences from pollen data are supplemented by published radiocarbon dates of identified macrofossils, where available. Results Pollen maps for individual taxa show unique temporal‐spatial patterns, but the data for each taxon argue more strongly for survival within Beringia than for immigration from outside regions. The first increase of Populus pollen percentages in the western Brooks Ranges is evidence that Populus trees survived the LGM in central Beringia. Both pollen and macrofossil evidence support Larix survival in western Beringia (WB), but data for Larix in eastern Beringia (EB) are unclear. Given the similar distances of WB and EB to glacial‐age boreal forests in temperate latitudes of Asia and North America, the widespread presence of Picea pollen in EB and Pinus pollen in WB indicates that Picea and Pinus survived within these respective regions. Betula pollen is broadly distributed but highly variable in glacial‐maximum samples, suggesting that Betula trees or shrubs survived in restricted populations throughout Beringia. Alnus/Duschekia percentages show complex patterns, but generally support a glacial refugium in WB. Main conclusions Our interpretations have several implications, including: (1) the rapid post‐glacial migration rate reported for Picea in western Canada may be over estimated, (2) the expansion of trees and shrubs within Beringia should have been nearly contemporaneous with climatic change, (3) boreal trees and shrubs are capable of surviving long periods in relatively small populations (at the lower limit of detection in pollen data) and (4) long‐distance migration may not have been the predominant mode of vegetation response to climatic change in Beringia.  相似文献   

6.
Glacial cycles have played a dominant role in shaping the genetic structure and distribution of biota in northwestern North America. The two major ice age refugia of Beringia and the Pacific Northwest were connected by major mountain chains and bordered by the Pacific Ocean. As a result, numerous refugial options were available for the regions taxa during glacial advances. We reviewed the importance of glaciations and refugia in shaping northwestern North America’s phylogeographic history. We also tested whether ecological variables were associated with refugial history. The recurrent phylogeographic patterns that emerged were the following: (i) additional complexity, i.e. refugia within refugia, in both Beringia and the Pacific Northwest; and (ii) strong evidence for cryptic refugia in the Alexander Archipelago and Haida Gwaii, the Canadian Arctic and within the ice‐sheets. Species with contemporary ranges that covered multiple refugia, or those with high dispersal ability, were significantly more likely to have resided in multiple refugia. Most of the shared phylogeographic patterns can be attributed to multiple refugial locales during the last glacial maximum or major physiographic barriers like rivers and glaciers. However, some of the observed patterns are much older and appear connected to the orogeny of the Cascade‐Sierra chain or allopatric differentiation during historic glacial advances. The emergent patterns from this review suggest we should refine the classic Beringian‐southern refugial paradigm for northwestern North American biota and highlight the ecological and evolutionary consequences of colonization from multiple refugia.  相似文献   

7.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

8.
Past glaciation events have played a major role in shaping the genetic diversity and distribution of wild sheep in North America. The advancement of glaciers can isolate populations in ice‐free refugia, where they can survive until the recession of ice sheets. The major Beringian refugium is thought to have held thinhorn sheep (Ovis dalli) populations during times of glacial advance. While isolation in the major refugium can account for much of the genetic and morphological diversity seen in extant thinhorn sheep populations, mounting evidence suggests the persistence of populations in smaller minor refugia. We investigated the refugial origins of thinhorn sheep using ~10 000 SNPs obtained via a cross‐species application of the domestic sheep ovine HD BeadChip to genotype 52 thinhorn sheep and five bighorn sheep (O. canadensis) samples. Phylogenetic inference revealed a distinct lineage of thinhorn sheep inhabiting British Columbia, which is consistent with the survival of a group of thinhorn sheep in a minor refugium separate from the Beringian refugium. Isolation in separate glacial refugia probably mediated the evolution of the two thinhorn sheep subspecies, the white Dall's sheep (O. d. dalli), which persisted in Beringia, and the dark Stone's sheep (O. d. stonei), which utilized the minor refugium. We also found the first genetic evidence for admixture between sheep from different glacial refugia in south‐central Yukon as a consequence of post glacial expansion and recolonization. These results show that glaciation events can have a major role in the evolution of species inhabiting previously glaciated habitats and the need to look beyond established refugia when examining the evolutionary history of such species.  相似文献   

9.
The contemporary distribution of genetic variation within and among high latitude populations cannot be fully understood without taking into consideration how species responded to the impacts of Pleistocene glaciations. Broad whitefish, Coregonus nasus, a species endemic to northwest North America and the Arctic coast of Russia, was undoubtedly impacted by such events because its geographic distribution suggests that it survived solely within the Beringian refuge from where it dispersed post‐glacially to achieve its current range. We used microsatellite DNA to investigate the role of glaciations in promoting intraspecific genetic variation in broad whitefish (N = 14 localities, 664 fish) throughout their North American range and in one Russian sample. Broad whitefish exhibited relatively high intrapopulation variation (average of 11.7 alleles per locus, average HE = 0.61) and moderate levels of interpopulation divergence (overall FST = 0.10). The main regions assayed in our study (Russia, Alaska, Mackenzie River and Travaillant Lake systems) were genetically differentiated from each other and there were declines in genetic diversity with distance from putative refugia. Additionally, Mackenzie River system populations showed less developed and more variable patterns of isolation‐by‐distance than populations occupying former Alaskan portions of Beringia. Finally, our data suggest that broad whitefish dispersed from Beringia using coastal environments and opportunistically via headwater stream connections that once existed between Yukon and Mackenzie River drainages. Our results illustrate the importance of history (e.g. glaciation) and contemporary dispersal ecology in shaping the current genetic population structure of Arctic faunas.  相似文献   

10.
The number and location of Arctic glacial refugia utilized by taxa during the Pleistocene are continuing uncertainties in Holarctic phylogeography. Arctic grayling (Thymallus arcticus) are widely distributed in freshwaters from the eastern side of Hudson Bay (Canada) west to central Asia. We studied mitochondrial DNA (mtDNA) and microsatellite DNA variation in North American T. arcticus to test for genetic signatures of survival in, and postglacial dispersal from, multiple glacial refugia, and to assess their evolutionary affinities with Eurasian Thymallus. In samples from 32 localities, we resolved 12 mtDNA haplotypes belonging to three assemblages that differed from each other in sequence by between 0.75 and 2.13%: a 'South Beringia' lineage found from western Alaska to northern British Columbia, Canada; a 'North Beringia' lineage found on the north slope of Alaska, the lower Mackenzie River, and to eastern Saskatchewan; and a 'Nahanni' lineage confined to the Nahanni River area of the upper Mackenzie River drainage. Sequence analysis of a portion of the control region indicated monophyly of all North American T. arcticus and their probable origin from eastern Siberian T. arcticus at least 3 Mya. Arctic grayling sampled from 25 localities displayed low allelic diversity and expected heterozygosity (H(E)) across five microsatellite loci (means of 2.1 alleles and 0.27 H(E), respectively) and there were declines in these measures of genetic diversity with distance eastward from the lower Yukon River Valley. Assemblages defined by mtDNA divergences were less apparent at microsatellite loci, but again the Nahanni lineage was the most distinctive. Analysis of molecular variance indicated that between 24% (microsatellite DNA) and 81% (mtDNA) of the variance was attributable to differences among South Beringia, North Beringia and Nahanni lineages. Our data suggest that extant North American Arctic grayling are more diverse phylogeographically than previously suspected and that they consist of at least three major lineages that originated in distinct Pleistocene glacial refugia. T. arcticus probably originated and dispersed from Eurasia to North America in the late to mid-Pliocene, but our data also suggest more recent (mid-late Pleistocene) interactions between lineages across Beringia.  相似文献   

11.
Arctic warbler Phylloscopus borealis is one of several high‐latitude Passerines which are widely distributed across one northern continent but restricted to the Beringian part of the other. Most species with such asymmetric intercontinental ranges are monomorphic across Beringia, suggesting either recent colonization of the second continent or considerable gene flow across the Bering Strait. Arctic warbler is the only migratory species in this group that has three different subspecies in Beringia: Ph. b. borealis (Scandinavia to western Beringia, south to Mongolia), Ph. b. xanthodryas (Japan, Sakhalin, Kamchatka, western Beringia), and Ph. b. kennicotti (Alaska). This polymorphism may indicate that Arctic warbler has a unique and complex phylogeographic history that differs significantly from other species with similar ranges. Our analyses of complete mtDNA ND2 sequences of 88 Arctic warblers collected across the species range showed that the clade comprised of birds breeding on Sakhalin Island and Kamchatka Peninsula diverged from the Palearctic/Beringian clade by 3.8% in ND2 sequence. Beringian birds formed a recently derived clade embedded within the Palearctic clade. Nucleotide diversity declined sharply eastward from Palearctic to western Beringia and then to eastern Beringia. Our data provided no support for currently recognized subspecies. They suggested that the barrier at the western edge of Beringia was crossed by Arctic warbler earlier than the Bering Strait resulting in a stepping‐stone colonization of Beringia by this species. Gene flow appears to be restricted across the western border of Beringia but not the Bering Strait.  相似文献   

12.
Interglacial-glacial cycles of the Quaternary are widely recognized in shaping phylogeographic structure. Patterns from cold adapted species can be especially informative - in particular, uncovering additional glacial refugia, identifying likely recolonization patterns, and increasing our understanding of species’ responses to climate change. We investigated phylogenetic structure of the wolverine, a wide-ranging cold adapted carnivore, using a 318 bp of the mitochondrial DNA control region for 983 wolverines (n = 209 this study, n = 774 from GenBank) from across their full Holarctic distribution. Bayesian phylogenetic tree reconstruction and the distribution of observed pairwise haplotype differences (mismatch distribution) provided evidence of a single rapid population expansion across the wolverine’s Holarctic range. Even though molecular evidence corroborated a single refugium, significant subdivisions of population genetic structure (0.01< ΦST <0.99, P<0.05) were detected. Pairwise ΦST estimates separated Scandinavia from Russia and Mongolia, and identified five main divisions within North America - the Central Arctic, a western region, an eastern region consisting of Ontario and Quebec/Labrador, Manitoba, and California. These data are in contrast to the nearly panmictic structure observed in northwestern North America using nuclear microsatellites, but largely support the nuclear DNA separation of contemporary Manitoba and Ontario wolverines from northern populations. Historic samples (c. 1900) from the functionally extirpated eastern population of Quebec/Labrador displayed genetic similarities to contemporary Ontario wolverines. To understand these divergence patterns, four hypotheses were tested using Approximate Bayesian Computation (ABC). The most supported hypothesis was a single Beringia incursion during the last glacial maximum that established the northwestern population, followed by a west-to-east colonization during the Holocene. This pattern is suggestive of colonization occurring in accordance with glacial retreat, and supports expansion from a single refugium. These data are significant relative to current discussions on the conservation status of this species across its range.  相似文献   

13.
The history of repeated northern glacial cycling and southern climatic stability has long dominated explanations for how genetic diversity is distributed within temperate species in Eurasia and North America. However, growing evidence indicates the importance of cryptic refugia for northern colonization dynamics. An important geographic region to assess this is Fennoscandia, where recolonization at the end of the last glaciation was restricted to specific routes and temporal windows. We used genomic data to analyse genetic diversity and colonization history of the bank vole (Myodes glareolus) throughout Europe (>800 samples) with Fennoscandia as the northern apex. We inferred that bank voles colonized Fennoscandia multiple times by two different routes; with three separate colonizations via a southern land‐bridge route deriving from a “Carpathian” glacial refugium and one via a north‐eastern route from an “Eastern” glacial refugium near the Ural Mountains. Clustering of genome‐wide SNPs revealed high diversity in Fennoscandia, with eight genomic clusters: three of Carpathian origin and five Eastern. Time estimates revealed that the first of the Carpathian colonizations occurred before the Younger Dryas (YD), meaning that the first colonists survived the YD in Fennoscandia. Results also indicated that introgression between bank and northern red‐backed voles (Myodes rutilus) took place in Fennoscandia just after end‐glacial colonization. Therefore, multiple colonizations from the same and different cryptic refugia, temporal and spatial separations and interspecific introgression have shaped bank vole genetic variability in Fennoscandia. Together, these processes drive high genetic diversity at the apex of the northern expansion in this emerging model species.  相似文献   

14.
Phylogeography of Soboliphyme baturini , a nematode parasite in mustelids, is explored across Beringia. Sequences of the mitochondrial cytochrome c oxidase subunit I and nicotinamide adenine dinucleotide dehydrogenase subunit 4 genes were evaluated from 37 S. baturini , representing 19 localities throughout Alaska, Canada, and Siberia. A total of 30 haplotypes was recovered and maximum parsimony and Bayesian phylogenetic analyses support the recognition of a single species with a distribution extending from the Palearctic to the Nearctic. Within S. baturini , a host-specific partition in North America between Martes caurina and Martes americana was not identified. Instead, substantial geographic structure within S. baturini relates to the dynamic geological history of this northern region and especially the North Pacific Coast. Beringia and other coastal refugia along the western margin of North America played a large role during stadial maxima in the persistence and divergence of the parasite. Repeated events for biotic expansion and geographic colonization across the Bering Land Bridge and the Holarctic during glacial maxima in the Pleistocene appear to have facilitated at least two episodes of host-switching of this nematode among mustelids in populations now distributed in eastern Beringia.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 651–663.  相似文献   

15.
Aim We examine several hypotheses emerging from biogeographical and fossil records regarding glacial refugia of a southern thermophilic plant species. Specifically, we investigated the glacial history and post‐glacial colonization of a forest understorey species, Trillium cuneatum. We focused on the following questions: (1) Did T. cuneatum survive the Last Glacial Maximum (LGM) in multiple refugia, and (if so) where were they located, and is the modern genetic structure congruent with the fossil record‐based reconstruction of refugia for mesic deciduous forests? (2) What are the post‐glacial colonization patterns in the present geographical range? Location South‐eastern North America. Methods We sampled 45 populations of T. cuneatum throughout its current range. We conducted phylogeographical analyses based on maternally inherited chloroplast DNA (cpDNA haplotypes) and used TCS software to reconstruct intraspecific phylogeny. Results We detected six cpDNA haplotypes, geographically highly structured into non‐overlapping areas. With one exception, none of the populations had mixed haplotype composition. TCS analysis resulted in two intraspecific cpDNA lineages, with one clade subdivided further by shallower diversification. Main conclusions Our investigation revealed that T. cuneatum survived the LGM in multiple refugia, belonging to two (western, eastern) genealogical lineages geographically structured across south‐eastern North America. The western clade is confined to the south‐western corner of T. cuneatum’s modern range along the Lower Mississippi Valley, where fossil records document a major refugium of mesic deciduous forest. For the eastern clade, modern patterns of cpDNA haplotype distribution suggest cryptic vicariance, in the form of forest contractions and subsequent expansions associated with Pleistocene glacial cycles, rather than simple southern survival and subsequent northward colonization. The north–south partitioning of cpDNA haplotypes was unexpected, suggesting that populations of this rather southern thermophilic species may have survived in more northern locations than initially expected based on LGM climate reconstruction, and that the Appalachian Mountains functioned as a barrier to the dispersal of propagules originating in more southern refugia. Furthermore, our results reveal south‐west to north‐east directionality in historical migration through the Valley and Ridge region of north‐west Georgia.  相似文献   

16.
For many European species, the mountains of the Alps and the Pyrenees have acted as significant barriers to northwards colonization from southern glacial refugia. To the east, the Caucasus Mountains would seem to have been a similar barrier to the white‐breasted hedgehog (Erinaceus concolor). A deep divergence among hedgehog mitochondrial sequences to the north and south of the Caucasus Mountains suggests two colonization routes, originating from separate refugial regions and divided by this mountain barrier. From a Balkan refugium, hedgehogs have colonized northwards into Russia and to the northern foothills of the Caucasus Mountains. The origins of hedgehogs colonizing the southern parts of the Caucasus are not entirely clear, although fossil and climatic data suggest a glacial refugium on the southern shores of the Black Sea. Divergence within the southern group indicates a long‐standing fragmentation within such a refugium or the presence of further cryptic refugia in Turkey and the Near East. The Caucasus barrier would seem to have been an important factor in structuring the late Pleistocene distribution of species.  相似文献   

17.
Repeatedly out of Beringia: Cassiope tetragona embraces the Arctic   总被引:1,自引:0,他引:1  
Aim Eric Hultén hypothesized that most arctic plants initially radiated from Beringia in the Late Tertiary and persisted in this unglaciated area during the Pleistocene glaciations, while their distribution ranges were repeatedly fragmented and reformed elsewhere. Whereas taxonomic and fossil evidence suggest that Cassiope tetragona originated in Beringia and expanded into the circumarctic area before the onset of the glaciations, lack of chloroplast DNA (cpDNA) variation may suggest that colonization was more recent. We address these contradictory scenarios using high‐resolution nuclear markers. Location Circumpolar Arctic. Methods The main analysis was by amplified fragment‐length polymorphism (AFLP), while sequences of chloroplast DNA verified the use of Cassiope mertensiana as an outgroup for C. tetragona. Data were analysed using Bayesian clustering, principal coordinates analyses, parsimony and neighbour‐joining, and measures of diversity and differentiation were calculated. Results The circumpolar C. tetragona ssp. tetragona was well separated from the North American C. tetragona ssp. saximontana. The genetic structure in ssp. tetragona showed a strong east–west trend, with the Beringian populations in an intermediate position. The highest level of diversity was in Beringia, while the strongest differentiation in the data set was found between the populations from the Siberian Arctic west of Beringia and the remainder. Main conclusions The results are consistent with a Beringian origin of the species, but the levels and geographical patterns of differentiation and gene diversity suggest that the latest expansion from Beringia into the circumarctic was recent, possibly during the current interglacial. The results are in accordance with a recent leading‐edge mode of colonization, particularly towards the east throughout Canada/Greenland and across the North Atlantic into Scandinavia and Svalbard. As fossils demonstrate the presence of the species in North Greenland 2.5–2.0 Ma, as well as in the previous interglacial, we conclude that C. tetragona expanded eastwards from Beringia several times and that the earlier emigrants of this woody species became extinct. The last major westward expansion from Beringia seems older, and the data suggest a separate Siberian refugium during at least one glaciation.  相似文献   

18.
The Pleistocene glacial cycles resulted in significant changes in species distributions, and it has been discussed whether this caused increased rates of population divergence and speciation. One species that is likely to have evolved during the Pleistocene is the Norwegian lemming (Lemmus lemmus). However, the origin of this species, both in terms of when and from what ancestral taxon it evolved, has been difficult to ascertain. Here, we use ancient DNA recovered from lemming remains from a series of Late Pleistocene and Holocene sites to explore the species' evolutionary history. The results revealed considerable genetic differentiation between glacial and contemporary samples. Moreover, the analyses provided strong support for a divergence time prior to the Last Glacial Maximum (LGM), therefore likely ruling out a postglacial colonization of Scandinavia. Consequently, it appears that the Norwegian lemming evolved from a small population that survived the LGM in an ice‐free Scandinavian refugium.  相似文献   

19.
Recurring glacial cycles through the Quaternary period drastically altered the size and distribution of natural populations of North American flora and fauna. The “southerly refugia model” has been the longstanding framework for testing the effects of glaciation on contemporary genetic patterns; however, insights from ancient DNA have contributed to the reconstruction of more complex histories for some species. The American badger, Taxidea taxus, provides an interesting species for exploring the genetic legacy of glacial history, having been hypothesized to have postglacially emerged from a single, southerly refugium to recolonize northern latitudes. However, previous studies have lacked genetic sampling from areas where distinct glacial refugia have been hypothesized, including the Pacific Northwest and American Far North (Yukon, Alaska). In order to further investigate the phylogeographic history of American badgers, we collected mitochondrial DNA sequence data from ancient subfossil material collected within the historical range (Alaska, Yukon) and combined them with new and previously published data from across the species' contemporary distribution (n = 1,207). We reconstructed a mostly unresolved phylogenetic tree and star‐like haplotype network indicative of emergence from a largely panmictic glacial refugium and recent population expansion, the latter further punctuated by significantly negative Tajima's D and Fu's Fs values. Although directionality of migration cannot be unequivocally inferred, the moderate to high levels of genetic variation exhibited by American badgers, alongside the low frequency of haplotypes with indels in the Midwest, suggest a potential recolonization into central North America after the hypothesized ice‐free corridor reopened ~13,000 years ago. Overall, the expanded reconstruction of phylogeographic history of American badgers offers a broader understanding of contemporary range‐wide patterns and identifies unique genetic units that can likely be used to inform conservation of at‐risk populations at the northern periphery.  相似文献   

20.
Chloroplast DNA variation in the Arctic plant species Dryas integrifolia (Rosaceae) was analysed in relation to both the present-day geographical distribution of populations and to Pleistocene fossil records of this species. The phylogeographical structure was weak but the analysis of haplotype diversity revealed several groups of haplotypes having present-day geographical ranges that overlap locations postulated from geographical and fossil evidence to have been glacial refugia. Based on this information we infer that two important refugial sources of Arctic recolonization by this species were Beringia and the High Arctic. Two other putative refugia, located southeast of the ice sheet and along coastal regions of the eastern Arctic may have served as sources for recolonization of smaller portions of the Arctic. The genetic substructure in the species is mostly due to variation among populations regardless of the ecogeographical region in which they are found. Spatial autocorrelation at the regional scale was also detected. High levels of diversity both within populations and ecogeographical regions are probably indicative of population establishment from several sources possibly combined with recent gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号