首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combined analysis of peptide mass fingerprinting and 2-DE/MS using the induced and selected protein spots following growth of Pseudomonas sp. DU102 on benzoate or p-hydroxybenzoate revealed not only alpha- and beta-subunits of protocatechuate 3,4-dioxygenase but also catechol 1,2-dioxygenase responsible for ortho-pathway through ring-cleavage of aromatic compounds. Toluate 1,2-dioxygenase and p-hydroxybenzoate hydroxylase were also identified. Purification of intradiol dioxygenases such as catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase from the benzoate or p-hydroxybenzoate culture makes it possible to trace the biodegradation pathway of strain DU102 for monocyclic aromatic hydrocarbons. Interestingly, vanillin-induced protocatechuate 3,4-dioxygenase was identical in amino acid sequences with protocatechuate 3,4-dioxygenase from p-hydroxybenzoate.  相似文献   

2.
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.  相似文献   

3.
Pseudomonas putida KT2440 is a metabolically versatile soil bacterium. To examine the effects of an aromatic compound on the proteome of this bacterium, cytosolic proteins induced by the presence of benzoate and succinate were analyzed using two liquid chromatography (LC)-based proteomic approaches: an isobaric tag for relative and absolute quantitation (iTRAQ) for quantitative analysis and one-dimensional gel electrophoresis/multidimensional protein identification technology (1-DE MudPIT) for protein identification. In total, 1286 proteins were identified by 1-DE MudPIT; this represents around 23.3% of the total proteome. In contrast, 570 proteins were identified and quantified by iTRAQ analysis. Of these, 55 and 52 proteins were up- and down-regulated, respectively, in the presence of benzoate. The proteins up-regulated included benzoate degradation enzymes, chemotaxis-related proteins, and ABC transporters. Enzymes related to nitrogen metabolism and pyruvate metabolism were down-regulated. These data suggest that a combination of 1-DE MudPIT and iTRAQ is an appropriate method for comprehensive proteomic analysis of biodegradative bacteria.  相似文献   

4.
In this study, the biodegradative activities of monocyclic aromatic compounds were determined from the multi-drug resistant (MDR) Acinetobacter baumannii, which were studied in the form of clinical isolates from a hospital in Korea. These bacteria were capable of biodegrading monocyclic aromatic compounds, such as benzoate and p-hydroxybenzoate. In order to determine which pathways are available for biodegradation in these stains, we conducted proteome analyses of benzoate and p-hydroxybenzoate-cultured A. baumannii DU202, using 2-DE/MS analysis. As genome DB of A. baumannii was not yet available, MS/MS analysis or de novo sequencing methods were employed in the identification of induced proteins. Benzoate branch enzymes [catechol 1,2-dioxygenase (CatA) and benzoate dioxygenase alpha subunit (BenA)] of the beta-ketoadipate pathway were identified under benzoate culture condition and p-hydroxybenzoate branch enzymes [protocatechuate 3,4-dioxygenase alpha subunit (PcaG) and 3-carboxy-cis,cis-muconate cycloisomerase (PcaB)] of the beta-ketoadipate pathway were identified under p-hydroxybenzoate culture condition, respectively, thereby suggesting that strain DU202 utilized the beta-ketoadipate pathway for the biodegradation of monocyclic aromatic compounds. The sequence analysis of two purified dioxygenases (CatA and PcaGH) indicated that CatA is closely associated with the CatA of Acinetobacter radiresistance, but PcaGH is only moderately associated with the PcaGH of Acinetobacter sp. ADP1. Interestingly, the fused form of PcaD and PcaC, carboxymuconolactone decarboxylase (PcaCD), was detected on benzoate-cultured A. baumannii DU202. These results indicate that A. baumannii DU202 exploits a different beta-ketoadipate pathway from other Acinetobacter species.  相似文献   

5.
In this work we have characterized the galA gene product from Pseudomonas putida KT2440, a ring-cleavage dioxygenase that acts specifically on gallate to produce 4-oxalomesaconate. The protein is a trimer composed by three identical subunits of 47.6 kDa (419 amino acids) that uses Fe2+ as the main cofactor. The gallate dioxygenase showed maximum activity at pH 7.0, and the Km and Vmax values for gallate were 144 microM and 53.2 micromol/min/mg of protein, respectively. A phylogenetic study suggests that the gallate dioxygenase from P. putida KT2440 is the prototype of a new subgroup of type II extradiol dioxygenases that share a common ancestor with protocatechuate 4,5-dioxygenases and whose two-domain architecture might have evolved from the fusion of the large and small subunits of the latter. A three-dimensional model for the N-terminal domain (residues 1-281) and C-terminal domain (residues 294-420) of the gallate dioxygenase from P. putida KT2440 was generated by comparison with the crystal structures of the large (LigB) and small (LigA) subunits of the protocatechuate 4,5-dioxygenase from Sphingomonas paucimobilis SYK-6. The expression of the galA gene was specifically induced when P. putida KT2440 cells grew in the presence of gallate. A P. putida KT2440 galA mutant strain was unable to use gallate as the sole carbon source and it did not show gallate dioxygenase activity, suggesting that the GalA protein is the only dioxygenase involved in gallate cleavage in this bacterium. This work points to the existence of a new pathway that is devoted to the catabolism of gallic acid and that remained unknown in the paradigmatic P. putida KT2440 strain.  相似文献   

6.
Free Flow Electrophoresis (FFE) is a liquid-based isoelectric focusing method. Unlike conventional in-gel fractionation of proteins, FFE can resolve proteins in their native forms and fractionation of subcellular compartments of the cell is also possible. To test the efficacy of the FFE method, the native cytosol proteome of a bacterium, Pseudomonas putida KT2440 was fractionated by FFE and the spectrum of protein elutes was characterized in association with 2-dimentional gel electrophoresis (2-DE). Major native proteins of P. putida KT2440 were eluted in the range of pH 4.8 approximately 6.0 in FFE, whereas the denatured proteome of P. putida KT2440 was widely distributed in the rage of pH 4 approximately 10 in the 2-DE analysis. In addition, one of the three FFE major fractions, which was eluted at pH 5.0, was further analyzed using 2-DE/MS-MS. Then, the pH range of identified proteins eluted in 2-DE/MS-MS was 4.72 approximately 5.89, indicating that observed pi values of native cytosolic proteomes in FFE were narrower than those of denatured cytosolic proteome. These results suggest that FFE fractionation and 2-DE/MS analysis may be useful tools for characterization of native proteomes of P. putida KT2440 and comparative analysis between denatured and native proteomes.  相似文献   

7.
Kim SI  Kim JY  Yun SH  Kim JH  Leem SH  Lee C 《Proteomics》2004,4(11):3610-3621
Pseudomonas sp. K82 is a soil bacterium that can degrade and use monocyclic aromatic compounds including aniline, 3-methylaniline, 4-methylaniline, benzoate and p-hydroxybenzoate as its sole carbon and energy sources. In order to understand the impact of these aromatic compounds on metabolic pathways in Pseudomonas sp. K82, proteomes obtained from cultures exposed to different substrates were displayed by two-dimensional gel electrophoresis and were compared to search for differentially induced metabolic enzymes. Column separations of active fractions were performed to identify major biodegradation enzymes. More than thirty proteins involved in biodegradation and other types of metabolism were identified by electrospray ionization-quadrupole time of flight mass spectrometry. The proteome analysis suggested that Pseudomonas sp. K82 has three main metabolic pathways to degrade these aromatic compounds and induces specific metabolic pathways for each compound. The catechol 2,3-dioxygenase (CD2,3) pathway was the major pathway and the catechol 1,2-dioxygenase (beta-ketoadipate) pathway was the secondary pathway induced by aniline (aniline analogues) exposure. On the other hand, the catechol 1,2-dioxygenase pathway was the major pathway induced by benzoate exposure. For the degradation of p-hydroxybenzoate, the protocatechuate 4,5-dioxygenase pathway was the major degradation pathway induced. The nuclear magnetic resonance analysis of substrates demonstrated that Pseudomonas sp. K82 metabolizes some aromatic compounds more rapidly than others (benzoate > p-hydroxybenzoate > aniline) and that when combined, p-hydroxybenzoate metabolism is repressed by the presence of benzoate or aniline. These results suggest that proteome analysis can be useful in the high throughput study of bacterial metabolic pathways, including that of biodegradation, and that inter-relationships exist with respect to the metabolic pathways of aromatic compounds in Pseudomonas sp. K82.  相似文献   

8.
9.
Using 2D electrophoresis the protein expression pattern during growth on carbon sources with different impact on carbon catabolite repression of phenol degradation was analysed in a derivative of Pseudomonas putida KT2440. The cytosolic protein pattern of cells growing on phenol or the non-repressive substrate pyruvate was almost identical, but showed significant differences to that of cells growing with the repressive substrates succinate or glucose. Proteins, which were mainly expressed in the presence of phenol or pyruvate, could be assigned to the functional groups of transport, detoxification, stress response, amino acid, energy, carbohydrate and nucleotide metabolism. The addition of succinate to cells growing with phenol ('shift-up') resulted in the inhibition of the synthesis of these proteins. Proteins with enhanced expression at growth with succinate or glucose were proteins for de novo synthesis of nucleotides, amino acids and enzymes of the TCA cycle. The synthesis of proteins, necessary for phenol catabolism was regulated in different manners following the addition of succinate. Whereas the synthesis of Phl-proteins (subunits of the phenolhydroxylase) only decreased slowly, was the translation of the Cat-proteins (catechol 1,2-dioxygenase, cis,cis-muconate cycloisomerase and muconolactone isomerase) repressed immediately and the synthesis of the Pca-proteins (beta-ketoadipate enolactone hydrolase, beta-ketoadipate succinyl-CoA transferase and beta-ketoadipyl CoA thiolase) remained unaffected.  相似文献   

10.
通过接合转移将质粒pSC123上的转座子Tn5随机插入到DLL-E4基因组DNA中,从大约8,000个突变子中筛选到1株在LB培养基上积累红褐色物质的突变株M18,该突变株不能以L-苯丙氨酸(L-Phenylalanine, Phe)为唯一碳源生长。SEFA-PCR扩增转座子侧翼序列发现其与已报道的尿黑酸1,2-双加氧酶基因hmgA的同源性为92%。将hmgA定向克隆至表达载体pET-29a中,转化至Escherichia coli BL21,经IPTG诱导后可表达分子量约为48kD的蛋白;诱导后转化子粗酶液对尿黑酸有很好的降解效果。将hmgA连入自杀性载体pEX19Gm,通过同源重组整合至M18染色体中,使其恢复了DLL-E4利用Phe的能力,证实了HmgA是尿黑酸苯环裂解酶。  相似文献   

11.
E Grund  C Knorr    R Eichenlaub 《Applied microbiology》1990,56(5):1459-1464
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

12.
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

13.
One rhamnolipid-producing bacterial strain named Pseudomonas aeruginosa BSFD5 was isolated and characterized. Its rhlABRI cassette including necessary genes for rhamnolipid synthesis was cloned and transformed into the chromosome of P. putida KT2440 by a new random transposon vector without introducing antibiotic-resistance marker, generating a genetically engineered microorganism named P. putida KT2440-rhlABRI, which could stably express the rhlABRI cassette and produce rhamnolipid at a yield of 1.68?g?l(-1). In experiments using natural soil, it was shown that P. putida KT2440-rhlABRI could increase the dissolution of pyrene and thus promote its degradation by indigenous microorganisms. P. putida KT2440-rhlABRI thus demonstrated potential for enhancing the remediation of soils contaminated with polycyclic aromatic hydrocarbons.  相似文献   

14.
15.
Aromatic acids are chemoattractants for Pseudomonas putida   总被引:21,自引:10,他引:11       下载免费PDF全文
A quantitative capillary assay was used to show that aromatic acids, compounds that are chemorepellents for Escherichia coli and Salmonella sp., are chemoattractants for Pseudomonas putida PRS2000. The most effective attractants were benzoate; p-hydroxybenzoate; the methylbenzoates; m-, p-, and o-toluate; salicylate; DL-mandelate; beta-phenylpyruvate; and benzoylformate. The chemotactic responses to these compounds were inducible. Taxis to benzoate and m-toluate was induced by beta-ketoadipate, a metabolic intermediate formed when benzoate is dissimilated via enzymes specified by chromosomal genes. Benzoylformate taxis was induced by benzoylformate and L(+)-mandelate. Taxis to mandelate, benzoylformate, and beta-phenylpyruvate was exhibited by cells grown on mandelate, but not by cells grown on benzoate. Cells grown on benzoate were chemotactic to benzoate, the toluates, p-hydroxybenzoate, and salicylate. These results show that P. putida synthesizes at least two distinct chemoreceptors for aromatic acids. Although DL-mandelate was an effective attractant in capillary assays, additional experiments indicated that the cells were actually responding to benzoylformate, a metabolite formed from mandelate. With the exception of mandelate taxis, chemotaxis to aromatic acids was not dependent on the expression of pathways for aromatic degradation. Therefore, the tactic responses exhibited by cells cannot be attributed to an effect of the oxidation of aromatic acids on the energy metabolism of cells.  相似文献   

16.
17.
The two-component nonheme iron dioxygenase system 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS catalyzes the double hydroxylation of 2-halobenzoates with concomitant release of halogenide and carbon dioxide, yielding catechol. The gene cluster encoding this enzyme, cbdABC, was localized on a 70-kbp conjugative plasmid designated pBAH1. The nucleotide sequences of cbdABC and flanking regions were determined. In the deduced amino acid sequence of the large subunit of the terminal oxygenase component (CbdA), a conserved motif proposed to bind the Rieske-type [2Fe-2S] cluster was identified. In the NADH:acceptor reductase component (CbdC), a putative binding site for a chloroplast-type [2Fe-2S] center and possible flavin adenine dinucleotide- and NAD-binding domains were identified. The cbdABC sequences show significant homology to benABC, which encode benzoate 1,2-dioxygenase from Acinetobacter calcoaceticus (52% identity at the deduced amino acid level), and to xylXYZ, which encode toluate 1,2-dioxygenase from Pseudomonas putida mt-2 (51% amino acid identity). Recombinant pkT231 harboring cbdABC and flanking regions complemented a plasmid-free mutant of wild-type P. cepacia 2CBS for growth on 2-chlorobenzoate, and it also allowed recombinant P. putida KT2440 to metabolize 2-chlorobenzoate. Functional NADH:acceptor reductase and oxygenase components of 2-halobenzoate 1,2-dioxygenase were enriched from recombinant Pseudomonas clones.  相似文献   

18.
The metabolism of cresols under sulfate-reducing conditions was investigated in Desulfotomaculum sp. strain Groll. This strain grows on a variety of aromatic compounds, including para- and meta- but not ortho-cresol. Degradation of p-cresol proceeded by oxidation reactions of the methyl group to yield p-hydroxybenzoate, which was then dehydroxylated to benzoate. The aromatic intermediates expected for this pathway, p-hydroxybenzyl alcohol, p-hydroxybenzaldehyde, p-hydroxybenzoate, and benzoate, were readily metabolized by strain Groll. Utilization of these intermediates generally preceded and inhibited the degradation of p-cresol. p-Hydroxybenzoate and benzoate were detected in culture fluid as metabolites of p-cresol. p-Hydroxybenzaldehyde and p-hydroxybenzoate were detected in cultures degrading p-hydroxybenzyl alcohol. Enzyme activities responsible for utilization of p- and m-cresol, induced by growth on the respective cresol, were detected in cell-free extracts of strain Groll. The compounds detected in culture fluids and the enzyme activities detected in cell-free extracts indicate that the pathways for the degradation of p- and m-cresol converge on benzoate, followed by metabolism to benzoyl-coenzyme A (CoA). Strain Groll can utilize both cresol isomers under sulfate-reducing conditions by similar reactions, but the enzyme activities catalyzing these transformations of the two isomers appear distinct.  相似文献   

19.
20.
Pseudomonas putida KT2440-JD1 is able to cometabolize benzoate to cis, cis-muconate in the presence of glucose as growth substrate. P. putida KT2440-JD1 was unable to grow in the presence of concentrations above 50 mM benzoate or 600 mM cis, cis-muconate. The inhibitory effects of both compounds were cumulative. The maximum specific uptake rate of benzoate was higher than the specific production rate of cis, cis-muconate during growth on glucose in the presence of benzoate, indicating that a benzoate derivative accumulated in the cells, which is likely to be catechol. Catechol was shown to reduce the expression level of the ben operon, which encodes the conversion of benzoate to cis, cis-muconate. To prevent overdoses of benzoate, a pH-stat fed-batch process for the production of cis, cis-muconate from benzoate was developed, in which the addition of benzoate was coupled to the acidification of the medium. The maximum specific production rate during the pH-stat fed-batch process was 0.6 g (4.3 mmol) g dry cell weight(-1) h(-1), whereas 18.5 g L(-1) cis, cis-muconate accumulated in the culture medium with a molar product yield of close to 100%. Proteome analysis revealed that the outer membrane protein H1 was upregulated during the pH-stat fed-batch process, whereas the expression of 10 other proteins was reduced. The identified proteins are involved in energy household, transport, translation of RNA, and motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号