首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosolic free Ca2+ ([Ca2+]i) homeostasis was investigated in mouse peritoneal macrophages and in the macrophage-like cell line J774. [Ca2+]i measurements were performed in both cells in suspension and cells in monolayers loaded with either quin2 or fura-2. Resting [Ca2+]i was 110-140 and 85-120 nM for cell suspensions and monolayers, respectively. There were no significant differences in [Ca2+]i between the two macrophage populations whether quin2 or fura-2 were used as Ca2+ indicators. Addition of heat-aggregated IgG, IgG-coated erythrocyte ghosts, or a rat monoclonal antibody (2.4G2) directed against mouse Fc receptor II induced a rise in [Ca2+]i. This [Ca2+]i increase was consistently observed in J774 and peritoneal macrophage suspensions and in J774 macrophage monolayers; in contrast it was observed inconsistently in peritoneal macrophages in monolayer cultures. The increase in [Ca2+]i induced by ligation of Fc receptors was inhibited totally in macrophages in suspension and by 80% in macrophages in monolayers by a short preincubation of macrophages with PMA; however, phagocytosis itself was unaffected. The effect of reducing cytosolic Ca2+ to very low concentrations on Fc receptor-mediated phagocytosis was also investigated. By incubating macrophages with high concentrations of quin2/AM in the absence of extracellular Ca2+, or by loading EGTA into the cytoplasm, the [Ca2+]i was buffered and clamped to 1-10 nM. Despite this, the phagocytosis of IgG-coated erythrocytes proceeded normally. These observations confirm the report of Young et al. (Young, J. D., S. S. Ko, and Z. A. Cohn. 1984. Proc. Natl. Acad. Sci. USA. 81:5430-5434) that ligation of Fc receptors causes Ca2+ mobilization in macrophages. However, these results confirm and extend the findings of McNeil et al. (McNeil, P. L., J. A. Swanson, S. D. Wright, S. C. Silverstein, and D. L. Taylor. 1986. J. Cell Biol. 102:1586-1592) that a rise in [Ca2+]i is not required for Fc receptor-mediated phagocytosis; and they provide direct evidence that Fc receptor-mediated phagocytosis occurs normally even at exceedingly low [Ca2+]i.  相似文献   

2.
Signal generation during the stimulation of insulin secretion by arginine vasopressin (AVP) was investigated in RINm5F cells. AVP (0.1 microM) caused a biphasic cytosolic Ca2+ ([Ca2+]i) rise, namely a rapid transient marked elevation after stimulation followed by a series of oscillations. In the absence of extracellular Ca2+, the sustained oscillations were abolished, while the initial [Ca2+]i transient was only partly decreased, indicating that the former are due to Ca2+ influx and the latter due mainly to mobilization from internal Ca2+ stores. AVP also evoked a transient depolarization of the average membrane potential. AVP-induced Ca2+ influx during the sustained phase, which was strictly dependent on receptor occupancy, was attenuated by membrane hyperpolarization with diazoxide. However, blockade of Ca2+ channels of the L- or T-type was ineffective. AVP stimulated production of diacylglycerol and inositol phosphates; for the latter both [3H] inositol labeling and mass determinations were performed. A transient increase in Ins(1,4,5)P3 was followed by a marked enhancement of Ins(1,3,4,5)P4 (8-fold) peaking at 15 s and gradually returning to basal values. Ins(1,3,4,6)P4 and Ins(3,4,5,6)P4 exhibited the most long-lasting augmentation (4- and 1.7-fold, respectively), and therefore correlated best with the period of sustained [Ca2+]i oscillations. InsP5 and InsP6 were not elevated. The effects of AVP, including the stimulation of insulin secretion from perifused cells, were obliterated by a V1 receptor antagonist. In conclusion, AVP induces protracted [Ca2+]i elevation in RINm5F cells which is associated with long-lasting increases in InsP4 isomers. The accumulation of InsP4 isomers reflects receptor occupancy and accelerated metabolism of the inositol phosphates. Activation of second messenger-operated Ca2+ channels is not necessarily implicated because of the attenuating effect of membrane hyperpolarization.  相似文献   

3.
4.
Human interferon (IFN) stimulates a 1.5- to 1.7-fold transient increase in the concentration of cytoplasmic-free calcium ion ([Ca2+]i) within 10-20 s upon exposure of RPMI-4788 cells to IFN. This early event of IFN-induced [Ca2+]i mobilization was measurable by loading the cells with Fura-2AM, a fluorescent Ca2+ indicator. The mobilization induced by IFN-beta or IFN-gamma was dependent on the concentration of each IFN. The increased [Ca2+]i gradually returned to its resting level within 60 s. The addition of EGTA (0.5-10 mM) to medium induced a marked decrease in the amount of [Ca2+]i mobilized by IFN-beta and a partial decrease by IFN-gamma. This finding suggests that the mechanisms of [Ca2+]i mobilization by IFN-beta and IFN-gamma might be different. While IFN-beta-induced mobilization may be mainly from an influx of the extracellular calcium ion ([Ca2+]o), IFN-gamma-induced mobilization may be a summation of an influx of [Ca2+]o and a release from intracellular Ca2+ stores.  相似文献   

5.
Fura-2 fluorescence in single rat basophilic leukemia cells was monitored to study the rise in intracellular free ionized calcium ([Ca2+]i) produced by aggregation of immunoglobulin E receptors. Repetitive transient increases in [Ca2+]i were induced by antigen stimulation and were measured using digital video imaging microscopy at high time resolution. The [Ca2+]i oscillations were not dependent upon changes in the membrane potential of the cells and were observed in cells stimulated with antigen either with or without extracellular Ca2+. Transient oscillations in [Ca2+]i were also observed when calcium influx was blocked with La3+. These results suggested that during antigen stimulation of cells under normal physiological conditions, release of Ca2+ from intracellular stores makes an important contribution to the initial increase in [Ca2+]i. Oscillations in [Ca2+]i are not induced by elevating [Ca2+]i with the calcium ionophore ionomycin. Mitochondrial calcium buffering is not required for [Ca2+]i oscillations to occur. The results show that rat basophilic leukemia cells have significant stores of calcium and that release of calcium from these stores can participate in both the initial rise and the oscillations in [Ca2+]i.  相似文献   

6.
Regulation of cytoplasmic free calcium concentration ([Ca2+)]i) is a key factor for maintenance of viability of cells, including oocytes. Indeed, during fertilization of an ovum, [Ca2+]i is known to undergo oscillations, but it is unknown how basal [Ca2+]i or calcium oscillations are regulated. In the present study we investigated the role of the plasma membrane in regulating [Ca2+]i of metaphase II-arrested mouse oocytes (ova). Ova were collected from B6C3F1 mice treated with eCG (10 IU) and hCG (5 IU), and intracellular calcium was determined by means of fura-2. Extracellular calcium flux across the zona pellucida was detected noninvasively by a calcium ion-selective, self-referencing microelectrode that was positioned by a computer-controlled micromanipulator. Under basal conditions ova exhibited a calcium net efflux of 20.6 +/- 5.2 fmol/cm2 per sec (n = 69). Treatment of ova with ethanol (7%) or thapsigargin (25 nM-2.5 microM) transiently increased intracellular calcium and stimulated calcium efflux that paralleled levels of [Ca2+]i. The presence of a Na+/Ca2+ exchanger was indicated by experiments employing both bepridil, an inhibitor of Na+/Ca2+ exchange, and sodium-depleted media. In the presence of bepridil, a net influx of calcium was revealed across the zona pellucida, which was reflected by an increase in the [Ca2+]i. In addition, replenishment of extracellular sodium to ova that had been incubated in sodium-depleted media induced a large calcium efflux, consistent with the actions of Na+/Ca2+ exchange. Sodium/calcium exchange in mouse ova may be an important mechanism that regulates [Ca2+]i.  相似文献   

7.
We characterize two patterns of transients in cytoplasmic free calcium ([Ca2+]i) in normal human osteoblast-like cells (hOB cells). Firstly, spontaneous oscillations in [Ca2+]i were found to be common. The [Ca2+]i oscillations were completely inhibited by thapsigargin, indicating that Ca2+ fluxes between intracellular Ca2+ pools and the cytosol contributed to the generation of the [Ca2+]i oscillations. Removing extracellular Ca2+ either attenuated or completely inhibited spontaneous [Ca2+]i oscillations. Gadolinium, an inhibitor of stretch activated cation channels (SA-cat channels), reduced the frequency of [Ca2+]i oscillations. Hence, entry of calcium from the extracellular space, possibly through SA-cat channels also seemed to be of importance in the regulation of these [Ca2+]i oscillations. The role of the observed spontaneous [Ca2+]i oscillations in hOB cell function is not clear. Secondly, a decrease in pericellular osmolality, which causes the plasma membrane to stretch, transiently increased [Ca2+]i in hOB cells. This effect was also observed in a Ca2+ free extracellular environment, suggesting that osmotic stimuli release Ca2+ from intracellular pools. This finding indicates a possible signaling pathway by which mechanical strain can promote anabolic effects on the human skeleton.  相似文献   

8.
Reactive oxygen species (ROS) play a divergent role in both cell survival and cell death during ischemia/reperfusion (I/R) injury and associated inflammation. In this study, ROS generation by activated macrophages evoked an intracellular Ca2+ ([Ca2+]i) transient in endothelial cells that was ablated by a combination of superoxide dismutase and an anion channel blocker. [Ca2+]i store depletion, but not extracellular Ca2+ chelation, prevented [Ca2+]i elevation in response to O2*- that was inositol 1,4,5-trisphosphate (InsP3) dependent, and cells lacking the three InsP3 receptor (InsP3R) isoforms failed to display the [Ca2+]i transient. Importantly, the O2*--triggered Ca2+ mobilization preceded a loss in mitochondrial membrane potential that was independent of other oxidants and mitochondrially derived ROS. Activation of apoptosis occurred selectively in response to O2*- and could be prevented by [Ca2+]i buffering. This study provides evidence that O2*- facilitates an InsP3R-linked apoptotic cascade and may serve a critical function in I/R injury and inflammation.  相似文献   

9.
Transmembrane calcium influx induced by ac electric fields.   总被引:2,自引:0,他引:2  
Exogenous electric fields induce cellular responses including redistribution of integral membrane proteins, reorganization of microfilament structures, and changes in intracellular calcium ion concentration ([Ca2+]i). Although increases in [Ca2+]i caused by application of direct current electric fields have been documented, quantitative measurements of the effects of alternating current (ac) electric fields on [Ca2+]i are lacking and the Ca2+ pathways that mediate such effects remain to be identified. Using epifluorescence microscopy, we have examined in a model cell type the [Ca2+]i response to ac electric fields. Application of a 1 or 10 Hz electric field to human hepatoma (Hep3B) cells induces a fourfold increase in [Ca2+]i (from 50 nM to 200 nM) within 30 min of continuous field exposure. Depletion of Ca2+ in the extracellular medium prevents the electric field-induced increase in [Ca2+]i, suggesting that Ca2+ influx across the plasma membrane is responsible for the [Ca2+]i increase. Incubation of cells with the phospholipase C inhibitor U73122 does not inhibit ac electric field-induced increases in [Ca2+]i, suggesting that receptor-regulated release of intracellular Ca2+ is not important for this effect. Treatment of cells with either the stretch-activated cation channel inhibitor GdCl3 or the nonspecific calcium channel blocker CoCl2 partially inhibits the [Ca2+]i increase induced by ac electric fields, and concomitant treatment with both GdCl3 and CoCl2 completely inhibits the field-induced [Ca2+]i increase. Since neither Gd3+ nor Co2+ is efficiently transported across the plasma membrane, these data suggest that the increase in [Ca2+]i induced by ac electric fields depends entirely on Ca2+ influx from the extracellular medium.  相似文献   

10.
The free intracellular calcium ion concentration ([Ca2+]i) was measured in single cells of a population containing 65-80% somatotrophs, using the fluorescent Ca(2+)-indicator Fura-2 and digital imaging microscopy. Spontaneous oscillations in [Ca2+]i ranging in frequency up to 1.5 oscillations per minute were observed in 30% of somatotrophs. These Ca2+ oscillations were blocked by the Ca2+ channel blocker CoCl2 and were thus proposed to be the result of influx of Ca2+ into the cell, possibly as the result of spontaneous electrical activity. GHRH (10-100 nM) increased [Ca2+]i in 61% of the cells studied, although the amplitude and dynamics of the response varied from cell to cell. Typically [Ca2+]i rose from 170 +/- 26 nM to 321 +/- 44 nM (n = 13) in response to a challenge with 66 nM GHRH. GHRH also increased the frequency of Ca2+ oscillations in a number of cells, and some previously quiescent cells showed Ca2+ oscillations following addition of GHRH. Forskolin, which raises cAMP levels in bovine anterior pituitary cells, also stimulated a sustained rise in [Ca2+]i in 10 out of 14 cells tested. Somatostatin (SS) (10-80 nM) rapidly reduced basal [Ca2+]i, blocked Ca2+ oscillations, and blocked the [Ca2+]i response to GHRH. The Ca2+ channel blocker CoCl2 (4 mM) had similar actions on [Ca2+]i to those of SS. These results suggest that GHRH and SS may regulate GH release by modulating Ca2+ entry into the cell through the cell membrane. The [Ca2+]i oscillations seen in a proportion of the somatotrophs were modulated in frequency by GHRH and SS, and are probably generated by influx of Ca2+ through channels in the cell membrane. Thus GH secretion may be regulated by changes in the mean level of [Ca2+]i, which in turn, may be influenced by the frequency of [Ca2+]i oscillations in bovine somatotrophs.  相似文献   

11.
Digital imaging fluorescence microscopy was used to study the effect of tert-butyl hydroperoxide (TBHP) on the cytosolic free calcium concentration ([Ca2+]i) of single rat hepatocytes in primary culture. Within minutes of the addition of TBHP, individual hepatocytes displayed one or more peaks of increased [Ca2+]i that promptly returned to the prestimulation level. This was followed by a slower increase of [Ca2+]i that reached a plateau of 696 +/- 260 nM (basal 194 +/- nM) after 20 min. Another rise in [Ca2+]i, abrupt and much larger, preceded the death of the cells after about 45 min. Pretreatment of the hepatocytes with deferoxamine, a ferric iron chelator, or the addition of the antioxidants N,N'-diphenyl-p-phenylenediamine or catechol prevented the loss of viability. Neither the number of hepatocytes displaying the initial [Ca2+]i transients nor the magnitude of these oscillations was affected by deferoxamine, N,N'-diphenyl-p-phenyl-enediamine, or catechol. However, both the plateau phase and the abrupt rise in [Ca2+]i were prevented. Treatment of the hepatocytes with TBHP in a low calcium buffer (less than 2 microM Ca2+) reduced or abolished the initial [Ca2+]i transients and eliminated both the plateau phase and abrupt rise in [Ca2+]i. The onset of cell death was delayed by 10 min in the low calcium medium. Addition of 3.5 mM EGTA to the cultures lowered the basal calcium concentration, prevented both the initial [Ca2+]i spikes and the delayed changes, and further prolonged the onset of cell death. These data indicate that the killing of the cultured hepatocytes by TBHP can be dissociated from changes in intracellular calcium homeostasis. An influx of extracellular Ca2+ ions may aggravate somewhat the mechanisms of cell injury by an oxidative stress and accelerate the time of onset of cell death.  相似文献   

12.
Single rat hepatocytes, microinjected with the Ca(2+)-sensitive photoprotein aequorin, respond to agonists acting through the phosphoinositide signalling pathway by the generation of oscillations in cytosolic free Ca2+ concentration ([Ca2+]i). The duration of [Ca2+]i transients generated is characteristic of the stimulating agonist; the differences lie in the rate of fall of [Ca2+]i from its peak. We considered that differential sensitivity of the InsP3 receptor may underlie agonist specificity. The thiol reagent, thimerosal, is known to increase the sensitivity of the Ca2+ stores to InsP3 by increasing the affinity of the InsP3 receptor for InsP3 in rat hepatocytes. We show here that a low dose of thimerosal (1 microM), insufficient alone to elevate [Ca2+]i, potentiates [Ca2+]i oscillations induced by phenylephrine or ATP in single, aequorin-injected, rat hepatocytes. Moreover, thimerosal enhances both the frequency and amplitude of phenylephrine-induced oscillations, whereas, in contrast, ATP-induced oscillations undergo an increase in the duration of the falling phase of individual [Ca2+]i transients. Thimerosal, therefore, enhances, rather than eliminates, agonist-specific differences in the hepatocyte [Ca2+]i oscillator.  相似文献   

13.
Receptor-activated cytoplasmic calcium (Ca2+) oscillations have been investigated in single pancreatic acinar cells by microfluorimetry (Fura-2 as indicator). At submaximal concentrations of the agonists acetylcholine (ACh) and cholecystokinin octapeptide (CCK-8), both give rise to oscillatory changes in the cytosolic free calcium concentration ([Ca2+]i). The patterns of oscillations are markedly and consistently different for each of these two agonists. The ACh induced oscillations are superimposed upon a median elevation in background [Ca2+]i. The CCK-8 induced oscillations are of longer duration with [Ca2+]i returning to prestimulus levels between the discrete spikes. The ACh induced oscillations are rapidly abolished upon removal of extracellular Ca2+ while the CCK-8 induced oscillations persist for many minutes in the absence of external Ca2+. The CCK-8, but not the ACh, induced oscillations are increased in duration by the protein kinase C (PKC) inhibitor staurosporine and abolished by the PKC activating phorbol ester PMA. It is clear that CCK-8 and ACh do not activate receptor transduction mechanisms in an identical manner to generate oscillating [Ca2+]i signals.  相似文献   

14.
The regulation of the increase in intracellular calcium ([Ca2+]i) occurring in cytolytic T lymphocytes (CTLs) upon their interaction with antigen was examined. This [Ca2+]i increase and lytic function were insensitive to verapamil, a Ca channel blocker. An antigen-independent increase in [Ca2+]i was not induced by depolarization of CTLs with excess extracellular K+, suggesting that Ca2+ influx is not mediated by the ubiquitous voltage-gated Ca channel. The antigen-induced [Ca2+]i increase was inhibited by prior membrane hyperpolarization with valinomycin. Hyperpolarization occurred under normal circumstances in CTLs exposed to antigen-receptor-specific antibodies. This potential change was Ca2+-dependent and inhibited by K channel blockade. Conversely, K channel blockade augmented the antigen-specific [Ca2+]i increase while markedly decreasing the K+ efflux associated with CTL lytic function. Therefore, either membrane potential or intracellular K+ regulates the antigen-specific [Ca2+]i increase in CTLs.  相似文献   

15.
Nakada K  Mizuno J 《Theriogenology》1998,50(2):269-282
The objectives of the present study were to clarify and compare the characteristics of the transient rises in intracellular calcium concentrations ([Ca2+]i) induced either by spermatozoa or by stimulation with artificial activators in bovine oocytes. These transient rises in [Ca2+]i in oocytes matured in vitro were recorded with Ca2+ imaging using the Ca2+ indicator fura-2. During fertilization, a series of transient rises in [Ca2+]i was observed. The first Ca2+ response peaked at a concentration of 521 +/- 39 nM (n = 20) and lasted for 4 min, while the subsequent Ca2+ responses were significantly smaller and shorter, with a peak of 368 +/- 13 nM (n = 23) and a duration of 2 min. Injection of inositol 1,4,5- triphosphate (InsP3) into unfertilized oocytes caused a transient rise in [Ca2+]i in a dose-dependent manner. The maximum response was induced by 20 nA x 1 sec injection of InsP3. Thimerosal, a sulfhydryl reagent, induced the repetitive transient rises in [Ca2+]i. The peak and the duration of the rises in [Ca2+]i induced by InsP3 or thimerosal were smaller and shorter, respectively, than those of the first rise induced by spermatozoa. Ethanol and Ca2+ ionophore IA23187, which are general parthenogenetic activators of unfertilized oocytes, each induced a single transient rise in [Ca2+]i. The duration of the rise in [Ca2+]i by ethanol or Ca2+ ionophore was significantly longer than that by spermatozoa at fertilization, although the peaks were smaller. These results clarified the characteristics of the rises in [Ca2+]i induced by spermatozoa and by several artificial reagents, and showed that the first rise in [Ca2+]i induced by spermatozoa had a higher peak [Ca2+]i and a longer duration compared with each the subsequent rises in [Ca2+]i and the rises in [Ca2+]i induced by artificial reagents. These indicate that a mode like as the first rise in [Ca2+]i induced by spermatozoa is an effective trigger for artificial activation of oocytes.  相似文献   

16.
We show that microinjecting cyclic GMP (cGMP) into unfertilized sea urchin eggs activates them by stimulating a rise in the intracellular free calcium ion concentration ([Ca2+]i). The increase in [Ca2+]i is similar in both magnitude and duration to the transient that activates the egg at fertilization. It is due to mobilization of calcium from intracellular stores but is not prevented by the inositol trisphosphate (InsP3) antagonist heparin. Furthermore, cGMP does not stimulate the eggs Na+/H+ antiport when the [Ca2+]i transient is blocked by the calcium chelator bis-(O-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA), suggesting that cGMP does not activate eggs by interacting with the their phosphoinositide signaling pathway. However, the [Ca2+]i increase and activation are prevented in eggs in which the InsP3-sensitive calcium stores have been emptied by the prior microinjection of the InsP3 analogue inositol 1,4,5-trisphosphorothioate. These data indicate that cGMP activates eggs by stimulating the release of calcium from an InsP3-sensitive calcium store via a novel, though unidentified, route independent of the InsP3 receptor.  相似文献   

17.
We have investigated the signaling pathways underlying muscarinic receptor-induced calcium oscillations in human embryonic kidney (HEK293) cells. Activation of muscarinic receptors with a maximal concentration of carbachol (100 microm) induced a biphasic rise in cytoplasmic calcium ([Ca2+]i) comprised of release of Ca2+ from intracellular stores and influx of Ca2+ from the extracellular space. A lower concentration of carbachol (5 microm) induced repetitive [Ca2+]i spikes or oscillations, the continuation of which was dependent on extracellular Ca2+. The entry of Ca2+ with 100 microm carbachol and with the sarcoplasmic-endoplasmic reticulum calcium ATPase inhibitor, thapsigargin, was completely blocked by 1 microm Gd3+, as well as 30-100 microm concentrations of the membrane-permeant inositol 1,4,5-trisphosphate receptor inhibitor, 2-aminoethyoxydiphenyl borane (2-APB). Sensitivity to these inhibitors is indicative of capacitative calcium entry. Arachidonic acid, a candidate signal for Ca2+ entry associated with [Ca2+]i oscillations in HEK293 cells, induced entry that was inhibited only by much higher concentrations of Gd3+ and was unaffected by 100 microm 2-APB. Like arachidonic acid-induced entry, the entry associated with [Ca2)]i oscillations was insensitive to inhibition by Gd3+ but was completely blocked by 100 microm 2-APB. These findings indicate that the signaling pathway responsible for the Ca2+) entry driving [Ca2+]i oscillations in HEK293 cells is more complex than originally thought, and may involve neither capacitative calcium entry nor a role for PLA2 and arachidonic acid.  相似文献   

18.
Macrophage cytocidal activation requires the sequential impingement on the macrophage of a priming stimulus (interferon [IFN] alpha, beta, or gamma) and a triggering stimulus (such as polyinosinic acid:polycytidylic acid [poly [I:C]] or bacterial lipopolysaccharide). The mechanism of progression from the IFN-primed state to the cytocidal state is poorly understood. By quantifying the level of expression of a gene product (complement component factor B [Bf]) associated with cytocidal activation and through the use of phenotypically distinct populations of macrophages (unprimed and IFN-primed), we have investigated the functional necessity of changes in intracellular concentration of free calcium ions ([Ca2+]i) in signaling the transition from the primed to the cytocidal state. Elevating the [Ca2+]i by incubation of unprimed macrophages with the calcium ionophore, ionomycin, failed to induce the expression of Bf. By contrast, Bf was expressed at high levels when IFN-primed macrophages were exposed to ionomycin, suggesting that priming induced within the macrophages the capacity to respond to a nonspecific change in [Ca2+]i. Quantification of the [Ca2+]i in response to exposure to ionomycin revealed an initial transient elevation, followed by a secondary sustained component. No differences in these changes were observed between unprimed and IFN-primed macrophages. We therefore questioned if changes in [Ca2+]i were also implicated in the transition between the primed and the cytocidal state using the ligand, poly [I:C]. In contrast to ionomycin, incubation of IFN-primed macrophages with poly [I:C] did not sustain measurable increases in [Ca2+]i, yet fully stimulated the transition from the IFN primed to the cytocidal state. However, incubation of IFN-primed macrophages with poly [I:C] in the presence of 1) a Ca2+/ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid buffer calculated to clamp the extracellular concentration of free calcium ions to a value approximately equal to the resting [Ca2+]i; 2) the calcium channel blocker verapamil; or 3) the intracellular Ca2+ antagonists (W-7, W-13, and TMB-8) substantially inhibited the induction of Bf. Collectively, these data support the following conclusions. First, that changes in [Ca2+]i comprise an important element in the induction of progression from the IFN-primed to the cytocidal state. Second, the failure to detect global changes in [Ca2+]i in response to the ligand, poly [I:C], suggests that changes in [Ca2+]i or Ca2+ movement may occur in either a spatially restricted or in an asynchronous cyclical fashion and are not detected by population fluorescence measurements. Third, the source of the relevant Ca2+ is extracellular. Fourth, our findings suggest that priming influences macrophage functional responses at a locus that is distal to the changes in [Ca2+]i, thereby potentially allowing signaling processes to be utilized to initiate different cellular responses.  相似文献   

19.
Calcium fluxes in T lymphocytes.   总被引:3,自引:0,他引:3  
Mechanisms controlling Ca2+ fluxes through the plasma membrane of lymphocytes have been characterized in a human T-cell clone and in the Jurkat T-cell line. Due to endogenous buffers, about 1/125 of the Ca2+ ions that enter the cell are free. Ca2+ fluxes were estimated from the variations in intracellular Ca2+ concentration ([Ca2+]i) elicited by concentration jumps in extracellular Ca2+ ([Ca2+]o). Thapsigargin was used to inhibit Ca2+ uptake into intracellular stores and to stimulate Ca2+ entry. Ca2+ extrusion was strictly due to the activity of plasma membrane Ca(2+)-ATPases since there was no detectable Na+/Ca2+ exchange activity in these cells. The rate of Ca2+ extrusion was mainly influenced by [Ca2+]i and less by [Ca2+]o but was insensitive to cell depolarization. In depolarized cells, thapsigargin-induced Ca2+ influx was reduced to 10% of the value measured in normally polarized cells, suggesting that depolarization not only reduces the electrochemical gradient for Ca2+ ions, but also inhibits Ca2+ permeation. When Ca2+ ions enter the cell, they bind to a site inside the channel, with a Kd of 3.3 mM. Stimulation of clonal T-cells with low concentrations of either anti-CD3 antibodies or thapsigargin elicited Ca2+ oscillations. Both the amplitude and the frequency of CD3-induced Ca2+ oscillations were sensitive to [Ca2+]o. These oscillations were immediately interrupted when extracellular Ca2+ was removed. The properties of Ca2+ oscillations in T lymphocytes suggest that they are mainly due to variations of Ca2+ influx, modulated by variations in [Ca2+]i.  相似文献   

20.
Effects of arachidonic and other fatty acids on the intracellular Ca2+ concentration ([Ca2+]i) in rat peritoneal macrophages was investigated. It has been shown that cis-polyunsaturated arachidonic and linoleic induce a significant and dose-dependent increase in [Ca2+]i, which is due to depletion of thapsigargin-sensitive Ca2+ store and to stimulation of Ca2+ entry from the extracellular medium. Pharmacological characteristics of Ca2+ entry induced by arachidonic acid appeared to be similar to those of store-dependent Ca2+ entry activated by thapsigargin or cyclopiazonic acid; Ca2+ entry is attenuated by the same Ca2+ channel inhibitors, by tyrosine kinase inhibitor genistein and epoxygenase inhibitor proadifen. Cis-monounsaturated oleic and saturated myristic acids appeared to be less effective and induced only a slight increase in [Ca2+]i at much higher concentrations. Arachidonic and other fatty acids can also stimulate Ca(2+)-ATPase in the macrophage plasma membrane. The data are compatible with the important role played by arachidonic and other free fatty acids in the regulation of [Ca2+]i in peritoneal macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号