首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
The main parameters which influence the behaviour of phase separation in a single-stage Kühni-type aqueous two-phase extraction column containing polyethylene (PEG) and di-potassium hydrogen phosphate were characterised. Two aqueous two-phase system (ATPS) composed of 12% (w/w) PEG 1450 and 12% (w/w) di-potassium hydrogen phosphate (designated as 12/12) and 12% (w/w) PEG 1450 and 11% (w/w) di-potassium hydrogen phosphate (designated as 12/11) were chosen in this study. The hold-up ɛD increased with increasing impeller speeds and mobile phase flow rates. Phase separation for the 12/11 system was slower than that for the 12/12 system, which resulted in higher dispersed phase hold-up values for the 12/11 system. For 12/12 system, mass transfer of plasmid DNA (pDNA) from the dispersed mobile phase to the stationary phase increased rapidly with increasing impeller speeds of 130, 160 and 200 rpm which was reflected in the decreased values for CT/CTo. The degree of back-mixing quantified by the axial dispersion coefficient Dax was estimated to be 2.7 × 10−6 m2 s−1.  相似文献   

2.
《Process Biochemistry》2010,45(7):1082-1087
In the present research, the potential use of flexible disposable devices, specifically blood bags, for the fractionation of biological products using Aqueous Two-Phase Systems (ATPS) polymer–salt is studied and demonstrated. Purified human serum albumin (HSA) was used as model protein. Experiments were carried out on ATPS polyethylene glycol (PEG)–potassium phosphate constructed on rigid recipients (conical tubes) and flexible devices (blood bags). The device used for ATPS construction had no significant effect on HSA partition behavior. Protein partition towards the top phase was favored on systems constructed using PEG 1000 g/mol and TLL 45% (w/w), achieving up to 85% recovery. On the other hand a recovery of 92% was achieved at the bottom phase when PEG 3350 g/mol and TLL 25% (w/w) were used. Human serum was used as a complex sample on ATPS experiments. Selective fractionation of human serum proteins on ATPS constructed on flexible devices was achieved. ATPS constructed on blood bags required short equilibrium times (< 6 min), meaning it is feasible to use this approach on mass scale. The potential use of flexible disposable devices, for the fractionation of biological products using ATPS polymer–salt was demonstrated.  相似文献   

3.
A novel aqueous two phase system (ATPS) using trimethylamine-polyethylene glycols (TMA-PEG) to promote the extraction of C-phycocyanin (C-PC) from S.platensis was introduced. The purity of C-PC (EP) obtained in the ATPS of PEG1000/Na3PO4 was increased 2.1 times by the addition of TMA-PEG1000. The purification factor was enhanced from 2.9 to 10.1 when 65% TMA-PEG1000 was added in the system. The ATPS operation must be carried out in the pH range of 6.0-7.0 and at temperatures less than 35 °C for maintaining the stability of C-PC. The partition coefficient and recovery ratio of C-PC increased with the increasing concentration of TMA-PEG. The system parameters like TMA-PEG1000 content, tie line length (TLL), pH, temperature and phase volume ratio (Vr) were screened and optimized using the fractional factorial design and Box-Behnken experiment design. The optimized system is composed of 11.8% PEG1000/TMA-PEG1000 (w/w), 64.42% TMA-PEG1000 (w/w PEG1000) and 9.5% Na3PO4 (w/w) with 38.19% TLL (w/w) and 0.89 Vr at pH 6.5 and 25 °C. The obtained value of EP was 5.21 in one-stage ATPS and 6.7 in two-stage ATPS. The recovery ratio of C-PC in the new ATPS extraction system was more than 97%.  相似文献   

4.
The crude intracellular lipase (cell homogenate) from Trichosporon laibacchii was subjected to partial purification by aqueous two-phase system (ATPS) and then in situ immobilization by directly adding diatomites as carrier to the top PEG-rich phase of ATPS. A partition study of lipase in the ATPS formed by polyethylene glycol–potassium phosphate has been performed. The influence of system parameters such as molecular weight of PEG, system phase composition and system pH on the partitioning behaviour of lipase was evaluated. The ATPS consisting of PEG 4000 (12%) and potassium phosphate (K2HPO4, 13%) resulted in partition of lipase to the PEG-rich phase with partition coefficient 7.61, activity recovery 80.4%, and purification factor of 5.84 at pH of 7.0 and 2.0% NaCl. Moreover, the in situ immobilization of lipase in PEG phase resulted in a highest immobilized lipase activity of 1114.6 U g?1. The above results show that this novel lipase immobilization procedure which couples ATPS extract and enzyme immobilization is cost-effective as well as time-saving. It could be potentially useful technique for the purification and immobilization of lipase.  相似文献   

5.
《Process Biochemistry》2014,49(2):335-346
Selective purification still poses a challenge in the downstream processing of biomolecules such as proteins and especially enzymes. In this study a polyethylene glycol 3000 (PEG 3000)–phosphate aqueous two-phase system at 25 °C and pH 7 was successfully used for laccase purification and separation. Initially, the effect of phase forming components on enzyme activities in homogenous systems was studied. In the course of the extraction experiments tie lines, enzyme source, initial enzyme activities, phase ratio and sodium chloride concentrations were varied and their influence on the activity partitioning was determined. Partitioning results were validated using clear-native-PAGE and isoelectric focusing. Based on these results, the separation of laccases from Trametes versicolor and Pleurotus sapidus was investigated using the principle of superposition. Sodium chloride was used to adjust laccase partitioning in the applied aqueous two-phase system (ATPS). Finally, two modes of operation are proposed depending on the aim of the purification task. One mode with 0.133 g g−1 of PEG3000, 0.063 g g−1 of phosphate and without sodium chloride separates P. sapidus laccases from T. versicolor laccases with clearance factors of 5.23 and 6.45, respectively. The other mode of operation with 0.124 g g−1 of PEG3000, 0.063 g g−1 of phosphate and 0.013 g g−1 of sodium chloride enables a partitioning of both laccases into the bottom phase of the ATPS resulting in a purification factor of 2.74 and 96% activity recovery.  相似文献   

6.
Extraction of bromelain from pineapple peel (Nang Lae cultv.) using aqueous two phase system (ATPS) was optimized. Some biochemical properties including collagen hydrolysis were also investigated. Bromelain predominantly partitioned to the polyethylene glycol (PEG)-rich phase. The highest enzyme activity recovery (113.54%) and purification fold (2.23) were presented in the top phase of 15% PEG2000–14% MgSO4. Protein pattern and activity staining showed the molecular weight (MW) of bromelain to be about 29 kDa. The extracted bromelain showed the highest relative activity at pH 7.0 and 55 °C. Its activity was decreased continuously by increasing NaCl concentration (up to 1.5% (w/v)). The bromelain extract was applied to hydrolyze the skin collagen of beef and giant catfish (0–0.3 units). The β, α1, α2 of giant catfish skin collagen extensively degraded into small peptides when treated with 0.02 units of the bromelain extract. Bovine collagen was hydrolyzed using higher bromelain up to 0.18 units. This study showed the ATPS can be employed to partially purify bromelain from Nang Lae pineapple peel and the enzyme effectively hydrolyzed the collagens.  相似文献   

7.
The firefly luciferase has been extensively used for sensitive detection of bacteria, gene expression and environmental toxins (biosensors). The aim of the present study was to design a simple and more efficient method for the purification and concentration of luciferase using aqueous two-phase extraction (ATPE). Downstream processing of luciferase from North American Firefly Photinus pyralis was carried out, for the first time, using polymer/salt aqueous two phase system (ATPS) at 4 °C. The enzyme was observed to preferentially partition to the polyethylene glycol (PEG) rich top phase. The best results of purification (13.69 fold) and enzyme activity recovery (118.34%) were observed in the system containing 4.0% (w/w) PEG (1500) and 20.5% (w/w) (NH4)2SO4 with a phase volume ratio of 0.21.  相似文献   

8.
In this study an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and potassium phosphate was tested for the purification of lipase from Yarrowia lipolytica IMUFRJ 50682. Ultrafiltration and precipitation with acetone and kaolin were also used as traditional comparison methods Ultrafiltration was a good method with a purification factor of 6.55, but protease was also purified in this extract. For the precipitation with acetone and kaolin lower values of lipase and protease activity were found in relation to the original crude enzyme extract. Under the best conditions of ATPS (pH 6 and 4 °C), the purification fold was greater than 40 and selectivity was almost 500. Lipase was recovered in the salty phase which makes it easier to purify it. The optimum pH and temperature ranges for purified lipase with this system was 6–7 and 35–40 °C, respectively. Lipase thermostability was increased in relation to crude extract after the purification with the PEG/phosphate buffer system for temperatures lower than 50 °C. All enzyme extracts showed good stability to a wide pH range. Y. lipolytca lipase was successfully purified by using ATPS in a single downstream processing step and presented good process characteristics after this treatment.  相似文献   

9.
The possibility of continuous extraction of 1,3-propanediol in a experimental packed column was investigated using a salting-out extraction system of dipotassium phosphate/ethanol. Mass transfer of 1,3-propanediol takes place from the dispersed phase (salt-rich solution) to the continuous phase (ethanol). The influences of flow rate of dispersed phase and size of packing material on partition coefficient and recovery of 1,3-propanediol were investigated and the results were compared with those obtained in spray column and test tube. Furthermore, the influences of various system compositions on hold up of dispersed phase, mass transfer coefficient, and system stability were also studied in the column packed by stainless steel Dixon 3 × 3 mm. It was found that the packed column showed a good extraction efficiency and stability. Besides, 1,3-propanediol recovery of 90.30% was obtained during a 11 h continuous operation when the real fermentation broth was used. At the same time, 94.4% of phosphate could be recovered when 0.2 volume of anhydrous ethanol was added into the raffinate phase at pH 4.0.  相似文献   

10.
Partitioning of protease from stomach of albacore tuna using an aqueous two-phase system (ATPS) was investigated. The best ATPS conditions for protease partitioning from stomach extract (SE) and acidified counterpart (ASE) were 25% PEG1000–20% MgSO4 and 15% PEG2000–15% MgSO4, which increased the purity by 7.2-fold and 2.4-fold with the recovered activity of 85.7% and 89.1%, respectively. Electrophoretic study revealed that SE had a major protein with a molecular weight (MW) of 40.6 kDa, while protein with MW of 32.7 kDa was predominant in ASE and ATPS fractions. Pepsinogen in SE might be activated to pepsin by acidification and partitioning process. SE was quite stable at 0 and 4 °C up to 14 days. The loss in protease activity in ASE and selected ATPS fractions was more pronounced when storage time and temperature increased. Therefore, ATPS can be effectively used to recover and purify protease from albacore tuna stomach.  相似文献   

11.
《Process Biochemistry》2010,45(3):369-374
The recovery and purification of lysozyme from hen egg white has been investigated in an aqueous two-phase systems composed of thermoseparating random copolymers of ethylene oxide (EO), propylene oxide (PO) and potassium phosphate. In the primary extraction step lysozyme was satisfactorily partitioned to the top polymer-rich phase in a system composed of 40% (w/w) EO50PO50, 10% (w/w) potassium phosphate, and 0.85 M sodium chloride at pH 9.0, diluted 3-fold with crude egg white, where contaminating proteins were discarded in the bottom phosphate-rich phase. After the primary phase separation the upper EO50PO50 phase was removed and subjected to temperature-induced (65 °C) phase separation, which resulted in the partitioning of pure lysozyme to the top water phase. The separation system was found to be efficient in achieving the purification of lysozyme in a high yield of 85% and specific activity of 32,300 U/mg of protein, with a purification factor of 16.9 and a concentration of lysozyme in the water phase of 2.3 g/l in two extraction steps.  相似文献   

12.
A high-performance liquid chromatographic method with fluorescence detection for the determination of itopride in human plasma is reported. The sample preparation was based on liquid–liquid extraction of itopride from plasma with t-butylmethylether and dichloromethane (70:30, v/v) mixture followed by a back extraction of the analyte to the phosphate buffer (pH 3.2). Liquid chromatography was performed on an octadecylsilica column (55 mm × 4 mm, 3 μm particles), the mobile phase consisted of acetonitrile–triethylamine–15 mM dihydrogenpotassium phosphate (14.5:0.5:85, v/v/v), pH of the mobile phase was adjusted to 4.8. The run time was 3 min. The fluorimetric detector was operated at 250/342 nm (excitation/emission wavelength). Naratriptan was used as the internal standard. The limit of quantitation was 9.5 ng/ml using 0.5 ml of plasma. The method precision and inaccuracy were less than 8%. The assay was applied to the analysis of samples from a bioequivalence study.  相似文献   

13.
The primary recovery of c‐phycocyanin and b‐phycoerythrin from Spirulina maxima and Porphyridium cruentum, respectively, using an established extraction strategy was selected as a practical model system to study the generic application of polyethylene glycol (PEG)‐phosphate aqueous two‐phase systems (ATPS). The generic practical implementation of ATPS extraction was evaluated for the recovery of colored proteins from microbial origin. A comparison of the influence of system parameters, such as PEG molecular mass, concentration of PEG as well as salt, system pH and volume ratio, on the partition behavior of c‐phycocyanin and b‐phycoerythrin was carried out to determine under which conditions target colored protein and contaminants concentrate to opposite phases. One‐stage processes are proposed for the primary recovery of the colored proteins. PEG1450‐phosphate ATPS extraction (volume ratio (VR) equal to 0.3, tie‐line length (TLL) of 34 % w/w and system pH 7.0) for the recovery of c‐phycocyanin from Spirulina maxima resulted in a primary recovery process that produced a protein purity of 2.1 ± 0.2 (defined as the relationship of 620 nm to 280 nm absorbance) and a product yield of 98 % [w/w]. PEG1000‐phosphate ATPS extraction (i.e., VR = 1.0, PEG 1000, TLL 50 % w/w and system pH 7.0) was preferred for the recovery of b‐phycoerythrin from Porphyridium cruentum, which resulted in a protein purity of 2.8 ± 0.2 (defined as the relationship of 545 nm to 280 nm absorbance) and a product yield of 82 % [w/w]. The purity of c‐phycocyanin and b‐phycoerythrin from the crude extract increased 3‐ and 4‐fold, respectively, after ATPS. The results reported herein demonstrated the benefits of the practical generic application of ATPS for the primary recovery of colored proteins from microbial origin as a first step for the development of purification processes.  相似文献   

14.
A process for the primary recovery of B-phycoerythrin from Porphyridium cruentum exploiting aqueous two-phase systems (ATPS) was developed in order to reduce the number of unit operations and benefit from an increased yield of the protein product. The evaluation of system parameters such as poly(ethylene glycol) (PEG) molecular mass, concentration of PEG as well as salt, system pH and volume ratio was carried out to determine under which conditions the B-phycoerythrin and contaminants concentrate to opposite phases. PEG 1450-phosphate ATPS proved to be suitable for the recovery of B-phycoerythrin because the target protein concentrated to the top phase whilst the protein contaminants and cell debris concentrated in the bottom phase. An extraction ATPS stage comprising volume ratio (Vr) equal to 1.0, PEG 1450 24.9% (w/w), phosphate 12.6% (w/w) and system pH of 8.0 allowed B-phycoerythrin recovery with a purity of 2.9 (estimated as the relation of the 545-280 nm absorbances). The use of ATPS resulted in a primary recovery process that produced a protein purity of 2.9 +/- 0.2 and an overall product yield of 77.0% (w/w). The results reported demonstrated the practical implementation of ATPS for the design of a primary recovery process as a first step for the commercial purification of B-phycoerythrin produced by P. cruentum.  相似文献   

15.
《Process Biochemistry》2007,42(7):1107-1113
The current demands for adenoviral vectors are increasing to satisfy pre-clinical and clinical gene therapy protocols. Consequently, there is a necessity of methodologies to improve production and recovery of intact particles with the minimum effect upon bioactivity. The production of adenoviral vectors in HEK 293 cells and the potential of an alternative aqueous two-phase system (ATPS) composed of PEG 300-phosphate in recovery of adenoviral vectors were investigated. The production of adenoviral vectors was carried out using a 2 L bioreactor equipped with two Rushton impellers. Different parameters including initial cell density, harvesting time and the addition of a buffer (HEPES) were studied in order to improve the production of adenoviral vectors in HEK 293 cells. A yield of 8 × 1011 infective particles was achieved under the conditions characterized by the addition of Pluronic F-68, inoculation at an initial cell density of 3.5 × 105 cells/mL and harvest of infected cells at 48 h post infection (hpi). This material was used for the evaluation of the ATPS recovery processes. It was demonstrated that the chemical components of the ATPS did not have a significant effect upon the infectivity of the adenoviral vectors and a total recovery of approximately 90% was obtained. These findings contribute to the process development for the manufacture of adenoviral vectors and other nanoparticulate bioproducts.  相似文献   

16.
A sensitive and selective quantitative method to determine α-fluoro-β-alanine (FBAL), 5-fluorouracil (5-FU), and capecitabine (Cape) from a single human plasma aliquot (50 μL) has been developed and validated. First, 5-FU and Cape were extracted by liquid–liquid extraction (LLE) using a mixture of acetonitrile and ethyl acetate. This was followed by derivatization with dansyl chloride. The dansyl-derivatives from 5-FU and Cape were further purified using LLE with methyl tertiary-butyl ether (MTBE) and analyzed using a reversed-phase analytical column “Primesep D” (2.1 mm × 50 mm; 5 μm) with embedded basic ion-pairing groups. The remaining aqueous phase containing FBAL was treated with dansyl chloride and the dansyl-FBAL was purified by solid phase extraction. Ultra high pressure liquid chromatography (UPLC) technology on a BEH C18 stationary phase column with 1.7 μm particle size was used for analysis of dansyl-FBAL. The method was validated over the concentration ranges of 10–10,000, 5–5000, and 1–1000 ng/mL for FBAL, 5-FU, and Cape, respectively. The results from assay validation show that the method is rugged, precise, accurate, and well suited to support pharmacokinetic studies where approximately 300 samples can be extracted and analyzed in 1 day.  相似文献   

17.
《Process Biochemistry》2007,42(9):1296-1301
Recombinant Bacillus sphaericus phenylalanine dehydrogenase (PheDH) partitioning was studied in polyethylene glycol (PEG) and ammonium sulfate aqueous two-phase systems (ATPS). The objectives of this work were to investigate influences; varying the molecular mass and concentration of PEG, pH, phase volume ratio (VR), tie-line length (TLL) and concentration of (NH4)2SO4 on the partition behavior of PheDH. It was revealed that the partitioning was not affected by VR, while PEG molecular mass and concentration and (NH4)2SO4 concentration had significant effects on enzyme partitioning. Longer TLL and higher pH resulted in better partitioning into the top phase. Under the most favorable partition conditions with 8.5% (w/w) PEG-6000, 17.5% (w/w) (NH4)2SO4 and VR = 0.25 at pH 8.0, partition coefficient (KE), recovery (R%), yield (Y%) and TLL were achieved 58.7%, 135%, 94.42% and 39.89% (w/w), respectively. Overall, the promising results obtained in this research indicated that the ATPS partitioning can be provided an efficient and powerful tool for recovery and purification of recombinant PheDH.  相似文献   

18.
Carboxymethyl cellulase (CMCase) hydrolyses cellulose into glucose and is useful in various industrial applications. Conventional CMCase purification methods are rather complicated and time-consuming; thus, a cost-effective strategy for CMCase recovery is on demand. Polyethylene-glycol (PEG)/sodium citrate aqueous biphasic system (ABS) was adopted in this study to investigate the effectiveness of the ABS in the recovery of extracellular Bacillus subtilis CMCase from fermentation broth. Comprehensive optimization steps were executed that took into consideration the ABS variables of PEG molecular weight, tie-line length (TLL), volume ratio (VR), crude loading, pH and the addition of sodium chloride (NaCl). A CMCase recovery yield (YB) of 88.82% ± 0.69, a purification fold (PF) of 4.8 and a partition coefficient (K) of 0.44 ± 0.03 were achieved from the bottom phase of the PEG 6000/citrate ABS with TLL of 42.16% (w/w), VR of 0.29, 1% of (w/w) NaCl, pH 7.0, and 20% (w/w) crude loading. CMCase was mainly segregated to the salt-rich bottom phase because of the hydrophilicity of the enzyme surface. The highly effective recovery technique was further confirmed by SDS-PAGE analysis. Overall, the present study suggests that the ABS is a potential purification strategy for extracellular CMCase.  相似文献   

19.
A rapid and selective method for simultaneous determination of cyclophosphamide and its metabolite carboxyethylphosphoramide mustard (CEPM) was developed using online sample preparation and separation with tandem mass spectrometric detection. Diluted plasma was injected onto an extraction column (Cyclone MAX 0.5 mm × 50 mm, >30 μm), the sample matrix was washed with an aqueous solution, and retained analytes were transferred to an analytical column (Gemini 3 μm C18 110A, 100 mm × 2.0 mm) using a gradient mobile phase prior to detection by MS/MS. Analytes were detected in an API-3000 LC-MS/MS system using positive multiple-reaction monitoring mode (m/z 261/140 and 293/221 for CTX and CEPM, respectively). Online extraction recoveries were 76% and 72% for cyclophosphamide and CEPM. Within-day and between-day variabilities were <3.0%, and accuracies were between ?6.9% and 5.2%. This method has been used to measure plasma cyclophosphamide and CEPM concentrations in an ongoing Phase II study in children with newly diagnosed medulloblastoma.  相似文献   

20.
A simple and sensitive high-performance liquid chromatography with ultraviolet detection (HPLC-UV) method has been developed and validated for simultaneous quantification of five local anesthetics in human plasma: procaine, lidocaine, ropivacaine, tetracaine and bupivacaine. In an ice-water bath, 500 μL plasma sample, containing 100 μg/mL neostigmine methylsulfate as anticholinesterase, was spiked with carbamazepine as internal standard and alkalized by sodium hydroxide. Liquid–liquid extraction with ethyl ether was used for plasma sample preparation. The chromatographic separation was achieved on a Kromosil ODS C18 column with a mobile phase consisting of 30 mM potassium dihydrogen phosphate buffer (0.16% triethylamine, pH adjusted to 4.9 with phosphoric acid) and acetonitrile (63/37, v/v). The detection was performed simultaneously at wavelengths of 210 and 290 nm. The chromatographic analysis time was 13 min per sample. The calibration curves of all five analytes were linear between 0.05 and 5.0 μg/mL (r2  0.998). Precision ranged from 1.4% to 7.9% and accuracy was between 91.7% and 106.5%. The validated method is applicable for simultaneous determination of procaine, lidocaine, ropivacaine, tetracaine and bupivacaine for therapeutic drug monitoring and pharmacokinetic study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号