首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major operational problem associated with membrane bioreactors (MBR) is membrane fouling, for which extracellular polymeric substances (EPS) are primarily responsible. In this work both the soluble and bound EPS (i.e. SMP and EPS) produced in an MBR system operating under sludge retention times (SRT) of 10, 15, 20 and 33 days were fractionized by means of membranes having variable molecular weight cutoffs (300 kDa, 100 kDa, 10 kDa & 1 kDa). The results show that increasing the SRT leads to a reduction of SMP and EPS and that these reductions are more pronounced for the SRTs in the range 10–20 days. This reduction is more significant for carbohydrates than for proteins. The decrease of SMP and EPS with increasing SRT from 10 to 20 days led to a significant decrease of the level of fouling. The further increase of SRT to 33 days did not significantly impact on the level of fouling as the SMP and EPS concentrations did not change much.  相似文献   

2.
The effects of low-concentration Cr(VI) (0.4 mg?l?1) on the performance of a submerged membrane bioreactor (SMBR) in the treatment of municipal wastewater, as well as membrane fouling were investigated. Compared with the SMBR for control municipal wastewater, the SMBR for Cr(VI)-containing municipal wastewater had a higher concentration of soluble microbial products (SMP) with lower molecular weights, and smaller sludge particle sizes. Furthermore, low-concentration Cr(VI) induced membrane fouling, especially irreversible membrane pore blocking, which markedly shortened the service life of the membrane.  相似文献   

3.
Z Zhou  F Meng  SR Chae  G Huang  W Fu  X Jia  S Li  GH Chen 《PloS one》2012,7(8):e42270

Background

The complex characteristics and unclear biological fate of biomacromolecules (BMM), including colloidal and soluble microbial products (SMP), extracellular polymeric substances (EPS) and membrane surface foulants (MSF), are crucial factors that limit our understanding of membrane fouling in membrane bioreactors (MBRs).

Findings

In this study, the microbial transformation of BMM was investigated in a lab-scale MBR by well-controlled bioassay tests. The results of experimental measurements and mathematical modeling show that SMP, EPS, and MSF had different biodegradation behaviors and kinetic models. Based on the multi-exponential G models, SMP were mainly composed of slowly biodegradable polysaccharides (PS), proteins (PN), and non-biodegradable humic substances (HS). In contrast, EPS contained a large number of readily biodegradable PN, slowly biodegradable PS and HS. MSF were dominated by slowly biodegradable PS, which had a degradation rate constant similar to that of SMP-PS, while degradation behaviors of MSF-PN and MSF-HS were much more similar to those of EPS-PN and EPS-HS, respectively. In addition, the large-molecular weight (MW) compounds (>100 kDa) in BMM were found to have a faster microbial transformation rate compared to the small-MW compounds (<5 kDa). The parallel factor (PARAFAC) modeling of three-dimensional fluorescence excitation-emission matrix (EEM) spectra showed that the tryptophan-like PN were one of the major fractions in the BMM and they were more readily biodegradable than the HS. Besides microbial mineralization, humification and hydrolysis could be viewed as two important biotransformation mechanisms of large-MW compounds during the biodegradation process.

Significance

The results of this work can aid in tracking the origin of membrane foulants from the perspective of the biotransformation behaviors of SMP, EPS, and MSF.  相似文献   

4.
This study aimed at unfolding the role and mechanisms of chemically enhanced cleaning-in-place (CIP) regimes in fouling control of polytetrafluoroethylene (PTFE) made flat sheet (FS) membrane bio-reactors (MBRs). The trans-membrane pressure (TMP) was successfully maintained below 10 kPa using a daily CIP regime consisting of 100 to 600 mg l?1 of NaOCl and cake layer resistance control was shown to be critical for effective high-flux MBR operation. In contrast, in the control unit without the CIP, the TMP exceeded 35 kPa at a flux of 40 LMH. The extracellular polymeric substances associated with proteins (EPSprotein) were also controlled effectively with a daily application of the CIP to the fouled membrane. Moreover, the CIP prompted a thinner and looser bio-cake layer on the membrane surface, suggesting that in situ CIP can be a favorable method to control FS membrane fouling at high-flux MBR operation.  相似文献   

5.
Wu B  Yi S  Fane AG 《Bioresource technology》2011,102(3):2511-2516
Biomass characteristics and membrane performances in the MBRs operated at a high flux of 30 L/m2 h under different SRTs (10, 30 days, and infinity) were monitored. Results showed that more serious cake-fouling happened in the SRT-infinity MBR, which correlated with the activated sludge characteristics such as smaller floc size and greater EPS amount. DGGE analysis indicated that the microbial community shifted in different ways under various SRTs, which also influenced EPS productions in the MBRs. Different microbial communities were developed on the membrane surfaces at various operating stages and SRTs. Possibly, the activated sludge characteristics (such as MLSS concentration, EPS properties) and hydrodynamic conditions influenced by the SRTs were associated with cake layer development and membrane fouling propensity. Insight into the EPS characteristics and deposition behaviors of bacterial flocs will be crucial to explore appropriate biofouling control strategies in MBRs.  相似文献   

6.
Eun-Ho Kim  Mohammed Dwidar 《Biofouling》2014,30(10):1225-1233
This study evaluated the co-application of bacterial predation by Bdellovibrio bacteriovorus and either alum coagulation or powdered activated carbon adsorption to reduce fouling caused by Escherichia coli rich feed solutions in dead-end microfiltration tests. The flux increased when the samples were predated upon or treated with 100 ppm alum or PAC, but co-treatment with alum and predation gave the best flux results. The total membrane resistance caused by the predated sample was reduced six-fold when treated with 100 ppm PAC, from 11.8 to 1.98 × 1011 m?1, while irreversible fouling (Rp) was 2.7-fold lower. Treatment with 100 ppm alum reduced the total resistance 14.9-fold (11.8 to 0.79 × 1011 m?1) while the Rp decreased 4.25-fold. SEM imaging confirmed this, with less obvious fouling of the membrane after the combined process. This study illustrates that the combination of bacterial predation and the subsequent removal of debris using coagulation or adsorption mitigates membrane biofouling and improves membrane performance.  相似文献   

7.
Biological hydrogen production using a membrane bioreactor   总被引:6,自引:0,他引:6  
A cross-flow membrane was coupled to a chemostat to create an anaerobic membrane bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated with a soil inoculum heat-treated to kill non-spore-forming methanogens. Hydrogen gas was consistently produced at a concentration of 57-60% in the headspace under all conditions. When operated in chemostat mode (no flow through the membrane) at a hydraulic retention time (HRT) of 3.3 h, 90% of the glucose was removed, producing 2200 mg/L of cells and 500 mL/h of biogas. When operated in MBR mode, the solids retention time (SRT) was increased to SRT = 12 h producing a solids concentration in the reactor of 5800 mg/L. This SRT increased the overall glucose utilization (98%), the biogas production rate (640 mL/h), and the conversion efficiency of glucose-to-hydrogen from 22% (no MBR) to 25% (based on a maximum of 4 mol-H(2)/mol-glucose). When the SRT was increased from 5 h to 48 h, glucose utilization (99%) and biomass concentrations (8,800 +/- 600 mg/L) both increased. However, the biogas production decreased (310 +/- 40 mL/h) and the glucose-to-hydrogen conversion efficiency decreased from 37 +/- 4% to 18 +/- 3%. Sustained permeate flows through the membrane were in the range of 57 to 60 L/m(2) h for three different membrane pore sizes (0.3, 0.5, and 0.8 microm). Most (93.7% to 99.3%) of the membrane resistance was due to internal fouling and the reversible cake resistance, and not the membrane itself. Regular backpulsing was essential for maintaining permeate flux through the membrane. Analysis of DNA sequences using ribosomal intergenic spacer analysis indicated bacteria were most closely related to members of Clostridiaceae and Flexibacteraceae, including Clostridium acidisoli CAC237756 (97%), Linmingia china AF481148 (97%), and Cytophaga sp. MDA2507 AF238333 (99%). No PCR amplification of 16s rRNA genes was obtained when archaea-specific primers were used.  相似文献   

8.
Yang XL  Song HL  Chen M  Cheng B 《Bioresource technology》2011,102(20):9490-9496
The effect of polymeric ferric chloride (PFC) addition on phosphorus removal and membrane fouling were investigated in an anoxic/oxic submerged membrane bioreactor. The total phosphorus concentration in effluent averaged at 0.26 mg/L with PFC addition of 10-15 mg/L, while the rate of membrane fouling increased 1.6 times over the control MBR (without PFC addition). Three-dimensional excitation-emission matrix fluorescence spectroscopy and Gel Filtration Chromatography analysis indicated that soluble microbial byproduct-like materials and large molecules (M(W)>100 kDa) were one of the main contributors of biofouling. Fourier transform infrared spectrum confirmed that the major components of the cake layer were proteins and polysaccharides materials. Scanning electron microscopy demonstrated that membrane surfaces were covered with compact gel layer formed by organic substances and Energy Dispersive X-ray analysis indicated that ferric metals were the most important inorganic pollutants. Consequently, soluble organic substances and dose of PFC should be controlled to minimize membrane fouling.  相似文献   

9.
《Process Biochemistry》2010,45(10):1699-1706
Four flat-sheet membrane modules, which were operated under four different filtration modes but with the same treatment capacity, were used to treat synthetic wastewater in a submerged membrane bioreactor (MBR). Particle size distribution (PSD), gel filtration chromatography (GFC), capillary suction time (CST), and three-dimensional excitation–emission matrix (EEM) fluorescence spectroscopy were used to characterize membrane fouling properties. The high instantaneous flux induced faster fouling rate and continuous filtration mode was the most applicable filtration mode in this study. The average particle size of all foulants was smaller than that of bulk sludge; and the higher the instantaneous flux was adopted, the larger the average particle size of foulants would be. Only macromolecule substances were detected in all the foulants. The macromolecule substances in the influent were degraded by microorganism and retained by membrane, and small molecular substances could pass through membrane pores to enter the effluent. The membrane foulants had poorer dewaterability compared to the mixed liquor confirmed by CST measurement. Although there were several peaks associated with protein-like fluorophores, fulvic acid-like substances and humic acid-like organics in soluble microbial products (SMP) and extracellular polymeric substances (EPS) sample, it was found that the dominant fluorescence substances in membrane foulants were protein-like substances.  相似文献   

10.
The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L−1 respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests.  相似文献   

11.
Membrane fouling by soluble microbial products (SMP) remains one of the limitations for widespread applications of membrane bioreactor (MBR) systems. Over the past two decades, the characteristics and behaviors of SMP have attracted much attention, and efforts have been dedicated to clarify their role in membrane fouling in MBRs. However, to date, there are only few reviews directly relating this area, and the objective of previous reviews is to concentrate on SMP and their implications in biological treatment systems and their effluents. This brief review relating only to SMP-caused membrane fouling evaluation at the fractional level (SMP key components, sub-fractions and hydrophilic and hydrophobic fractions) and at the overall level (SMP overall roles, characteristics and factors) is presented, which could greatly help researchers and engineers to better understand SMP actual contribution to membrane fouling and adopt effective measures to avoid SMP-caused fouling in MBRs.  相似文献   

12.
Soluble microbial products (SMP) are soluble organic compounds released during normal biomass metabolism in mixed culture biotechnology. In this review, we give the up-to-date status on several essential SMP issues: mechanisms of SMP formation, differentiation between utilization-associated products (UAP) and biomass-associated products (BAP), biodegradability of the SMP components, how formation of SMP by autotrophs controls effluent quality and supports a substantial population of heterotrophs, mathematical modeling that includes SMP, and improving effluent quality by controlling SMP. We also present two timely examples that highlight our current understanding and give an indication of how SMP affects the performance of modern mixed culture biotechnology: membrane fouling of membrane bioreactors (MBRs) and the dynamics of SMP in anaerobic systems.  相似文献   

13.
Tsai YP  Chen HT 《Bioresource technology》2011,102(23):11043-11047
This study explored the influence of sludge retention time (SRT) on tolerance of copper invasion for polyphosphate accumulating organisms (PAOs) in an enhanced biological phosphorus removal (EBPR). The experimental data showed the anaerobic polyhydroxyalkanoates (PHA) storage for the sludge at 10d SRT was less influenced by copper invasion than those at 5d and 15d SRTs. The reaction of PAOs aerobically taking up phosphate for the sludge at 5d or 15d SRT almost ceased at 2 mg Cu L−1, whereas PAOs in the sludge at 10d SRT retained half of the ability to take up phosphate. Both the PHAs degradation and synthesis rates decreased with increasing copper concentration, regardless of the SRTs. However, the copper inhibition of the former was greater than that of the later.  相似文献   

14.
Sun FY  Wang XM  Li XY 《Bioresource technology》2011,102(7):4718-4725
A membrane bioreactor (MBR) and an activated sludge process (ASP) were operated side by side to evaluate the change of sludge supernatant characteristics and the evolution of the sludge fouling propensity. The MBR sludge had a higher organic concentration and more biopolymer clusters (BPC) in the supernatant compared with ASP. BPC increased in both concentration and size in the MBR. The results show that the change in the liquid-phase property had a profound effect on the sludge fouling propensity. MBR operation transformed typical activated sludge to MBR sludge with a higher fouling propensity. Distinct from the ASP, membrane filtration retained soluble microbial products (SMP) within the MBR, and the vast membrane surface provided a unique environment for the transformation of SMP to large size BPC, leading to further sludge deposition on the membrane surface. Thus, membrane filtration is the crucial cause of the inevitable fouling problem in submerged MBRs.  相似文献   

15.
In this study, the effects of organic loading rate (OLR) and the addition of powdered activated carbon (PAC) on the performance and membrane fouling of MBR were conducted to treat real pharmaceutical process wastewater. Over 145 days of operation, the MBR system was operated at OLRs ranging from 1 to 2 kg COD m?3 day?1 without sludge wasting. The addition of PAC provided an improvement in the flux, despite an increase in the OLR:PAC ratio. The results demonstrated that the hybrid PAC-MBR system maintained a reduced amount of membrane fouling and steadily increased the removal performance of etodolac. PAC addition reduced the deposition of extracellular polymeric substance and organic matter on the membrane surface and resulted an increase in COD removal even at higher OLRs with low PAC addition. Membrane fouling mechanisms were investigated using combined adsorption fouling models. Modified fouling index values and normalized mass transfer coefficient values indicated that predominant fouling mechanism was cake adsorption.  相似文献   

16.
The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs), two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.  相似文献   

17.
The use of membrane sequencing batch reactors, operated at HRT of 8, 16 and 24 h, was considered for the treatment of a synthetic petroleum wastewater. Increase in HRT resulted in statistically significant decrease in MLSS. Removal efficiencies higher than 97% were found for the three model hydrocarbon pollutants at all HRTs, with air stripping making a small contribution to overall removal. Particle size distribution (PSD) and microscopic analysis showed reduction in the protozoan populations in the activated sludge with decreasing HRT. PSD analysis also showed a higher proportion of larger and smaller sized particles at the lowest HRT. The rate of membrane fouling was found to increase with decreasing HRT; SMP, especially carbohydrate SMP, and mixed liquor apparent viscosity also showed a pronounced increase with decreasing HRT, whereas the concentration of EPS and its components decreased. FTIR analysis identified organic compounds as the main component of membrane pore fouling.  相似文献   

18.
The flux variations and resistances accumulated during filtration of activated sludge with sludge retention time (SRT) of 15, 30, and 60 days were analyzed to investigate the dynamic fouling behavior in a submerged nonwoven bioreactor. Different SRT values varied sludge condition and particle size distribution in the supernatants, which caused dissimilar fouling characteristics. Short-term fouling of the nonwoven bioreactor during filtration of activated sludge with SRT of 15 days was fully reversible, and the resistance percentages of solutes, colloids, and suspended solids were 6%, 27%, and 67%, respectively. On the other hand, significant increases of colloid resistance, such as with the filtration of activated sludge with SRT of 30 and 60 days, were related to the occurrence of irreversible fouling. The phenomenon of pore blocking by particles or colloids with size analogous to the pore of nonwoven fabric was a decisive factor leading to irreversible fouling in the large-pore materials.  相似文献   

19.
The removal of polycyclic aromatic hydrocarbons by membrane bioreactor (MBR) under aerobic conditions had been studied using naphthalene (NAP) and phenanthrene (PHE) as model compounds. Three MBRs with submerged ultra-filtration hollow fiber membranes were operated applying different operational conditions during 6.5 months. Complete NAP and PHE removal was obtained applying loads of 7 gNAP kgTSS?1 day?1 and 0.5 gPHE kgTSS?1 day?1, while the organic loading rate was adjusted to 0.26 kgCOD kgTSS?1 day?1, with the biomass concentration being 6000 mgTSS L?1, the hydraulic retention time (HRT) 8 h and the solids retention time (SRT) 30 days. Load increases, as well as HRT and SRT reductions, affected the NAP and PHE removals. Biodegradation was found to be the major NAP and PHE removal mechanism. There was no NAP accumulation in the biomass. Low PHE quantities remain sorbed in the biomass and the contribution of the sorption in the removal of this compound was estimated to be less than 0.01 %. The volatilization does not contribute to the PHE removal in MBRs, but the contribution of NAP volatilization can reach up to 0.6 % when HRT of 8 h is applied.  相似文献   

20.
The impact of typical anion‐exchange flowthrough conditions on the IgG mass loading of an anion‐exchange membrane scale‐down unit (Mustang® Q coin) was investigated. High performance size‐exclusion chromatography and multiangle laser light scattering results suggested the presence of a small fraction of IgG aggregates with average radius >100 nm under anion‐exchange flowthrough conditions. The small filtration area presented by the 0.35 mL membrane volume Mustang® Q coin limited the membrane throughput due to fouling from the aggregates at higher antibody loading. Data in this report indicated that a 0.2 μm hybrid polyethersulfone and polyvinylidene fluoride membrane in‐line prefilter with a minimum filtration area of 20 sq cm alleviated the Mustang® Q coin fouling. The combined cake filtration and intermediate blocking model was proposed as the most likely membrane pore blocking mechanism. Increasing the filtration area in the in‐line prefilter resulted in higher IgG mass throughput. Thus, using an appropriately sized in‐line prefilter could provide more robust antibody throughput performance on scale‐down membrane anion‐exchange units. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号