首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We propose a new method of optimisation of backbone torsion-energy parameters in the force field for molecular simulations of protein systems. This method is based on the idea of balancing the secondary-structure-forming tendencies, namely, those of α-helix and β-sheet structures. We perform a minimisation of the backbone dihedral angle-based root-mean-square deviation of the helix and β structure regions in many protein structures. As an example, we optimised the backbone torsion-energy parameters of AMBER parm96 force field using 100 protein molecules from the Protein Data Bank. We then performed folding simulations of α-helical and β-hairpin peptides, using the optimised force field. The results imply that the new force-field parameters give structures more consistent with the experimental implications than the original AMBER parm96 force field.  相似文献   

2.
We performed folding simulations of three proteins using four force fields, AMBER parm96, AMBER parm99, CHARMM 27 and OPLS-AA/L, in order to examine the features of these force fields. We studied three proteins, protein A (all α-helix), cold-shock protein (all β-strand) and protein G (α/β-structures), for the folding simulations. For the simulation, we used the simulated annealing molecular dynamics method, which was performed 50 times for each protein using the four force fields. The results showed that the secondary-structure-forming tendencies are largely different among the four force fields. AMBER parm96 favours β-bridge structures and extended β-strand structures, and AMBER parm99 favours α-helix structures and 310-helix structures. CHARMM 27 slightly favours α-helix structures, and there are also π-helix and β-bridge structures. OPLS-AA/L favours α-helix structures and 310-helix structures.  相似文献   

3.
The effects of Cu2+ binding and the utilization of different force fields when modeling the structural characteristics of α-syn12 peptide were investigated. To this end, we performed extensive temperature replica exchange molecular dynamics (T-REMD) simulations on Cu2+-bound and unbound α-syn12 peptide using the GROMOS 43A1, OPLS-AA, and AMBER03 force fields. Each replica was run for 300 ns. The structural characteristics of α-syn12 peptide were studied based on backbone dihedral angle distributions, free-energy surfaces obtained with different reaction coordinates, favored conformations, the formation of different Turn structures, and the solvent exposure of the hydrophobic residues. The findings show that AMBER03 prefers to sample helical structures for the unbound α-syn12 peptide and does not sample any β-hairpin structure for the Cu2+-bound α-syn12 peptide. In contrast, the central structure of the major conformational clusters for the Cu2+-bound and unbound α-syn12 peptide according to simulations performed using the GROMOS 43A1 and OPLS-AA force fields is a β-hairpin with Turn9-6. Cu2+ can also promote the formation of the β-hairpin and increase the solvent exposure of hydrophobic residues, which promotes the aggregation of α-syn12 peptide. This study can help us to understand the mechanisms through which Cu2+ participates in the fibrillation of α-syn12 peptide at the atomic level, which in turn represents a step towards elucidating the nosogenesis of Parkinson’s disease.
Figure
The representative structures of Cu2+-bound and unbound α-syn12 peptide using three different force fields  相似文献   

4.
We present here the parmbsc0 force field, a refinement of the AMBER parm99 force field, where emphasis has been made on the correct representation of the alpha/gamma concerted rotation in nucleic acids (NAs). The modified force field corrects overpopulations of the alpha/gamma = (g+,t) backbone that were seen in long (more than 10 ns) simulations with previous AMBER parameter sets (parm94-99). The force field has been derived by fitting to high-level quantum mechanical data and verified by comparison with very high-level quantum mechanical calculations and by a very extensive comparison between simulations and experimental data. The set of validation simulations includes two of the longest trajectories published to date for the DNA duplex (200 ns each) and the largest variety of NA structures studied to date (15 different NA families and 97 individual structures). The total simulation time used to validate the force field includes near 1 mus of state-of-the-art molecular dynamics simulations in aqueous solution.  相似文献   

5.
Towards a molecular dynamics consensus view of B-DNA flexibility   总被引:1,自引:1,他引:0       下载免费PDF全文
We present a systematic study of B-DNA flexibility in aqueous solution using long-scale molecular dynamics simulations with the two more recent versions of nucleic acids force fields (CHARMM27 and parmbsc0) using four long duplexes designed to contain several copies of each individual base pair step. Our study highlights some differences between pambsc0 and CHARMM27 families of simulations, but also extensive agreement in the representation of DNA flexibility. We also performed additional simulations with the older AMBER force fields parm94 and parm99, corrected for non-canonical backbone flips. Taken together, the results allow us to draw for the first time a consensus molecular dynamics picture of B-DNA flexibility.  相似文献   

6.
The hallmark of Parkinson’s disease (PD) is the intracellular protein aggregation forming Lewy Bodies (LB) and Lewy neuritis which comprise mostly of a protein, alpha synuclein (α-syn). Molecular dynamics (MD) simulation methods can augment experimental techniques to understand misfolding and aggregation pathways with atomistic resolution. The quality of MD simulations for proteins and peptides depends greatly on the accuracy of empirical force fields. The aim of this work is to investigate the effects of different force fields on the structural character of β hairpin fragment of α-syn (residues 35–56) peptide in aqueous solution. Six independent MD simulations are done in explicit solvent using, AMBER03, AMBER99SB, GROMOS96 43A1, GROMOS96 53A6, OPLS-AA, and CHARMM27 force fields with CMAP corrections. The performance of each force field is assessed from several structural parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), formation of β-turn, the stability of folded β-hairpin structure, and the favourable conformations obtained for different force fields. In this study, CMAP correction of CHARMM27 force field is found to overestimate the helical conformation, while GROMOS96 53A6 is found to most successfully capture the conformational dynamics of α-syn β-hairpin fragment as elicited from NMR.  相似文献   

7.
We report a consistent set of AMBER force-field parameters for the most common phosphorylated amino acids, phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine in different protonation states. The calculation of atomic charges followed the original restrained electrostatic potential fitting procedure used to determine the charges for the parm94/99 parameter set, taking α-helical and β-strand conformations of the corresponding ACE-/NME-capped model peptide backbone into account. Missing force-field parameters were taken directly from the general AMBER force field (gaff) and the parm99 data set with minor modifications, or were newly generated based on ab initio calculations for model systems. Final parameters were validated by geometry optimizations and molecular-dynamics simulations. Template libraries for the phosphorylated amino acids in Leap format and corresponding frcmod parameter files are made available. Figure Schematic illustration of the systems used for parameter generation. Acid hydrogens are shown in red Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

8.
Free energy landscapes of peptide conformations werecalibrated by ab initiomolecular orbital calculations, after enhancedconformational sampling using the multicanonical molecular dynamicssimulations. Three different potentials of mean force for an isolateddipeptide were individually obtained using the conventional force fields,AMBER parm94, AMBER parm96, and CHARMm22. Each potential ofmean force was calibrated based on the umbrella sampling algorithm fromthe adiabatic energy map that was calculated separately by the abinitiomolecular orbital method. All the calibrated potentials of mean forcecoincided well. The calibration was applied to a peptide in explicit water,and the calibrated free energy landscapes did not depend on the force fieldused in conformational sampling, as far as the conformational space waswell sampled.  相似文献   

9.
10.
4-Amino-(D3)-trishomocubane-4-carboxylic acid is a constrained alpha-amino acid residue that exhibits promising conformational characteristics, i.e., helical and beta-turns. As part of the development of conformational guidelines for the design of peptides and protein surrogates, the conformational energy calculations on trishomocubane using molecular mechanics and ab initio methods are presented. The C(alpha) carbon of trishomocubane forms part of the cyclic structure, and consequently a peptidic environment was simulated with an acetyl group on its N-terminus and a methylamide group on its C-terminus. Ramachandran maps computed at the molecular mechanics level using the standard AMBER (parm94) force field libraries compared reasonably well with the corresponding maps computed at the Hartree Fock level, using the 6-31G* basis set. Trishomocubane peptide (Ac-Tris-NHMe) is characterized by four low energy conformers corresponding to the C7ax, C7eq, 3(10), and alpha(L) helical structures.  相似文献   

11.
Macromolecular function arises from structure, and many diseases are associated with misfolding of proteins. Molecular simulation methods can augment experimental techniques to understand misfolding and aggregation pathways with atomistic resolution, but the reliability of these predictions is a function of the parameters used for the simulation. There are many biomolecular force fields available, but most are validated using stably folded structures. Here, we present the results of molecular dynamics simulations on the intrinsically disordered amyloid β-peptide (Aβ), whose misfolding and aggregation give rise to the symptoms of Alzheimer’s disease. Because of the link between secondary structure changes and pathology, being able to accurately model the structure of Aβ would greatly improve our understanding of this disease, and it may facilitate application of modeling approaches to other protein misfolding disorders. To this end, we compared five popular atomistic force fields (AMBER03, CHARMM22 + CMAP, GROMOS96 53A6, GROMOS96 54A7, and OPLS-AA) to determine which could best model the structure of Aβ. By comparing secondary structure content, NMR shifts, and radius of gyration to available experimental data, we conclude that AMBER03 and CHARMM22 + CMAP over-stabilize helical structure within Aβ, with CHARMM22 + CMAP also producing elongated Aβ structures, in conflict with experimental findings. OPLS-AA, GROMOS96 53A6, and GROMOS96 54A7 produce very similar results in terms of helical and β-strand content, calculated NMR shifts, and radii of gyration that agree well with experimental data.  相似文献   

12.
Abstract

We generated φ -ψ conformational energy contour maps for the of N-acetyl alanine N'-methyl amide using the molecular mechanics forcefields AMBER, AMBER3, BI085, CFF91, CVFF, MM2, MM3, MM+, and SYBYL. With MM2, MM3, and MM+, we used a dielectric constant of ? = 1.5, the default effective value for these forcefields. With the other forcefields we used ? = 1 and 4, except with SYBYL, which, in Spartan 3.1, has no electrostatic term. All forcefields yielded the Ceq 7 conformation as a low-energy minimum or the global minimum. Most of the forcefields also yielded a minimum-energy conformation in the C5R, and αt. regions of the φ -ψ contour map. Fewer of the forcefields yielded a minimum in the Cax 7 region; however, adiabatic relaxation frequently lowered the relative energy of this region. Based on the appearance of the φ -ψ maps, the following pairs of forcefields were broadly similar (but not identical) to each other but dissimilar to the other pairs: AMBER3 and AMBER, BI085 and CHARMM, MM+ and MM2, SYBYL and ECEPP, and CFF91 and MM3. We used the data from the φ -ψ contour maps to compute the characteristic ratio of poly-L-alanine. Most of the computed values deviated significantly from the experimental value. Only the computed characteristic ratio of CFF91 without adiabatic relaxation at ? = 4 and MM3 without adiabatic relaxation at ? = 1.5 agreed with the experimental value.  相似文献   

13.
The conformational profile of the conformationally constrained cyclohexane analogs of phenylalanine (1-amino-2-phenylcyclohexanecarboxylic acids, c6Phe) was assessed using computational methods. For this purpose, the conformational space of the N-acetyl methylamide derivatives of the stereoisomers (2S,3R)c6Phe and (2S,3S)c6Phe was explored by computing their respective Ramachandran maps, and low-energy minima were characterized at molecular mechanics level by means of the AMBER program, using the parm94 force field set of parameters. In order to assess the performance of the molecular mechanics calculations, each of the low-energy conformations was also investigated further at the ab initio level. Accordingly, the molecular mechanics geometries were used as starting conformations to perform full geometry optimizations at the Hartree-Fock level, using a 6-31G(d) basis set. Analysis of the results revealed that the cyclohexane structure directly induces some restrictions on the backbone, and constrains the orientation of the aromatic side-chain to two narrow regions for each stereoisomer. The conformational profile of these amino acids is then explained on the grounds of the interaction between the rigidly held phenyl ring and the main chain NH and CO groups. The results obtained are in good accordance with the experimental observations.  相似文献   

14.
Hegefeld WA  Kuczera K  Jas GS 《Biopolymers》2011,95(7):487-502
We have employed a combination of experiment and simulation to characterize the ensemble of structures sampled by human Peptide YY (hPYY), an important member of the neuropeptide Y family. Experimental structural characterization carried out with far UV circular dichroism spectroscopy and Fourier Transform-Infrared measurements confirmed that the major feature of the secondary structure of hPYY is the α-helix, encompassing about half the peptide residues, with smaller contributions from turn and β-sheet like structures. The peptide undergoes thermal denaturation characterized by a melting temperature of 48°C with an enthalpy change of -24.5 kcal/mol and entropy change of -76.2 cal/(mol K). In our computational studies, based on a 4-μsec MD trajectory generated with the AMBER03 potential, we found excellent agreement of the predicted features with experimental data, including a stable C-terminal helix, a central turn and conservation of about 80% of measured long-range NOE contacts. The main structural fluctuations involved partial helix unwinding and large-scale motions of the N-terminal. Our joint experimental/computational approach leads to several insights into the biological function of PYY. We conclude that the C-terminal helix is crucial for the structural integrity of PYY. The structures and motions found in the simulations suggest microscopic explanations for observed changes in biological activity of the peptide upon mutation and truncation. We also performed microsecond-length MD and replica-exchange simulations of hPYY with the OPLS-AA force field, for which computed structures did not agree well with experimental data, predicting significant loss of helicity and NOE contacts.  相似文献   

15.
To assess the accuracy of the molecular dynamics (MD) models of nucleic acids, a detailed comparison between MD-calculated and NMR-observed indices of the dynamical structure of DNA in solution has been carried out. The specific focus of our comparison is the oligonucleotide duplex, d(CGCGAATTCGCG)(2), for which considerable structural data have been obtained from crystallography and NMR spectroscopy. An MD model for the structure of d(CGCGAATTCGCG)(2) in solution, based on the AMBER force field, has been extended with a 14 ns trajectory. New NMR data for this sequence have been obtained in order to allow a detailed and critical comparison between the calculated and observed parameters. Observable two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY) volumes and scalar coupling constants were back-calculated from the MD trajectory and compared with the corresponding NMR data. The comparison of these results indicate that the MD model is in generally good agreement with the NMR data, and shows closer accord with experiment than back-calculations based on the crystal structure of d(CGCGAATTCGCG)(2) or the canonical A or B forms of the sequence. The NMR parameters are not particularly sensitive to the known deficiency in the AMBER MD model, which is a tendency toward undertwisting of the double helix when the parm.94 force field is used. The MD results are also compared with a new determination of the solution structure of d(CGCGAATTCGCG)(2) using NMR dipolar coupling data.  相似文献   

16.
Abstract

We performed molecular dynamics simulations for various oligomers with different β-sheet conformations consisting of α-Synuclein 71–82 residues using an all atom force field and explicit water model. Tetramers of antiparallel β-sheet are shown to be stable, whereas parallel sheets are highly unstable due to the repulsive interactions between bulky and polar side chains as well as the weaker backbone hydrogen bonds. We also investigated the stabilities of double antiparallel β-sheets stacked with asymmetric and symmetric geometries. Our results show that this 12 amino acid residue peptide can form stable β-sheet conformers at 320K and higher temperatures. The backbone hydrogen bonds in β-sheet and the steric packing between hydrophobic side chains between β-sheets are shown to give conformational stabilities.  相似文献   

17.
Human (Hu) familial prion diseases are associated with about 40 point mutations of the gene coding for the prion protein (PrP). Most of the variants associated with these mutations are located in the globular domain of the protein. We performed 50 ns of molecular dynamics for each of these mutants to investigate their structure in aqueous solution. Overall, 1.6 μs of molecular dynamics data is presented. The calculations are based on the AMBER(parm99) force field, which has been shown to reproduce very accurately the structural features of the HuPrP wild type and a few variants for which experimental structural information is available. The variants present structural determinants different from those of wild-type HuPrP and the protective mutation HuPrP(E219K-129M). These include the loss of salt bridges in α23 regions and the loss of π-stacking interactions in the β22 loop. In addition, in the majority of the mutants, the α3 helix is more flexible and Y169 is more solvent exposed. The presence of similar traits in this large spectrum of mutations hints to a role of these fingerprints in their known disease-causing properties. Overall, the regions most affected by disease-linked mutations in terms of structure and/or flexibility are those involved in the pathogenic conversion to the scrapie form of the protein and in the interaction with cellular partners. These regions thus emerge as optimal targets for antibody- and ligand-binding studies.  相似文献   

18.
The optimal combination of force field and water model is an essential problem that is able to increase molecular dynamics simulation quality for different types of proteins and peptides. In this work, an attempt has been made to explore the problem by studying H1 peptide using four different models based on different force fields, water models and electrostatic schemes. The driving force for H1 peptide conformation transition and the reason why the OPLS-AA force field cannot produce the β-hairpin structure of H1 peptide in solution while the GROMOS 43A1 force field can do were investigated by temperature replica exchange molecular dynamics simulation (T-REMD). The simulation using the GROMOS 43A1 force field preferred to adopt a β-hairpin structure, which was in good agreement with the several other simulations and the experimental evidences. However, the simulation using the OPLS-AA force field has a significant difference from the simulations with the GROMOS 43A1 force field simulation. The results show that the driving force in H1 peptide conformation transition is solvent exposure of its hydrophobic residues. However, the subtle balances between residue-residue interactions and residue-solvent interaction are disrupted by using the OPLS-AA force field, which induced the reduction in the number of residue-residue contact. Similar solvent exposure of the hydrophobic residues is observed for all the conformations sampled using the OPLS-AA force field. For H1 peptide which exhibits large solvent exposure of the hydrophobic residues, the GROMOS 43A1 force field with the SPC water model can provide more accurate results.  相似文献   

19.
P K Sengupta  S Krimm 《Biopolymers》1985,24(8):1479-1491
The Raman and ir spectra of α-helical poly(L -glutamic acid) have been assigned on the basis of a normal mode calculation for this structure. The force field was based on our previously refined main-chain force constants for α-poly(L -alanine) and side-chain force constants for β-calcium–poly(L -glutamate). Despite the identical backbone α-helical structures, significantly different frequencies are calculated, and observed, in the amide III and backbone stretch regions of α-poly(L -glutamic acid), as compared with α-poly(L -alanine). This clearly demonstrates the influence of side-chain structure on mainchain vibrational modes.  相似文献   

20.
Multiple variants of the AMBER all-atom force field were quantitatively evaluated with respect to their ability to accurately characterize helix-coil equilibria in explicit solvent simulations. Using a global distributed computing network, absolute conformational convergence was achieved for large ensembles of the capped A21 and Fs helical peptides. Further assessment of these AMBER variants was conducted via simulations of a flexible 164-residue five-helix-bundle protein, apolipophorin-III, on the 100 ns timescale. Of the contemporary potentials that had not been assessed previously, the AMBER-99SB force field showed significant helix-destabilizing tendencies, with beta bridge formation occurring in helical peptides, and unfolding of apolipophorin-III occurring on the tens of nanoseconds timescale. The AMBER-03 force field, while showing adequate helical propensities for both peptides and stabilizing apolipophorin-III, (i) predicts an unexpected decrease in helicity with ALA→ARG+ substitution, (ii) lacks experimentally observed 310 helical content, and (iii) deviates strongly from average apolipophorin-III NMR structural properties. As is observed for AMBER-99SB, AMBER-03 significantly overweighs the contribution of extended and polyproline backbone configurations to the conformational equilibrium. In contrast, the AMBER-99φ force field, which was previously shown to best reproduce experimental measurements of the helix-coil transition in model helical peptides, adequately stabilizes apolipophorin-III and yields both an average gyration radius and polar solvent exposed surface area that are in excellent agreement with the NMR ensemble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号