首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The development of recombinant DNA has made it feasible to produce a wide range of valuable protein products in the bacterium Escherichia coli. Extraction of intracellular protein from E. coli is traditionally achieved by mechanical, chemical or enzymatic disruption technology. In this study, thermolysis, which differs from the traditional ones, is presented for disruption of E. coli cells to release recombinant thermostable enzyme. Heat treatment of E. coli at 80 °C is highly effective to destroy the integrity of the bacterial cell wall and release the recombinant thermostable enzyme. At the same time of disruption, the recombinant thermostable enzyme was partially purified. Moreover, thermolysis was carried out in fermentation broth in situ, which may make it a more applicable approach for industrial-scale processes.  相似文献   

2.
3.
A gene coding for a thermostable esterase was isolated by functional screening of Escherichia coli cells that had been transformed with fosmid environmental DNA libraries constructed with metagenomes from thermal environmental samples. The gene conferring esterase activity on E. coli grown on tributyrin agar was composed of 936 bp, corresponding to 311 amino acid residues with a molecular mass of 34 kDa. The enzyme showed significant amino acid similarity (64%) to the enzyme from a hyperthermophilic archaeon, Pyrobaculum calidifontis. An amino acid sequence comparison with other esterases and lipases revealed that the enzyme should be classified as a new member of the hormone-sensitive lipase family. The recombinant esterase that was overexpressed and purified from E. coli was active above 30 degrees C up to 95 degrees C and had a high thermal stability. It displayed a high degree of activity in a pH range of 5.5 to 7.5, with an optimal pH of approximately 6.0. The best substrate for the enzyme among the p-nitrophenyl esters (C(4) to C(16)) examined was p-nitrophenyl caproate (C(6)), and no lipolytic activity was observed with esters containing an acyl chain length of longer than 10 carbon atoms, indicating that the enzyme is an esterase and not a lipase.  相似文献   

4.
The high-pressure homogenization of Escherichia coli, strain JM101, containing inclusion bodies of recombinant porcine somatotropin was investigated. A novel technique employing an analytical disc centrifuge was used to monitor the disruption. This a direct technique which measures cell disintegration rather than soluble protein release. The technique is particularly suited to measurements where the disruption approaches 100%. The disk centrifuge provides a size distribution of the homogenate, and furnishes evidence for the preferential disruption of larger cells. For E. coli containing inclusion bodies, and increase in the cell feed concentration from 145 g/L (wet weight) to 330 g/L resulted is poorer homogenization. Poorer disruption was also obtained by lowering the feed temperature from 20 degrees C to 5 degrees C. Only slight variations in performance were obtained by increasing the feed pH from 7.5 to 9.0 or by storing the feed at 4 degrees C for 24 h prior to disruption. Comparison with uninduced E. coli strain JM101, showed that the disruption obtained is higher for bacteria containing a recombinant inclusion body.  相似文献   

5.
Morana A  Di Prizito N  Aurilia V  Rossi M  Cannio R 《Gene》2002,283(1-2):107-115
A genomic library of the hyperthermophilic archaeon Sulfolobus solfataricus strain MT4 was constructed in Escherichia coli using a cloning vector not designed for heterologous gene expression. One positive clone exhibiting acquired thermophilic acetylesterase activity was directly detected by an in situ plate assay using a colony staining procedure with the chromogenic substrate beta-naphthyl acetate. The plasmid isolated from the clone contained a 3.3 kb genomic fragment from S. solfataricus and a full-length esterase coding sequence could be identified. Expression of the active thermostable esterase in E. coli was independent of isopropyl-beta-D-thiogalactopyranoside and of the kind of vector, suggesting that the archaeal esterase gene was controlled by fortuitous bacterial-like sequences present in its own 5' flanking region, not by the bacterial lac promoter or other serendipitous vector-located sequences. The protein, partially purified by thermoprecipitation of the host proteins at high temperature and gel exclusion chromatography, showed a homo-tetrameric structure with a subunit of molecular mass of 32 kDa which was in perfect agreement with that deduced from the cloned gene. The same protein was revealed in S. solfataricus cell extracts, thus demonstrating its functional occurrence in vivo under the cell culture conditions tested. The recombinant enzyme exhibited high thermal activity and thermostability with optimal activity between pH 6.5 and 7.0. The hydrolysis of p-nitrophenyl esters of fatty acids (from C(2) to C(8)) allowed the enzyme to be classified as a short length acyl esterase.  相似文献   

6.
An open reading frame of the hyperthermophilic archaeon Aeropyrum pernix K1 APE2325, which composed of 474 bases, was cloned and expressed in Escherichia coli BL21 (DE3) Codon Plus-RIL. The recombinant protein was purified by Ni-chelation affinity chromatography. It showed a single band with a molecular mass of 18kDa in SDS-PAGE. The purified enzyme exhibited both phospholipase A(2) and esterase activities with the optimal catalytic temperature at 90 degrees C. The enzyme activity was Ca(2+)-independent. Kinetic analysis revealed its Km, k cat, and Vm for the p-nitrophenyl propionate substrate were 103microM, 39s(-1), and 249micromol/min/mg, respectively. The recombinant protein was thermostable and its half-life at 100 degrees C was about 1h.  相似文献   

7.
Bacteriocin release proteins (BRPs) can be used for the release of heterologous proteins from the Escherichia coli cytoplasm into the culture medium. The gene for a highly thermostable alkaline protease was cloned from Bacillus stearothermophilus F1 by the polymerase chain reaction. The recombinant F1 protease was efficiently excreted into the culture medium using E. coli XL1-Blue harboring two vectors: pTrcHis bearing the protease gene and pJL3 containing the BRPs. Both vectors contain the E. coli lac promoter-operator system. In the presence of 40 microM IPTG, the recombinant F1 protease and the BRP were expressed and mature F1 protease was released into the culture medium. This opens the way for the large-scale production of this protease in E. coli. The recombinant enzyme was purified through a one-step heat treatment at 70 degrees C for 3h and this method purified the protease to near homogeneity. The purified enzyme showed a pH optimum of 9.0, temperature optimum of 80 degrees C, and was stable at 70 degrees C for 24h in the pH range from 8.0 to 10.0. The enzyme exhibited a high degree of thermostability with a half-life of 4 h at 85 degrees C, 25 min at 90 degrees C, and was inhibited by the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF).  相似文献   

8.
Four open reading frames encoding putative nitrilases were identified in the genomes of the hyperthermophilic archaea Pyrococcus abyssi, Pyrococcus horikoshii, Pyrococcus furiosus, and Aeropyrum pernix (growth temperature 90-100 degrees C). The nitrilase encoding genes were cloned and overexpressed in Escherichia coli. Enzymatic activity could only be detected in the case of Py. abyssi. This recombinant nitrilase was purified by heat treatment of E. coli crude extract followed by anion-exchange chromatography with a yield of 88% and a specific activity of 0.14 U/mg. The recombinant enzyme, which represents the first archaeal nitrilase, is a dimer (29.8 kDa/subunit) with an isoelectric point of pI 5.3. The nitrilase is active at a broad temperature (60-90 degrees C) and neutral pH range (pH 6.0-8.0). The recombinant enzyme is highly thermostable with a half-life of 25 h at 70 degrees C, 9 h at 80 degrees C, and 6 h at 90 degrees C. Thermostability measurements by employing circular dichroism spectroscopy and differential scanning microcalorimetry, at neutral pH, have shown that the enzyme unfolds up to 90 degrees C reversibly and has a T(m) of 112.7 degrees C. An inhibition of the enzymatic activity was observed in the presence of acetone and metal ions such as Ag(2+) and Hg(2+). The nitrilase hydrolyzes preferentially aliphatic substrates and the best substrate is malononitrile with a K(m) value of 3.47 mM.  相似文献   

9.
A new esterase activity from Bacillus licheniformis was characterized from an Escherichia coli recombinant strain. The protein was a single polypeptide chain with a molecular mass of 81 kDa. The optimum pH for esterase activity was 8-8.5 and it was stable in the range 7-8.5. The optimum temperature for activity was 45 degrees C and the half-life was 1 h at 64 degrees C. Maximum activity was observed on p-nitrophenyl caproate with little activity toward long-chain fatty acid esters. The enzyme had a KM of 0.52 mM for p-nitrophenyl caproate hydrolysis at pH 8 and 37 degrees C. The enzyme activity was not affected by either metal ions or sulfydryl reagents. Surprisingly, the enzyme was only slightly inhibited by PMSF. These characteristics classified the new enzyme as a thermostable esterase that shared similarities with lipases. The esterase might be useful for biotechnological applications such as ester synthesis.  相似文献   

10.
The gene that encodes thermostable glucose isomerase in Clostridium thermosulfurogenes was cloned by complementation of glucose isomerase activity in a xylA mutant of Escherichia coli. A new assay method for thermostable glucose isomerase activity on agar plates, using a top agar mixture containing fructose, glucose oxidase, peroxidase, and benzidine, was developed. One positive clone, carrying plasmid pCGI38, was isolated from a cosmid library of C. thermosulfurogenes DNA. The plasmid was further subcloned into a Bacillus cloning vector, pTB523, to generate shuttle plasmid pMLG1, which is able to replicate in both E. coli and Bacillus subtilis. Expression of the thermostable glucose isomerase gene in both species was constitutive, whereas synthesis of the enzyme in C. thermosulfurogenes was inducible by D-xylose. B. subtilis and E. coli produced higher levels of thermostable glucose isomerase (1.54 and 0.46 U/mg of protein, respectively) than did C. thermosulfurogenes (0.29 U/mg of protein). The glucose isomerases synthesized in E. coli and B. subtilis were purified to homogeneity and displayed properties (subunit Mr, 50,000; tetrameric molecular structure; thermostability; metal ion requirement; and apparent temperature and pH optima) identical to those of the native enzyme purified from C. thermosulfurogenes. Simple heat treatment of crude extracts from E. coli and B. subtilis cells carrying the recombinant plasmid at 85 degrees C for 15 min generated 80% pure glucose isomerase. The maximum conversion yield of glucose (35%, wt/wt) to fructose with the thermostable glucose isomerase (10.8 U/g of dry substrate) was 52% at pH 7.0 and 70 degrees C.  相似文献   

11.
A new esterase gene from the hyperthermophilic archaeon Archaeoglobus fulgidus, reported to show homology with the mammalian hormone-sensitive lipase (HSL)-like group of the esterase/lipase family, was cloned by means of the polymerase chain reaction from the A. fulgidus genome. In order to compare the biochemical properties of this putative hyperthermophilic enzyme with those of the homologous, thermophilic member of HSL group, namely Alicyclobacillus (formerly Bacillus) acidocaldarius esterase 2 (EST2), an overexpression system in Escherichia coli was established. The recombinant protein, expressed in soluble and active form at 20 mg/liter of E. coli culture, was purified to homogeneity and characterized. The enzyme, a 35.5-kDa monomeric protein, was demonstrated to be a B"-type carboxylesterase (EC 3.1.1.1) on the basis of substrate specificity and the action of inhibitors. Among the p-nitrophenyl (PNP) esters tested the best substrate was PNP-hexanoate with K(m) and k(cat) values of 11 +/- 3 microM (mean +/- SD, n = 3) and 1014 +/- 38 s(-1) (mean +/- SD, n = 3), respectively, at 70 degrees C and pH 7.1. Inactivation by diethylpyrocarbonate, phenylmethylsulfonylfluoride, diisopropylfosfofluoridate (DFP), and physostigmine, as well as labeling with [(3)H]DFP, supported our previous suggestion of a catalytic triad made up of Ser(160)-His(285)-Asp(255). The sequence identity with the thermostable A. acidocaldarius EST2 was 42.5%. The enzyme proved to be much more stable than its Alicyclobacillus counterpart. The conformational dynamics of the two proteins were investigated by frequency-domain fluorometry and anisotropy decay and the activity/stability/temperature relationship was discussed.  相似文献   

12.
The gene that encodes thermostable glucose isomerase in Clostridium thermosulfurogenes was cloned by complementation of glucose isomerase activity in a xylA mutant of Escherichia coli. A new assay method for thermostable glucose isomerase activity on agar plates, using a top agar mixture containing fructose, glucose oxidase, peroxidase, and benzidine, was developed. One positive clone, carrying plasmid pCGI38, was isolated from a cosmid library of C. thermosulfurogenes DNA. The plasmid was further subcloned into a Bacillus cloning vector, pTB523, to generate shuttle plasmid pMLG1, which is able to replicate in both E. coli and Bacillus subtilis. Expression of the thermostable glucose isomerase gene in both species was constitutive, whereas synthesis of the enzyme in C. thermosulfurogenes was inducible by D-xylose. B. subtilis and E. coli produced higher levels of thermostable glucose isomerase (1.54 and 0.46 U/mg of protein, respectively) than did C. thermosulfurogenes (0.29 U/mg of protein). The glucose isomerases synthesized in E. coli and B. subtilis were purified to homogeneity and displayed properties (subunit Mr, 50,000; tetrameric molecular structure; thermostability; metal ion requirement; and apparent temperature and pH optima) identical to those of the native enzyme purified from C. thermosulfurogenes. Simple heat treatment of crude extracts from E. coli and B. subtilis cells carrying the recombinant plasmid at 85 degrees C for 15 min generated 80% pure glucose isomerase. The maximum conversion yield of glucose (35%, wt/wt) to fructose with the thermostable glucose isomerase (10.8 U/g of dry substrate) was 52% at pH 7.0 and 70 degrees C.  相似文献   

13.
TmGUSI, a gene identical to that encoding a thermostable β-glucuronidase in the hyperthermophilic anaerobe Thermotoga maritima, has been synthesized using a PCR-based two-step DNA synthesis and codon optimization for plants, and expressed in both Escherichia coli and Arabidopsis thaliana. TmGUSI expressed in transformed E. coli cells exhibited maximum hydrolytic activity at 65?°C and pH 6.5 and retained more than 80% activity after incubation at 85?°C for 30?min. TmGUSI activity in transgenic A. thaliana plants containing TmGUSI was also stable over the temperature range 65-80?°C. Our data suggest that β-glucuronidase from T. maritima can serve as a useful thermostable marker in higher plants.  相似文献   

14.
超耐热酸性α-淀粉酶基因的克隆及其在酵母细胞中的表达   总被引:16,自引:0,他引:16  
用PCR方法扩增来源于极端嗜热厌氧古菌Pyrococcus furiosus中的超耐热酸性α-淀粉酶的结构基因,将该结构基因引入载体pPIC9K中,将重组质粒pPIC9K-Amy转化大肠杆菌DH5α细胞,测序结果表明,克隆到的α-淀粉酶结构基因为1305bp,其编码的成熟肽为435个氨基酸。将正确构建的重组质粒转化毕赤酵母GS115细胞,得到酵母工程菌株。在酵母α-Factor及AOX1基因启动子和终止信号的调控下,超耐热酸性α-淀粉酶在甲醇酵母中大量表达并分泌到胞外,该酶的表达受甲醇的严格调控和诱导,随着诱导培养时间的增加,在培养基上清液中的单位体积酶活力相应上升,在诱导培养7d后酶活力达到最大值。该酶最适反应温度为90~100℃,最适反应pH值为4.5~5.5。该酶具有非常好的温度稳定性,在100℃条件下热处理5h,仍具有60%以上的酶活力。该酶的这些优点使其非常适于在工业生产上应用。  相似文献   

15.
A gene encoding for a thermostable exopolygalacturonase (exo-PG) from hyperthermophilic Thermotoga maritima has been cloned into a T7 expression vector and expressed in Escherichia coli. The gene encoded a polypeptide of 454 residues with a molecular mass of 51,304 Da. The recombinant enzyme was purified to homogeneity by heat treatment and nickel affinity chromatography. The thermostable enzyme had maximum of hydrolytic activity for polygalacturonate at 95 degrees C, pH 6.0 and retains 90% of activity after heating at 90 degrees C for 5 h. Study of the catalytic activity of the exopolygalacturonase, investigated by means of 1H NMR spectroscopy revealed an inversion of configuration during hydrolysis of alpha-(1-->4)-galacturonic linkage.  相似文献   

16.
A gene (ssg) encoding a putative glucoamylase in a hyperthermophilic archaeon, Sulfolobus solfataricus, was cloned and expressed in Escherichia coli, and the properties of the recombinant protein were examined in relation to the glucose production process. The recombinant glucoamylase was extremely thermostable, with an optimal temperature at 90 degrees C. The enzyme was most active in the pH range from 5.5 to 6.0. The enzyme liberated beta-d-glucose from the substrate maltotriose, and the substrate preference for maltotriose distinguished this enzyme from fungal glucoamylases. Gel permeation chromatography and sedimentation equilibrium analytical ultracentrifugation analysis revealed that the enzyme exists as a tetramer. The reverse reaction of the glucoamylase from S. solfataricus produced significantly less isomaltose than did that of industrial fungal glucoamylase. The glucoamylase from S. solfataricus has excellent potential for improving industrial starch processing by eliminating the need to adjust both pH and temperature.  相似文献   

17.
Kao CH  Lo HH  Hsu SK  Hsu WH 《Journal of biotechnology》2008,134(3-4):231-239
A dihydropyrimidinase gene (pydB) was cloned from the moderate thermophilic Brevibacillus agri NCHU1002 and expressed in Escherichia coli. The purified dihydropyrimidinase exhibited strict d-enantioselectivity for D,L-p-hydroxyphenylhydantoin and D,L-5-[2-(methylthio)ethyl]hydantoin, and non-enantiospecificity for D,L-homophenylalanylhydantoin (D,L-HPAH). The hydrolytic activity of PydB was enhanced notably by Mn2+, with a maximal activity at 60 degrees C and pH 8.0. This enzyme was completely thermostable at 50 degrees C for 20 days. A whole cell biocatalyst for the production of L-homophenylalanine (L-HPA) from D,L-HPAH by coexpression of the pydB gene and a thermostable L-N-carbamoylase gene from Bacillus kaustophilus CCRC11223 in E. coli JM109 was developed. The expression levels of dihydropyrimidinase and L-N-carbamoylase in the recombinant E. coli cells were estimated to be about 20% of the respective total soluble proteins. When 1% (w/v) isopropyl-beta-D-thiogalactopyranoside-induced cells were used as biocatalysts, a conversion yield of 49% for L-HPA with more than 99% ee could be reached in 16 h at pH 7.0 from 10mM D,L-HPAH. The cells can be reused for at least eight cycles at a conversion yield of more than 43%. Our results revealed that coexpression of pydB and lnc in E. coli might be a potential biocatalyst for L-HPA production.  相似文献   

18.
We have identified and characterized a thermostable thioredoxin system in the aerobic hyperthermophilic archaeon Aeropyrum pernix K1. The gene (Accession no. APE0641) of A. pernix encoding a 37 kDa protein contains a redox active site motif (CPHC) but its N-terminal extension region (about 200 residues) shows no homology within the genome database. A second gene (Accession no. APE1061) has high homology to thioredoxin reductase and encodes a 37 kDa protein with the active site motif (CSVC), and binding sites for FAD and NADPH. We cloned the two genes and expressed both proteins in E. coli. It was observed that the recombinant proteins could act as an NADPH-dependent protein disulfide reductase system in the insulin reduction. In addition, the APE0641 protein and thioredoxin reductase from E. coli could also catalyze the disulfide reduction. These indicated that APE1061 and APE0641 express thioredoxin (ApTrx) and thioredoxin reductase (ApTR) of A. pernix, respectively. ApTR is expressed as an active homodimeric flavoprotein in the E. coli system. The optimum temperature was above 90 degrees C, and the half-life of heat inactivation was about 4 min at 110 degrees C. The heat stability of ApTR was enhanced in the presence of excess FAD. ApTR could reduce both thioredoxins from A. pernix and E. coli and showed a similar molar specific activity for both proteins. The standard state redox potential of ApTrx was about -262 mV, which was slightly higher than that of Trx from E. coli (-270 mV). These results indicate that a lower redox potential of thioredoxin is not necessary for keeping catalytic disulfide bonds reduced and thereby coping with oxidative stress in an aerobic hyperthermophilic archaea. Furthermore, the thioredoxin system of aerobic hyperthermophilic archaea is biochemically close to that of the bacteria.  相似文献   

19.
This work reports the first isolation and characterization of an alkaline phosphatase (AP) from a hyperthermophilic archaeon. An AP gene from Pyrococcus abyssi, a euryarchaeon isolated from a deep-sea hydrothermal vent, was cloned and the enzyme expressed in Escherichia coli. Analysis of the sequence showed conservation of the active site and structural elements of the E. coli AP. The recombinant AP was purified and characterized. Monomeric and homodimeric active forms were detected, with a monomer molecular mass of 54 kDa. Apparent optimum pH and temperature were estimated at 11.0 and 70 degrees C, respectively. Thus far, P. abyssi AP has been demonstrated to be the most thermostable AP, with half-lives at 100 and 105 degrees C of 18 and 5 h, respectively. Enzyme activity was found to be dependent on divalent cations: metal ion chelators inhibited activity, whereas the addition of exogenous Mg(II), Zn(II), and Co(II) increased activity. The enzyme was inhibited by inorganic phosphate, but not by molybdate and vanadate. Strong inhibitory effects were observed in the presence of thiol-reducing agents, although cysteine residues of the P. abyssi AP were not found to be incorporated within intra- or interchain disulfide bonds. In addition, P. abyssi AP was demonstrated to dephosphorylate linear DNA fragments with dephosphorylation efficiencies of 93.8 and 84.1% with regard to cohesive and blunt ends, respectively.  相似文献   

20.
α-葡萄糖醛酸酶作为木聚糖降解的限速酶之一,在木聚糖类半纤维素的生物转化中起着重要的作用。海栖热袍菌Thermotoga maritima是一个嗜极端高温的厌氧细菌,其产生的极耐热性酶类具有非常可观的工业应用前景。但热袍菌属Thermotoga的基因在大肠杆菌中的表达一般较困难。研究了T. maritima中的极耐热性α葡萄糖醛酸酶基因在大肠杆菌不同菌株中的表达水平及纯化技术。结果表明,稀有密码子AGA、AGG和AUA限制了该基因在大肠杆菌中的表达,在大肠杆菌BL21-CodonPlus(DE3)RIL可得到高效表达,重组蛋白表达量达20%,比酶活比野生菌株提高5倍;重组蛋白经热处理和金属Ni2+的亲和层析提纯后,达到了电泳纯,提纯倍数为5.1倍,收率为55.1%。对重组菌诱导表达条件的研究表明,营养丰富的TB培养基有助于重组菌的生长, 重组菌生长至OD600为0.7~0.8时添加IPTG诱导5h后重组蛋白的表达量最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号