首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
Subepithelial blood vessels of the rat lingual papillae and their spatial relations to the connective tissue papillae and surface structures were demonstrated by light and scanning electron microscopy. In the rat, four types of papillae were distinguished on the dorsal surface of the tongue, i.e. the filiform, fungiform, foliate and circumvallate papillae. Vascular beds of various appearance were found in all four types of lingual papillae: a simple or twisted capillary loop in the filiform papilla; a basket- or petal-like network in the fungiform papilla; a ring-like network in the foliate papilla, and a conglomerated network surrounded by double heart-shaped capillary networks in the circumvallate papilla. These characteristic vascular beds corresponded to the shape of the connective tissue papillae and surface structures. The vascular bed beneath the gustatory epithelium in the fungiform, foliate and circumvallate papilla consisted of fine capillary networks next to the taste buds.  相似文献   

2.
M A Qayyum  M A Beg 《Acta anatomica》1975,93(4):554-567
The anatomy and neurohistology of the tongue of the Indian goat, Capra aegagrus, have been described. The apex linguae is notched in the centre. The foramen caecum is found to be absent. The sublingua could not be traced. The filiform papillae are the most common and divided into three types: the simple, giant, and true filiform papillae. The true filiform papillae are the most developed of the three types. The foliate papillae are absent. There are 13--14 circumvallate papillae arranged in two rows in a V-shaped pattern. The fungiform papillae are large and could easily be seen with the naked eye. They are scattered over the entire dorsum, being in abundance at the tip. The tongue of the goat is richly innervated. On the dorsum, the lamina propria is innervated by thick nerve fibres. In the fungiform papillae quite a large number of nerve fibres could be seen. The circumvallate papillae are also abundantly provided with nerves. A few ganglion cells are found below the circumvallate papillae. Thick nerve fibres are seen across the numerous glands and their ducts. Muscle fibres and connective tissue are also richly innervated.  相似文献   

3.
Three-dimensional characteristics of the epithelial cell layer and connective tissue interface of the tongue were studied using scanning electron microscopy. In this study, the fragments of tongue were fixed in modified Karnovsky's fixative solution. Subsequently, the specimens were treated with 10% NaOH solution for 4-7 days at room temperature and postfixed in 1% OsO4 in 0.1 M phosphate buffer (pH 7.4) for 2 hours at 4 degrees C. They were dehydrated through a graded ethanol series, and critical-point dried with CO2. The specimens were coated with gold and observed in a scanning electron microscope, JEOL JSM-6100. The results showed numerous papillae on the dorsal surface of the tongue divided into four groups (filiform, fungiform, foliate and vallate papillae). Filiform papillae are conically shaped; fungiform papillae have an irregular round surface; foliate papillae are oval in shape and have some parallel projections; and vallate papillae are located in the posterior part of the tongue and have a depression around the center. After the treatment with 10% NaOH solution, the original arrangements of connective papillae could be seen. This characteristic three-dimensional distribution of the collagen fiber bundles is typical for each superficial papillae depending on whether it is filiform, fungiform, foliate or vallate.  相似文献   

4.
An investigation was undertaken to study the neuro-histochemistry of tonue of Gallus domesticus (white Leghorn) by cholinesterase technique under maintained pH of 5.2, temperature 40 degrees C and incubation period 20 h, and Ungewitter's silver impregnation method. Fungiform (8--16 in number), filiform (5--16 in number), circumvallate and foliate (numerous) were recorded profusely innervated in the various regions of the tongue. Neuro-muscular spindles related either with the non-myelinated, myelinated nerve fibres or with the ganglia via pre- or postganglionic nerve fibre showed cholinesterase (AChE) positive activity in the form of dark brown patches. Neural network over the glands, formed the basket envelope likestructures. Glands showed positive cholinesterase (AChE) reaction on the periphery. Dot-like nerve endings were connected with the neural terminal network in the foliate papillae region and motor end plate like endings on blood vessel, were occasionally recorded. Parasympathetic ganglia of various shape and sizes, arranged in chain-like fashion were observed in the connective tissue space between the fungiform and circumvallate papillae and foliate papillae region. The pre- and postganglionic fibres of these ganglia were related with the anteriorly and posteriorly located papillae via the neural terminal network. Cholinesterase (AChE) activity was marked either in the centre, of the fungiform or on the periphery of the filiform, circumvallate and foliate papillae.  相似文献   

5.
6.
《Journal of morphology》2017,278(10):1380-1399
The tongue of anteaters (Xenarthra, Pilosa, Vermilingua) is a highly specialized for myrmecophagy. Here, we describe the topography and histology of the tongue, and compare it to that of other xenarthrans and other myrmecophagous eutherian mammals. The tongue of Vermilingua is long and slender, with an apical protuberance, which differs between Myrmecophagidae and Cyclopes didactylus . In the former, the rostral region is conical, and in the latter, it is dorsoventrally compressed, as observed in sloths. The tongue of Vermilingua has filiform and circumvallate papillae on the surface; foliate and fungiform papillae are absent. The filiform papillae of Myrmecophaga tridactyla are simple all over the tongue, differing from Tamandua tetradactyla and Cyclopes didactylus , which present composed filiform papillae in the rostral and middle regions. Histologically, the tongue has a peculiar organization of muscular and neurovascular tissues, differing from the usual mammalian pattern. However, the tongue structure is less divergent in Cyclopes . The presence of two circumvallate papillae is common to the three major clades of Xenarthra (Cingulata, Folivora and Vermilingua). In each group, the tongue may reflect functional features related to myrmecophagous (anteaters and some armadillos), omnivorous (remaining armadillos) and folivorous (sloths) feeding habits. The similarities between the tongues of Vermiligua and other non‐xenarthran eutherian myrmecophagous mammals are somewhat general and, under close inspection, superficial, being an example of different lineages achieving the same morphofunctional adaptations through distinct evolutionary pathways.  相似文献   

7.
8.
While brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) has been localized in the developing gustatory epithelium, little information is available about neurotrophin-3 (NT-3) mRNA expression pattern in the prenatal developing gustatory and lingual epithelium. In the present study, using in situ hybridization histochemistry, we report on NT-3 mRNA expression in the tongue of rats. At embryonic day (E) 13–17, NT-3 mRNA was expressed subepithelially in the periphery of the developing tongue, as well as among developing muscle. At E19, there was a shift in the expression of NT-3 mRNA. It was then expressed in the surface epithelium of the developing tongue in the developing filiform papillae and, in higher concentrations, in top-surface and fringe epithelium of the developing circumvallate papillae, and top- and lateral-surface epithelium of the developing fungiform papillae. NT-3 mRNA expression in areas rich in somatosensory innervation of the tongue, as well as its specific expression in defined regions compared with BDNF, and the decreased labeling noted from prenatal and early postnatal animals to adults indicate a specific role for NT-3 in the development of lingual somatosensory innervation, as well as for maintenance of this innervation.  相似文献   

9.
根据近年来有关大鼠、小鼠味觉发育方面的大量研究,对哺乳动物味蕾(taste buds)发育的情况进行了综述和讨论.哺乳动物舌面上的味蕾分布在菌状乳头(fungiform papillae,FF)、叶状乳头(foliate papillae,FL)、轮廓状乳头(circumvallate papillae,CV)之中,味蕾细胞(taste bud cells)不断地进行着周期性的更新,味蕾的形态、数量和功能随动物随年龄而变化.有关味孔头的研究表明,味乳头(gustatory papillae)在味蕾形成和维持味蕾存在及正常发育方面有着独特的功能.味乳头和味蕾的发育过程与细胞信号分子(signaling molecules)、味觉神经(gustatory nerve fibers)等许多因素有着密切的关系,其中有些作用机理至今尚无定论.  相似文献   

10.
R S Purwar 《Acta anatomica》1975,93(4):526-533
The staining and demonstration of neural elements in relation with other associated structures was most satisfactory at pH 5.2, incubation period 20 h, and temperature 40degreesC. Ganglia of various shape and size were observed on or near the fungiform, filiform and foliate papillae. In the region of the fungiform papillae, a chain of ganglia (parasympathetic) was observed. The nerve cells of these ganglia showed cholinesterase (ChE) activity. The neural networks of the foliate papillae were connected with the neural terminal network and occasionally to the ganglia. The innervation of blood vessels (artery and vein) was profuse. At times ganglia were noticed on the periphery of the artery. Neuromuscular spindle-like structures were noticed occasionally. Dot-like free nerve endings were also observed. The ChE activity was very marked in the muscle fibres lying in the region of the circumvallate papillae but was less marked in the muscle fibres lying in the region of the filiform and fungiform papillae.  相似文献   

11.
12.
El‐Bakry, A.M. 2010. Study by transmission and scanning electron microscopy of the morphogenesis of three types of lingual papillae in the albino rat (Rattus rattus).—Acta Zoologica (Stockholm) 91 : 267–278 Tongues were removed from albino rat foetus on days 12 (E12) and 16 (E16) of gestation and from newborns (P0) and from juvenile rats on days 7 (P7), 14 (P14) and 21 (P21) postnatally for investigation by light, scanning, and transmission electron microscopy. Significant changes appeared during the morphogenesis of the papillae. At E12, two rows of rudiments of fungiform papillae were extended bilaterally on the anterior half of the tongue. At E16, the rudiments of fungiform papillae were regularly arranged in a lattice‐like pattern. A rudiment of circumvallate papillae could be recognized. No rudiment of filiform papillae was visible. No evidence of keratinization was recognizable. At P0, rudiments of filiform papillae were visible but had a more rounded appearance, with keratinization. The fungiform and circumvallate papillae were large and their outlines were somewhat irregular as that found in the adult rat. At P7, the filiform papillae were large and slender. The fungiform papillae became large and the shape of circumvallate papillae was almost similar to that observed in the adult. At P14 and P21, the shape and structure of the three types of papillae were irregular as those found in the adult. In conclusion, the rudiments of the fungiform and circumvallate papillae were visible earlier than those of the filiform papillae. The morphogenesis of filiform papillae advanced in a parallel manner with the keratinization of the lingual epithelium, in the period from just before birth to a few weeks after birth.  相似文献   

13.
From time of embryonic emergence, the gustatory papilla types on the mammalian tongue have stereotypic anterior and posterior tongue locations. Furthermore, on anterior tongue, the fungiform papillae are patterned in rows. Among the many molecules that have potential roles in regulating papilla location and pattern, Sonic hedgehog (Shh) has been localized within early tongue and developing papillae. We used an embryonic, tongue organ culture system that retains temporal, spatial, and molecular characteristics of in vivo taste papilla morphogenesis and patterning to study the role of Shh in taste papilla development. Tongues from gestational day 14 rat embryos, when papillae are just beginning to emerge on dorsal tongue, were maintained in organ culture for 2 days. The steroidal alkaloids, cyclopamine and jervine, that specifically disrupt the Shh signaling pathway, or a Shh-blocking antibody were added to the standard culture medium. Controls included tongues cultured in the standard medium alone, and with addition of solanidine, an alkaloid that resembles cyclopamine structurally but that does not disrupt Shh signaling. In cultures with cyclopamine, jervine, or blocking antibody, fungiform papilla numbers doubled on the dorsal tongue with a distribution that essentially eliminated inter-papilla regions, compared with tongues in standard medium or solanidine. In addition, fungiform papillae developed on posterior oral tongue, just in front of and beside the single circumvallate papilla, regions where fungiform papillae do not typically develop. The Shh protein was in all fungiform papillae in embryonic tongues, and tongue cultures with standard medium or cyclopamine, and was conspicuously localized in the basement membrane region of the papillae. Ptc protein had a similar distribution to Shh, although the immunoproduct was more diffuse. Fungiform papillae did not develop on pharyngeal or ventral tongue in cyclopamine and jervine cultures, or in the tongue midline furrow, nor was development of the single circumvallate papilla altered. The results demonstrate a prominent role for Shh in fungiform papilla induction and patterning and indicate differences in morphogenetic control of fungiform and circumvallate papilla development and numbers. Furthermore, a previously unknown, broad competence of dorsal lingual epithelium to form fungiform papillae on both anterior and posterior oral tongue is revealed.  相似文献   

14.
Most fungiform taste buds fail to become innervated when BDNF or NT4 is overexpressed in the basal layer of tongue epithelium. Here, we examined when and how overexpression of BDNF and NT4 disrupt innervation to fungiform papillae. Overexpression of either factor disrupted chorda tympani innervation patterns either before or during the initial innervation of fungiform papillae. NT4 and BDNF overexpression each disrupted initial innervation by producing different gustatory axon morphologies that emerge at distinct times (E12.5 and E14.5, respectively). Chorda tympani nerve branching was reduced in NT4 overexpressing mice, and neuronal fibers in these mice were fasciculated and remained below the epithelial surface, as if repelled by NT4 overexpression. In contrast, many chorda tympani nerve branches were observed near the epithelial surface in mice overexpressing BDNF, and most were attracted to and invaded non-taste filiform papillae instead of gustatory papillae. These results suggest that BDNF, but not NT4, normally functions as a chemoattractant that allows chorda tympani fibers to distinguish their fungiform papillae targets from non-gustatory epithelium. Since BDNF and NT4 both signal through the p75 and TrkB receptors, trophin-specific activation of different internal signaling pathways must regulate the development of the distinct gustatory axon morphologies in neurotrophin-overexpressing mice.  相似文献   

15.
The distribution of carbonic anhydrase isozyme II (CA II)-like immunoreactivity (-LI) in the gustatory epithelium was examined in the adult rat. In the circumvallate and foliate papillae, CA II-LI was observed in the cytoplasm of the spindle-shaped taste bud cells, with weak immunoreaction in the surface of the gustatory epithelium. No neuronal elements displayed CA II-LI in these papillae. There was no apparent difference in the distribution pattern between the anterior and posterior portions of the foliate papillae. In immunoelectron microscopy, immunoreaction products for CA II were diffusely distributed in the entire cytoplasm of the taste bud cells having dense round granules at the periphery of the cells. No taste bud cells displaying CA II-LI were detected in the fungiform papillae, but a few thick nerve fibers displayed CA II-LI. In the taste buds of the palatal epithelium, neither taste bud cells nor neuronal elements exhibited CA II-LI. The present results indicate that CA II was localized in the type I cells designated as supporting cells in the taste buds located in the posterior lingual papillae of the adult animal.  相似文献   

16.
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4) are essential for the survival of geniculate ganglion neurons, which provide the sensory afferents for taste buds of the anterior tongue and palate. To determine how these target-derived growth factors regulate gustatory development, the taste system was examined in transgenic mice that overexpress BDNF (BDNF-OE) or NT4 (NT4-OE) in basal epithelial cells of the tongue. Overexpression of BDNF or NT4 caused a 93 and 140% increase, respectively, in the number of geniculate ganglion neurons. Surprisingly, both transgenic lines had severe reduction in fungiform papillae and taste bud number, primarily in the dorsal midregion and ventral tip of the tongue. No alterations were observed in taste buds of circumvallate or incisal papillae. Fungiform papillae were initially present on tongues of newborn BDNF-OE animals, but many were small, poorly innervated, and lost postnatally. To explain the loss of nerve innervation to fungiform papillae, the facial nerve of developing animals was labeled with the lipophilic tracer DiI. In contrast to control mice, in which taste neurons innervated only fungiform papillae, taste neurons in BDNF-OE and NT4-OE mice innervated few fungiform papillae. Instead, some fibers approached but did not penetrate the epithelium and aberrant innervation to filiform papillae was observed. In addition, some papillae that formed in transgenic mice had two taste buds (instead of one) and were frequently arranged in clusters of two or three papillae. These results indicate that target-derived BDNF and NT4 are not only survival factors for geniculate ganglion neurons, but also have important roles in regulating the development and spatial patterning of fungiform papilla and targeting of taste neurons to these sensory structures.  相似文献   

17.
Summary The influence of salivation on the location of gustatory alkaline phosphatase has been examined. In untreated rats, taste buds at the ends of fungiform papillae showed almost no activity. However, if salivation was suppressed for 12 hours in fasted animals, alkaline phosphatase activity could be clearly demonstrated in association with these taste buds. The results indicated that alkaline phosphatase may be removed from its site of secretion by saliva and that the enzyme is secreted from fungiform as well as circumvallate and foliate papillae.  相似文献   

18.
Summary Immunoreactivity of substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, neuropeptide Y, and galanin is localized in nerve fibres distributed in the fungiform and filiform papillae of the tongue of the bullfrog,Rana catesbeiana. A combination of indirect double immunofluorescence labelling and a multiple dye filter system clearly demonstrated that all substance P fibres in the connective tissue core of the fungiform and filiform papillae, and within the rim of ciliated cells located on the top of the fungiform papillae showed coexistence with calcitonin gene-related peptide. A few fibres in the epithelial discs, which are located in the centre of the top of the fungiform papillae, showed the immunoreactivity of calcitonin gene-related peptide alone. There were no substance P fibres which showed coexistence with vasoactive intestinal polypeptide, galanin, and neuropeptide Y. In high magnification images, substance P and vasoactive intestinal polypeptide, and substance P and galanin fibres were recognized as two interwined fibres within the same thin nerve bundle. No immunoreactivity of leucine- and methionine-enkephalins can be detected. These findings suggest that the chemoreceptor function of the bullfrog gustatory organ may be under the control of complicated peptidergic innervation.  相似文献   

19.
Two experiments were conducted to investigate the psychophysicalresponse characteristics of single circumvallate papillae. InExperiment 1, 12 circumvallate papillae in four subjects werechemically stimulated to assess identification of taste qualities.Single circumvallate papillae were found to mediate multipletaste qualities, and the taste profiles obtained from differentpapillae were similar within the same subject. Moreover, sucrose,quinine monohydrochloride and citric acid elicited unitary andcharacteristic quality responding in these papillae from allsubjects, whereas NaCl elicited predominantly sour and/or bitterresponses from three of the four subjects. Experiment 2 directly compared responses obtained from singlecircumvallate papillae with those obtained from fungiform regionsof the tongue. Data for 10 subjects showed significantly greatersour responses to citric acid and NaCl in circumvallate papillaeand significantly greater salty responses to these compoundson the anterior tongue. In addition, the taste profiles forcitric acid and NaCl were distinct for circumvallate papillae,while those from the anterior tongue were similar. These datasuggest that the bitterness and sweetness of quinine and sugar,respectively, can be identified on the basis of sensory informationarising from either circumvallate or fungiform regions, butthat differentiation of the tastes of salts and acids may dependon a comparison of the input from both regions and/or additionalinformation arising from foliate regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号