首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tetrastichus giffardii Silvestri is a gregarious eulophid endoparasitoid of several tephritid fruit fly species. Host stage suitability was studied using nine age groups of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), namely, eggs less than 24 h and between 24 and 48 h old, and 1- to 7-day-old larvae. Life table studies for T. giffardii using C. capitata as host were done at 26 ± 5 °C and 55–60% RH. Egg load in relation to age of the female parasitoid was also assessed as was the effect of host deprivation on adult longevity. Host acceptance and suitability were examined with respect to eight species of tephritids. Potential hosts so tested were five Ceratitis species, the Medfly, C. capitata, the mango fruit fly, Ceratitis cosyra (Walker), the Natal fruit fly, Ceratitis rosa Karsch, Ceratitis fasciventris (Bezzi), and Ceratitis anonae Graham; two Bactrocera species, the melon fruit fly, Bactrocera cucurbitae (Coquillett) and the newly invasive Bactrocera invadens Drew, Tsuruta, and White; and one Dacus species, the lesser pumpkin fly, Dacus ciliatus Loew. No parasitoids were obtained from eggs while all larval stages were suitable though at varying degrees. Parasitism and number of progeny was related to host age in a curvilinear manner with maxima at 4- to 5-day-old larvae. By contrast, development time decreased with age of host larvae while sex ratio was not affected. The intrinsic rate of increase was 0.17 ± 0.01; gross and net reproductive rates were 64.9 ± 4.3 and 44.9 ± 3.8, respectively. Non-ovipositing females lived significantly longer than ovipositing ones. The females accepted all host species tested, but only C. capitata, D. ciliatus and, to a much lesser extent, C. cosyra were suitable. In the remaining host species, most eggs were encapsulated. In C. capitata and D. ciliatus, percent parasitism was similar, but number of progeny was lower and the sex ratio, as the proportion of females, was higher when the parasitoid was reared on D. ciliatus. Progeny per puparium were also similar for the two hosts. In the light of these results it can be concluded that T. giffardii has a narrow host range, but it attacks and successfully develops in larvae representing a wide range of ages.  相似文献   

2.
Fopius arisanus (Sonan), a solitary koinobiont endoparasitoid of fruit flies, was introduced for testing and final release against the recently discovered species Bactrocera invadens Drew, Tsuruta and White in Africa. Laboratory experiments were conducted to assess host preference, host acceptability for oviposition, and physiological suitability of B. invadens and five other indigenous tephritid fruit fly species, namely, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), C. cosyra (Walker), C. rosa Karsch, C. fasciventris (Bezzi), and C. anonae Graham. Females of F. arisanus visited all host egg patches, but showed a stronger preference to eggs of B. invadens, which was also most accepted for oviposition. Successful development of parasitoid progenies varied greatly across hosts, with B. invadens yielding the highest parasitoid progeny and C. fasciventris yielding no F. arisanus progeny. Most of the parasitoid eggs laid in C. rosa and C. fasciventris were encapsulated. Sex ratio was not influenced by host species and it was female biased in all hosts that produced parasitoid progeny. Fopius arisanus was able to establish a new association with C. capitata, C. cosyra and to a lesser extent C. anonae. The results are discussed in the light of the potential use of F. arisanus as a biological control agent of B. invadens.  相似文献   

3.
Host acceptability and suitability Psyttalia concolor (Szépligeti) is a koinobiont, larval parasitoid of tephritid fruit flies. Individuals of P. concolor were field-collected from coffee in the central highlands of Kenya, and cultured initially on Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). They were then examined for their ability to oviposit in and develop on five other tephritid species that are pests in Kenya. In addition to the medfly, acceptability for oviposition and suitability for development were tested against the mango fruit fly, Ceratitis cosyra (Walker), the Natal fruit fly, Ceratitis rosa Karsch, Ceratitis fasciventris (Bezzi), Ceratitis anonae Graham and the melon fruit fly, Bactrocera cucurbitae (Coquillett). Ceratitis capitata and C. cosyra were accepted as hosts significantly more often than the other species. Superparasitism was recorded only from C. capitata and C. cosyra. Two days after oviposition, parasitoid eggs in C. fasciventris and B. cucurbitae were encapsulated, whereas those in C. rosa and C. anonae were encapsulated, and often melanized. Ceratitis capitata was the most suitable host for Kenyan populations of Psyttalia concolor in terms of progeny production, and proportion of female progeny.  相似文献   

4.
This study quantitatively describes the host-searching behavior of Fopius arisanus (Sonan) (Hymenoptera: Braconidae), an important egg-larval parasitoid of tephritid fruit fly pests, on coffee berries infested with host eggs of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). We also investigate the parasitoid's response to local variation in host patch quality. The temporal pattern of behavioral organisation was examined by constructing an ethogram. The parasitoid spent over 90% of its foraging time in detecting and locating hosts after arriving on a host-infested fruit, and displayed a relatively fixed behavioral pattern leading to oviposition. Patch residence time increased in the presence of host-associated cues, following successful ovipositions, and with increasing size of host clutches per fruit, but decreased with each successive visit to the same host patch and with increasing availability of alternative host patches. The parasitoid females discriminated against previously parasitized hosts and spent significantly less time and searching effort on patches previously exploited by herself or by conspecific females. The effective host-searching behavior, perfect host discrimination ability, and success-motivated searching strategy shown by F. arisanus ensured a thorough exploitation of host resources by this parasitoid.  相似文献   

5.
Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is the most recent of four tephritid fruit fly species accidentally introduced into Hawaii. Although parasitoids have been released against other tephritid fruit fly species and have shown partial success in Hawaii, no parasitoids were released until 2004 to suppress populations of B. latifrons. The present study was conducted to document the parasitoid complex that has naturally established against B. latifrons in Hawaii and to assess whether there is a need for improving the biological control of this species. Based on ripe turkeyberry (Solanum torvum Sw) fruit collections over three consecutive years B. latifrons was the dominant tephritid fruit fly infestating turkeyberry at all four sites surveyed, across three major islands in Hawaii. The overall percentage parasitism of B. latifrons ranged from a low of 0.8% (Hana, Maui) to a high of 8.8% (Kahaluu, Oahu). Five primary parasitoid species were recovered from individually held B. latifrons puparia: Fopius arisanus (Sonan), Psyttalia incisi (Silvestri), Diachasmimorpha longicaudata (Ashmead), D. tryoni (Cameron), and Tetrastichus giffardianus Silvestri. F. arisanus was the predominant parasitoid at three of the four sites. Low levels of parasitism suggest that there is a need to improve biological control of B. latifrons, to minimize chances of this species causing economic impacts on crop production in Hawaii. We discuss the possibility of improving biological control of B. latifrons through augmentative releases of F. arisanus or introduction and release of specific and efficient new parasitoid species.  相似文献   

6.
Fopius arisanus (Sonan) and Diachasmimorpha tryoni (Cameron) are two important solitary endoparasitoids of tephritid fruit flies. The former species attacks host eggs while the latter attacks host larvae, and both species emerge as adults from the host puparium. This study investigated intrinsic competition between these two parasitoids, as well as aspects of intraspecific competition within each species in the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Parasitization by F. arisanus resulted in direct mortality of host eggs and prolonged development of host eggs and larvae. Superparasitism by F. arisanus was uncommon when mean parasitism per host patch was <50%, but increased with rising rates of parasitism. Superparasitism by D. tryoni was more common. In superparasitized hosts, supernumerary individuals of F. arisanus were killed through physiological suppression, while supernumerary larvae of D. tryoni were killed mainly through physical attack. In multiparasitized hosts, dissections showed that 81.6% of D. tryoni eggs in the presence of F. arisanus larvae died within 3 days, indicating physiological inhibition of egg hatch. Rearing results further showed that F. arisanus won almost all competitions against D. tryoni. The ratio of D. tryoni stings to ovipositions was lower in hosts not previously parasitized by F. arisanus than in parasitized hosts, suggesting that D. tryoni can discriminate against parasitized hosts. The mechanism that F. arisanus employs to eliminate D. tryoni is similar to that it uses against all other larval fruit fly parasitoids so far reported. The results are discussed in relation to the competitive superiority of early acting species in fruit fly parasitoids, and to a possible competitive-mediated mechanism underlying host shift by D. tryoni to attack non-target flies following the successful introduction of F. arisanus in Hawaii.  相似文献   

7.
Parasitoids that oviposit in a concealed host inside a plant part need to be able to find both the plant and the host. Egg parasitoids of fruit‐infesting Tephritidae need to assess the oviposition site based both on the host egg and the infested fruit. Infestation by Tephritidae fruit flies threatens fruit and vegetable production. Management methods have been implemented including biological control, using Fopius arisanus Sonan (Hymenoptera: Braconidae). The parasitism by F. arisanus in three Tephritidae flies in vegetable fruits was investigated. Laboratory assays were conducted to assess the parasitoid's preference and survival. Zucchini, sweet pepper, and tomato were artificially infested with eggs of Bactrocera dorsalis Hendel, Ceratitis capitata Wiedemann, and Ceratitis cosyra Walker (all Diptera: Tephritidae), then exposed to mated naïve F. arisanus females in a 20:1 egg:parasitoid ratio. Parasitoid behavioral activities (resting, antennating, probing, ovipositing) were observed on the infested fruits. Parasitism rate was determined by dissection of fruit fly eggs under a stereomicroscope. Behavioral activities of F. arisanus differed between all the fruits when infested with B. dorsalis or C. cosyra eggs but differed only between some of the fruits when infested with C. capitata. Fopius arisanus preferred B. dorsalis over C. capitata and C. cosyra, with a parasitism rate 2× higher on B. dorsalis compared to the Ceratitis species. Preference for fruits was dependent on the infesting fruit fly. The emergence of F. arisanus was higher with B. dorsalis than with Ceratitis spp. Although B. dorsalis completed its development earlier than Ceratitis spp., host fly species did not affect the developmental time of F. arisanus. We discuss the significance of F. arisanus preference in relation to naturally occurring Tephritidae infestations. We also discuss whether some fruits might constitute a refuge for Tephritidae flies and whether this will affect the current biological control efforts against B. dorsalis.  相似文献   

8.
The host suitability of the oriental fruit fly, Bactrocera dorsalis (Hendel), for development of Biosteres arisanus (Sonan), a braconid parasitoid, was compared with three other fruit fly species, namely, Mediterranean fruit fly, Ceratitis capitata Weidemann, melon fly, Bactrocera cucurbitae Coquilett, and Malaysian fruit fly, Bactrocera latifrons (Hendel). In addition, effects of five different fruit species, namely, Carica papaya L. (solo papaya), Musa sapientum (L.) O. Ktze. (apple banana), Mangifera indica (L.) (Haden mango), Terminalia catappa (L.) (false kamani), and Citrus aurantiifolia (Christman) Swingle (common lime), on the parasitization rate of B. dorsalis and sex ratio of parasitoid progenies were evaluated. Effects of host egg to female B. arisanus ratios on parasitoid progeny yields were likewise determined. The host suitability of fruit flies for development of B. arisanus was ranked as: B. dorsalis>C. capitata=B. latifrons=B. cucurbitae. Based on percent parasitization of B. dorsalis, preference of B. arisanus females for host eggs varied with fruit species, however, preferential oviposition displayed by female parasitoids did not influence sex ratios of subsequent parasitoid progenies. Increases in host egg to female parasitoid ratios of 5:1, 10:1, 20:1, 25:1, and 30:1 corresponded with increases in parasitoid progeny yield reaching a plateau at 20:1.  相似文献   

9.
We studied the interaction betweenthe egg-pupal parasitoid Fopius (+ Biosteres) arisanus (Sonan) (+Opius oophilus Fullaway) (Hymenoptera: Braconidae) and Ceratitis capitata (Wiedemann)(Diptera: Tephritidae) to assess the totalimpact of the parasitoid on the survival ofthis host. We tried to discover the factorsdetermining host suitability, measure actualpercent parasitism, and quantify host mortalityby parasitization. Research was carried outapplying dechorionation treatment, anon-destructive procedure that makes hosteggshells transparent to microscopicobservation, without interfering withdevelopment. We found that percent parasitismobserved at the egg stage did not correspond tothat detectable for emerging adults. In fact,parasitized host eggs were subject to a highermortality than non-parasitized ones. Moreover,a certain percentage of the parasitoid eggs didnot develop to the adult stage. Results fromour study allowed us to measure the percentmortality by parasitization per parasitizedegg. Furthermore, we analyzed the mortalityfactors due to parasitization acting during thehost egg stage. Most of them had never beenevidenced before and may help to explain thisphenomenon. In particular, we found that theage of the host eggs exposed to parasitoidsplays a fundamental role in the mortality byparasitization and that F. arisanusparasitizes C. capitata eggs moreefficiently close to the time of eclosion.  相似文献   

10.
To date, information is wanting with regard to the use of new exotic parasitoids against olive fruit fly, Bactrocera (=Dacus) oleae (Gmelin) (Diptera: Tephritidae), a serious pest of olives Olea europaea L., in the Mediterranean basin. We investigated the oviposition response and developmental biology on B. oleae of Fopius (=Biosteres) arisanus (Sonan) (=Opius oophilus Fullaway) (Hymenoptera: Braconidae), an egg-pupal parasitoid of tephritid fruit flies, never tested before as a potential parasitoid of this host. Our results showed that olive fruits infested with B. oleae eggs exerted a relevant attraction to gravid F. arisanus and represented a stimulus for oviposition. Nevertheless they were not as attractive to female parasitoids as the Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae), eggs infested papaya fruits (Carica papaya L.). In our experimental conditions, F. arisanus completed development in B. oleae within 33 ± 1.7 days (males) and 35 ± 1.6 (females). Increases in host egg to female parasitoid ratios of 1:1, 5:1, 10:1 and 20:1 corresponded with decreases in the percentage of B. oleae parasitisation and host killing but corresponded also with increases in absolute parasitisation. Our findings are discussed in light of possibilities of utilising F. arisanus for biological control of olive fruit fly.  相似文献   

11.
S. M. Ovruski 《BioControl》1995,40(3-4):367-370
Pupal and larval-pupal parasitoids were obtained from 5 % of the 1,413 tephritid puparia collected in four localities of the Tucumán province, Argentina, from April, 1991 to April, 1993.Ceratitis capitata (Wiedemann) was attacked byPachycrepoideus vindemmiae (Rondani) (Pteromalidae), a pupal parasitoid, andAganaspis pelleranoi (Brèthes) (Eucoilidae), a larval parasitoid.Anastrepha spp. were attacked byDoryctobracon areolatus (Szépligeti) (Braconidae), a larval parasitoid, and also byA. pelleranoi. Information about parasitism, percentage of emergence of tephritid species and pupal viability in different localities is provided.  相似文献   

12.
Since October 2006, the US Department of Agriculture–Agricultural Research Service (USDA–ARS) has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) recruitment of interested groups through request; (2) establishment of the Material Transfer Agreement with agricultural research service; (3) fruit fly liquid larval diet starter kit sent to the requestor for preliminary evaluation; (4) problem‐solving through email or onsite demonstration; (5) assessment on feedback from the participants to decide whether to continue the project. Up to date, the project has involved 35 participants from 29 countries and 26 species of fruit flies. Fourteen participants have concluded their evaluation of the process, and 11 of these 14, have deemed it to be successful. One participant has decided to implement the project on a larger scale. The 14 participants were, Argentina (Ceratitis capitata and Anastrepha fraterculus), Bangladesh (Bactrocera cucurbitae, C. capitata, and Bactrocera dorsalis), China (Fujia province) (B. dorsalis), Italy (C. capitata), Fiji (Bactrocera passiflorae), Kenya (Bactrocera invadens, Ceratitis cosyra), Mauritius (Bactrocera zonata and B. cucurbitae), Mexico (Anastrepha species), Philippines (Bactrocera philippinese), Thailand (Bactrocera correcta), Austria (C. capitata, Vienna 8 and A. fraterculus), Israel (Dacus ciliatus and C. capitata), South Africa (C. capitata, Vienna 8) and Australia (C. capitata). The Stellenbosch medfly mass‐rearing facility in South Africa and the CDFA in Hawaii were two mass‐scale rearing facilities that allowed us to demonstrate onsite rearing in a larger scale. Demonstrations were performed in CDFA in 2007, and in Stellenbosch, South Africa in 2008; both were found to be successful. The Stellenbosch medfly mass‐rearing facility in South Africa decided to adopt the technology and is currently evaluating the quality control of the flies that were reared as larvae on a liquid diet.  相似文献   

13.
《Biological Control》2004,29(2):169-178
The reproduction of the solitary endoparasitoid Fopius arisanus (Sonan) (Hymenoptera: Braconidae) in Anastrepha ludens (Loew), Anastrepha obliqua (Macquart), and Anastrepha serpentina (Wiedemann) was compared with that using Ceratitis capitata (Wiedemann), being the host in which it had been reared previously. Eggs of different ages (<4 h old, 1, 2, and 3 days old for Anastrepha spp., and ⩽4 h, 1 and 2 days old for C. capitata) of each host species were placed in pieces of papaya, exposed to parasitism for 24 h and then reared through to the adult stage. Host species had a marked effect on parasitoid reproduction with consistently higher parasitoid emergence from C. capitata, whereas emergence from A. obliqua was negligible and this host was not studied further. Host age did not significantly affect parasitoid emergence from C. capitata whereas parasitism of A. ludens and A. serpentina was significantly greater in eggs exposed at 3 days old than those exposed at younger ages. Adult parasitoid sex ratio was male biased in all cases. Despite significant differences in host developmental time, host species did not affect parasitoid developmental time. Parasitoid life expectancy at emergence was reduced by >60% for parasitoids that emerged from A. ludens compared to those that emerged from A. serpentina or C. capitata. The reproduction of parasitoid progeny was highest in parasitoids that emerged from and reproduced on C. capitata and lowest for parasitoids reproducing on A. ludens. Parasitoids that emerged from A. ludens were often deformed, but were larger than those that emerged from A. serpentina. Parasitoids that emerged from C. capitata were smaller than those from Anastrepha spp. We conclude that F. arisanus is capable of sustained reproduction in C. capitata and A. serpentina and merits further study as an agent for the control of these fruit flies.  相似文献   

14.
15.
Tephritid fruit fly parasitoid guilds are dominated by solitary koinobiont species that attack different host stages, but most emerge as adults from host puparia. Previous studies suggest intrinsic competitive superiority by the egg-attacking parasitoid Fopius arisanus (Sonan) against all larval-attacking parasitoids in Hawaii. In this study, we tested the early-acting competitive superiority prediction in relation to the co-evolutionary history of competition between an egg–larval parasitoid (Fopius ceratitivorus Wharton), and each of three larval parasitoids [Psyttalia concolor (Szépligeti), Diachasmimorpha kraussii (Fullaway), and Diachasmimorpha longicaudata (Ashmead)]. F. ceratitivorus and P. concolor share a common origin (eastern Africa), while D. kraussii is an Australian species, and D. longicaudata is from Southeast Asia. The outcomes of intrinsic competition between the egg-attacking parasitoid and each of the three larval-attacking parasitoids within their common host, the Mediterranean fruit fly Ceratitis capitata (Wiedemann) were compared. F. ceratitivorus invariably eliminated the co-evolved P. concolor through physiological suppression of the later-attacking parasitoid’s egg development, providing evidence that supports the early-acting-superiority hypothesis. However, F. ceratitivorus was unable to suppress development of the two non co-evolved larval parasitoids. Instead, the larvae of both later-acting parasitoid species physically killed F. ceratitivorus larvae inside the host. The results suggest that co-evolutionary history influences competitive superiority. The evolution of inter-specific competition and its implications for biological control are discussed.  相似文献   

16.
Fopius (= Biosteres) arisanus (Sonan) (= Opius oophilus Fullaway) is an egg-pupal parasitoid of tephritid fruit flies. Our breakthrough in the development of a laboratory-adapted strain of F. arisanus facilitated insectary rearing of parasitoids in large numbers. First colonized in captivity in 1989, F. arisanus has been reared routinely on the oriental fruit fly, Bactrocera (= Dacus) dorsalis (Hendel), its natural host. Parasitization by F. arisanus results in the latent death of developing hosts. Host mortality data are presented in a life table to estimate cost of parasitization on the economics of F. arisanus mass rearing. Percent kills of 10, 32, and 76% exerted by F. arisanus on the egg, larval, and pupal stages of the rearing hosts, respectively, resulted in a mean parasitoid recovery of 23.6%. The production cost was estimated by integrating life table data with the costs of rearing supplies and materials and personnel-hours requirements. Production of 1 million parasitoid adults requires the exposure of 4.2 million B. dorsalis eggs (= propagation hosts). We estimated the cost of producing 1 million parasitoids to be $2,363.30 and identified the most expensive aspects of F. arisanus rearing. Recommendations for streamlining the rearing process to reduce costs are provided.  相似文献   

17.
The invasion of an established community by new species can trigger changes in community structure. Invasions often occur in phytophagous insect communities, the dynamics of which are driven by the structure of the host assemblage and the presence of competitors. In this study, we investigated how a community established through successive invasions changed over time, taking the last invasion as the reference. The community included four generalist and four specialist species of Tephritidae fruit flies. We analyzed a long‐term database recording observed numbers of flies per fruit for each species on 36 host plants, over 18 years, from 1991 to 2009. Community structure before the last invasion by Bactrocera zonata in 2000 was described in relation to host plant phylogeny and resource availability. Changes in the host range of each species after the arrival of Bzonata were then documented by calculating diversity indices. The flies in the community occupied three types of niches defined on the basis of plant phylogeny (generalists, Solanaceae specialist, and Cucurbitaceae specialists). After the arrival of Bzonata, no change in the host range of specialist species was observed. However, the host ranges of two generalist species, Ceratitis quilicii and Ceratitis capitata, tended to shrink, as shown by the decreases in species richness and host plant α‐diversity. Our study shows increased host specialization by generalist phytophagous insects in the field following the arrival of an invasive species sharing part of their resources. These findings could be used to improve predictions of new interactions between invaders and recipient communities.  相似文献   

18.
Oriental fruit fly, Bactrocera dorsalis (Hendel), invaded French Polynesia in 1996. In 2002 a natural enemy, Fopius arisanus (Sonan), was released and established. By 2009 mean (±SD) F. arisanus parasitism for fruit flies infesting Psidium guajava (common guava), Inocarpus fagifer (Polynesian chestnut) and Terminalia catappa (tropical almond) fruits on Tahiti Island was 64.8 ± 2.0%. A second parasitoid, Diachasmimorpha longicaudata (Ashmead), was released and established in 2008. Although widespread, parasitism rates have not been higher than 10%. From 2003 (parasitoid establishment) to 2009 (present survey) numbers of B. dorsalis, Bactrocera tryoni (Froggatt), Queensland fruit fly, and Bactrocera kirki (Froggatt) emerging (per kg of fruit) declined. For example, for P. guajava there was a decline of 92.3%, 96.8%, and 99.6%, respectively. Analysis of co-infestation patterns (1998–2009) of B. dorsalis, B. tryoni, and B. kirki, suggest B. dorsalis is now the most abundant species in many common host fruits. Establishment of F. arisanus is the most successful example of classical biological control of fruit flies in the Pacific outside of Hawaii and can be introduced if B. dorsalis spreads to other French Polynesian islands, as was the recent case when B. dorsalis spread to the Marquesas Islands. These studies support F. arisanus as a prime biological control candidate for introduction into South America and Africa where Bactrocera carambolae Drew and Hancock and Bactrocera invadens Drew, Tsuruta, and White, respectively, have become established.  相似文献   

19.
Population fluctuations of the Mediterranean fruit fly Ceratitis capitata (Wiedemann) and the peach fly Bactrocera zonata (Saunders) were monitored with lure trap collections in three provinces in the New Valley oases, Western Desert, Egypt. Results showed marked temporal differences in peak trap catches of the two flies in the selected sites all over the entire studied areas. One annual peak of C. capitata was recorded during both October 2005 and February 2006 and coincided with the ripening period of citrus trees in Kharga oases. However, two annual peaks were recorded during June and September 2005 in Bodkholow province and coincided with the ripening period of apple and mango. On the other hand, two annual peaks of B. zonata were recorded in Kharga oases throughout May and September and coincided with the ripening periods of apricot, mango and guava. One annual peak only was recorded in the round up of September and/or October in both Moot and Bodkholow in Dakhla oases and coincided with the ripening period of mango, guava and citrus. The occurrence of C. capitata was very limited in comparison with B. zonata. Population fluctuations of the two pests in the studied sites were significantly different. The ability of the traps used in capturing both C. capitata and B. zonata indicated that the yellow sticky trap was more effective in capturing C. capitata. However, the Abdel-Kawi trap was significantly efficient at trapping B. zonata. The occurrence of B. zontata in high numbers all over the study period compared to C. capitata is considered as good proof that this invading fly may be considered as a vigorous competitive tephritid fly to the native fly C. capitata.  相似文献   

20.
Mahat  Kiran  Clarke  Anthony R. 《BioControl》2021,66(3):297-306

In Australia Fopius arisanus (Sonan) is an established, but exotic fruit fly egg-larval-pupal parasitoid which co-occurs with Diachasmimorpha kraussii (Fullaway), a native larval-pupal fruit fly parasitoid: both attack the native fruit fly Bactrocera tryoni (Froggatt). In interactions involving evolutionary novel host-parasitoid associations, F. arisanus consistently out-competes other parasitoid species, including D. kraussii. However, in fruit fly-parasitoid systems where there is co-evolutionary history between parasitoids and their hosts, competitive hierarchies can vary. In this study we investigated the outcome of competition between F. arisanus and D. kraussii within B. tryoni, to test whether the close evolutionary relationship between D. kraussii and B. tryoni might circumvent the competitive advantage of F. arisanus. Consistent with previous research, and despite the evolutionary relationship, dissection of multiparasitized B. tryoni larvae showed that D. kraussii was invariably suppressed by F. arisanus. A total of 47% and 74% of the eggs of D. kraussii in presence of F. arisanus were killed within a span of 24 h and 48–72 h, respectively. However, parasitoid emergence from fruit fly hosts exposed sequentially to F. arsianus and D. kraussii suggest that D. kraussii females are able to discriminate hosts already parasitized by F. arisanus. Results show that the co-evolutionary relationship between B. tryoni and D. kraussii does not help overcome the early-acting advantage of the egg parasitoid F. arisanus. Though F. arisanus may not have completely displaced D. kraussii in its native habitat, simultaneous inundative releases of these two parasitoid species (currently under consideration) might not help increase B. tryoni parasitism levels.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号