首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Neotropical‐native figitid Aganaspis pelleranoi (Brèthes) and the Asian braconid Diachasmimorpha longicaudata (Ashmead) are two parasitoids of Tephritidae fruit flies with long and recent, respectively, evolutionary histories in the Neotropics. Both species experienced a recent range of overlap. In Argentina, A. pelleranoi is a potential species in biological control programs against the pestiferous tephritid species, Anastrepha fraterculus (Wiedemann) and Ceratitis capitata (Wiedemann), whereas D. longicaudata is already used in open‐field releases against Medfly in central‐western Argentina. To characterize the host‐foraging strategies of A. pelleranoi and D. longicaudata, olfactometer experiments were conducted comparing responses to C. capitata and A. fraterculus larvae, in two kinds of food substrate: fruit and artificial larval medium. To control the possible influence of host larvae used for parasitoid rearing on olfactory response, two strains of both parasitoid species, reared on both tephrtid species, were studied. Volatiles directly emanating either from A. fraterculus or C. capitata larvae may be detected by both A. pelleranoi and D. longicaudata, although chemical stimuli originating from the combination of host larvae and the habitat of the host were preferred. However, olfactory cues associated with host larvae probably play a relevant role in host searching behaviour of A. pelleranoi, whereas for D. longicaudata, the host‐habitat olfactory stimuli would be highly essential in short‐range host location. The strain of the parasitoids did not affect host search ability on the two tephritid species evaluated. These evidences are relevant for mass production of both parasitoids and their impact following open‐field augmentative releases.  相似文献   

2.
We studied the host range of Asobara japonica, a larval‐pupal parasitoid of drosophilid flies. Habitat selection was found to be an important determinant of host range in this parasitoid; it attacked drosophilid larvae breeding on banana and mushrooms, but seldom attacked those breeding on decayed leaves. This parasitoid was able to use diverse drosophilid taxa as hosts. Attack by A. japonica sometimes killed hosts at the larval stage, and therefore parasitoid larvae also died. Drosophila elegans and D. busckii suffered particularly high larval mortality due to the attack by A. japonica (in the latter species only when young larvae were attacked). Many individuals of D. subpulchrella also died at the pupal stage without producing parasitoids when they were parasitized at the late larval stage. In contrast, D. bipectinata, D. ficusphila, D. immigrans, D. formosana and D. albomicans were resistant to attack: large proportions of the larvae of these drosophilid species grew to adulthood, even in the presence of parasitoids. On the basis of phylogenetic information, we concluded that phylogenetic position has only limited importance as a factor determining whether a species is suitable as a host for A. japonica, at least within the genus Drosophila.  相似文献   

3.
Population dynamics of a leafminer,Chromatomyia suikazurae (Agromyzidae, Diptera) and its parasitoid community were studied for ten years at seven natural populations along an altitudinal gradient in Japan. This species which mines leaves of a forest shrub,Lonicera gracilipes (Caprifoliaceae), was attacked by 25 hymenopterous parasitoid species. Annually, the parasitoid community structure varied less within a population than among populations. The seven parasitoid communities were clustered into three groups corresponding to the altitudinal gradient: (a) lowland communities dominated by late-attacking, generalist pupal idiobiont eulophids and with highest species diversity, (b) hillside communities dominated by an early-attacking, specialist larval-pupal koinobiont braconid and (c) highland communities dominated by an early-attacking, generalist larval idiobiont eulophid. Annual changes of the host larval densities among the local populations were largely synchronous rather than cyclic. Among these populations, host density levels and mortality patterns greatly varied. By analyzing these inter-populational differences of host mortality patterns, the following conclusions were drawn: (1) The host mortality patterns were determined by the host utilization patterns of the locally dominant species. (2) The host pupal mortality but not larval mortality was related to species diversity but not to species richness itself of each parasitoid community. (3) Density dependence was detected only in pupal mortality at a lowland population dominated by late-attacking pupal parasitoids. These results suggest that interspecific interactions of parasitoids add additive effects to host population dynamics dissimilarly among local populations with different parasitoid communities.  相似文献   

4.
In the state of Veracruz, Mexico, fruits from 38 sites at various altitudes were collected monthly over a period of 2 years, and the tephritid fruit flies of the genus Anastrepha and associated parasitoids that emerged from these fruits were identified and counted. Of the 26 species of fruits that contained Anastrepha larvae, 18 species also contained a total of 10 species of Anastrepha parasitoids. These consisted of 4 native and 1 exotic species of opiine braconid larval–pupal parasitoids, 2 native species of eucoilid larval–pupal parasitoids, 1 exotic species of eulophid larval–pupal parasitoid, 1 exotic species of pteromalid pupal parasitoid, and 1 native species of diapriid pupal parasitoid. Overall parasitism (including flies from fruit species that bore no parasitoids) was 6% and was greatest, 16%, at 600–800 m in altitude. The relative contributions of individual parasitoid species to overall parasitism were frequently influenced by both the altitude (and correlated changes in temperature and precipitation) and the species of plant in which the Anastrepha larvae were found. This was particularly the case among the more abundant and widespread Braconidae. To distinguish the role of altitude from that of the distributions of the host plants, these braconids were examined in 4 individual species of fruit that grew over a broad range of altitudes. In guava (Psidium guajava L.) and “jobo” (Spondias mombin L.) the parasitoid Doryctobracon areolatus (Szepligeti) was relatively more common at low altitudes. Its congener, Doryctobracon crawfordi (Viereck), was relatively more abundant at high altitudes in sour orange (Citrus aurantium L.). Utetes anastrephae (Viereck) became relatively more common at higher altitudes in S. mombin, whereas Diachasmimorpha longicaudata (Ashmead) tended to become relatively rare at the highest altitudes in C. aurantium, but increased at high altitudes in P. guajava compared to other braconids. Different altitudinal patterns of abundance in different fruits suggests the importance of both biotic and abiotic factors in parasitoid distributions. We discuss the effect of an expanding agricultural frontier on parasitoid abundance and relate our findings to the design of a fruit fly biological control program that tailors mass releases to parasitoid climate preferences.  相似文献   

5.
Fopius arisanus is a polyphagous parasitoid of Tephritidae, which has been recently introduced to La Réunion Island as part of a classical biological control programme. We carried out laboratory experiments to assess the host specificity of this parasitoid, initially reared on Bactrocera zonata, and then offered for parasitization the eight local tephritid pest species. Naive or experienced parasitoid females were given tephritid eggs in no choice tests. Fopius arisanus females parasitize all fly species but parasitism varies with host species. No adult wasps emerge from Bactrocera cucurbitae and the survival of this species is only slightly affected by parasitism. Dissections show that the late instars of this fly may eliminate the parasitoid by encapsulation. When developing on Ceratitis capitata, Ceratitis rosa, Dacus ciliatus, Dacus demmerezi, and Neoceratitis cyanescens, parasitoid survival rate ranges from 10 to 25%. Bactrocera zonata and Ceratitis catoirii are the best hosts, yielding parasitoid survival rates of more than 70% with no premature mortality. The egg-larval mortality of C. capitata, C. rosa, D. ciliatus, and N. cyanescens, and the pupal mortality of D. demmerezi, are significantly increased by parasitism. The size of emerging adults is affected by host species and is correlated to pupal weight. Bactrocera zonata would be a favorable host to support routine colonization of F. arisanus for mass production of this parasitoid.  相似文献   

6.
The apple ermine moth, Yponomeuta malinellus Zeller (Lepidoptera: Yponomeutidae), is a tent caterpillar that feeds on Malus spp. in Korea. Populations of the moth in native areas appeared to be regulated by the assemblage of parasitoids. Phenological associations between host stages and parasitoids, susceptible stage(s) of the host for each parasitoid, and stage‐specific parasitism were studied. The egg larval parasitoid Ageniaspis fuscicollis (Dalman) had highest parasitism of first instar larvae (24%), with 14% parasitism of other larval stages. Dolichogenidea delecta (Haliday) was recovered from all larval instars with the highest parasitism rate of second instar larvae (20.1%), followed by 19.9% parasitism of mid‐larval hosts. Herpestomus brunicornis Gravenhorst was reared from second instar larvae through to pupal collection, and had the highest parasitism rate (29.9%) at the pupal stage. The larval pupal parasitoid Zenillia dolosa (Meigen) was recovered from mid‐larval to pupal stages with the highest parasitism rate (5.5%) occurring in third to fourth instar larvae. The host stages for developing A. fuscicollis completely overlap with those of D. delecta, and with those of H. brunicornis to some degree. A statistically significant negative correlation exists between A. fuscicollis and these dominant parasitoids, indicating competitive interaction within the host.  相似文献   

7.
Liquid larval diets have been developed for several tephritid fruit flies including Queensland fruit fly, Bactrocera tryoni (Frogatt) (Q‐fly). In liquid diets, wheat germ oil (WGO) is usually added to improve performance in some quality parameters of reared flies, especially flight ability. However, for some flies, other plant oils may be more readily available, cheaper or produce flies of superior performance. In the present study, four alternative types of plant oils – rice bran, canola, vegetable, and sesame – were incorporated into a fruit fly liquid larval diet to replace the currently used wheat germ oil and their efficacy on the quality parameters of reared Q‐fly was compared to diets containing wheat germ oil or no oil. The quality parameters included: total pupal yield (N), pupal recovery (%), larval duration (days), pupal weight (mg), adult emergence (%), adult fliers (%), rate of fliers (%), sex ratio (%), F1 egg/female/day and egg hatching (%). There were significant differences among treatments in performance of Q‐fly. Vegetable oil appeared better in terms of total pupal yield, percentage of pupal recovery, percentage of adult emergence, percentage of fliers, mean egg/female/day and % F1 egg hatch compared with other oil treatments, especially from that of WGO treated diet. The result suggests that WGO can be substituted with rice bran and vegetable oil to improve the liquid larval diet for rearing of B. tryoni, with vegetable oil being the best replacement.  相似文献   

8.
Egg-pupal and larval-pupal parasitoids were recovered from less than 10% of the 16,000 tephritid puparia collected in Costa Rica from August, 1979, through April, 1980.Ceratitis capitata (Wiedemann) was attacked by 2 introduced opiineBraconidae and 2 indigenous eucoilineCynipidae Anastrepha spp. were attacked by each parasitoid species attackingC. capitata and also by 5 indigenous opiineBraconidae and 1 exoticEulophidae. Toxotrypana curvicauda Gerstaecker was attacked only by an indigenous opiineBraconidae which did not attack other tephritid species collected.  相似文献   

9.
Fopius (= Biosteres) arisanus (Sonan) (= Opius oophilus Fullaway) is an egg-pupal parasitoid of tephritid fruit flies. Our breakthrough in the development of a laboratory-adapted strain of F. arisanus facilitated insectary rearing of parasitoids in large numbers. First colonized in captivity in 1989, F. arisanus has been reared routinely on the oriental fruit fly, Bactrocera (= Dacus) dorsalis (Hendel), its natural host. Parasitization by F. arisanus results in the latent death of developing hosts. Host mortality data are presented in a life table to estimate cost of parasitization on the economics of F. arisanus mass rearing. Percent kills of 10, 32, and 76% exerted by F. arisanus on the egg, larval, and pupal stages of the rearing hosts, respectively, resulted in a mean parasitoid recovery of 23.6%. The production cost was estimated by integrating life table data with the costs of rearing supplies and materials and personnel-hours requirements. Production of 1 million parasitoid adults requires the exposure of 4.2 million B. dorsalis eggs (= propagation hosts). We estimated the cost of producing 1 million parasitoids to be $2,363.30 and identified the most expensive aspects of F. arisanus rearing. Recommendations for streamlining the rearing process to reduce costs are provided.  相似文献   

10.
Host acceptability and suitability Psyttalia concolor (Szépligeti) is a koinobiont, larval parasitoid of tephritid fruit flies. Individuals of P. concolor were field-collected from coffee in the central highlands of Kenya, and cultured initially on Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). They were then examined for their ability to oviposit in and develop on five other tephritid species that are pests in Kenya. In addition to the medfly, acceptability for oviposition and suitability for development were tested against the mango fruit fly, Ceratitis cosyra (Walker), the Natal fruit fly, Ceratitis rosa Karsch, Ceratitis fasciventris (Bezzi), Ceratitis anonae Graham and the melon fruit fly, Bactrocera cucurbitae (Coquillett). Ceratitis capitata and C. cosyra were accepted as hosts significantly more often than the other species. Superparasitism was recorded only from C. capitata and C. cosyra. Two days after oviposition, parasitoid eggs in C. fasciventris and B. cucurbitae were encapsulated, whereas those in C. rosa and C. anonae were encapsulated, and often melanized. Ceratitis capitata was the most suitable host for Kenyan populations of Psyttalia concolor in terms of progeny production, and proportion of female progeny.  相似文献   

11.
1 The objective of this study was to examine the structure of parasitoid assemblages attacking soybean defoliator Lepidoptera in north-western Buenos Aires province, Argentina. 2 Through larvae sampling from 1992 to 1996, and laboratory data plus the known biology of the species recorded during the study, parasitoid species composition, richness, number of guilds per host species, and levels of parasitism, were determined. 3 Total species richness was 23, all species were primary endoparasitoids, and categorized as koinobionts. They belonged to Hymenoptera (11 species) and Diptera (12 species). Rachiplusia nu (Noctuidae) hosted the highest number of parasitoid species. 4 Four parasitoid guilds were recorded for R. nu (egg–prepupal endoparasitoid, early larval endoparasitoid, late larval endoparasitoid, and larval–pupal endoparasitoid); two for Spilosoma virginica (Arctiidae) (late larval endoparasitoid and larval–pupal endoparasitoid) and Colias lesbia (Pieridae) (early larval endoparasitoid and larval–pupal endoparasitoid); and one for Anticarsia gemmatalis (Noctuidae) and Loxostege biffidalis (Pyralidae) (early larval endoparasitoid). 5 Only four out of seven potential parasitoid guilds defined for Lepidoptera were recorded in a soybean agroecosystem located in north-western Buenos Aires province, suggesting that potential host niches were not totally utilized. 6 Soybean lepidopteran defoliators supported a mean species richness of 4.8 parasitoids, a result that is similar to that reported for exophytic hosts in the Neotropics. 7 Parasitoid assemblages from each host differed in species composition, richness, number of guilds, and levels of parasitism.  相似文献   

12.
Makoto Kato 《Oecologia》1994,97(1):9-16
The population dynamics and the relative importance of bottom-up and top-down effects in a plant-leafminer-multiparasitoid interaction was studied between 1981 and 1990 in a natural forest in Kyoto, Japan. The leafminer, Chromatomyia suikazurae (Agromyzidae, Diptera), passed two generations (G1 and G2) on Lonicera gracilipes (Caprifoliaceae). The G1 population in February was free from parasitoid attack, and the mortality in G1 was mainly caused by resource limitation. Intraspecific competition for resources occurred at the larval stage in G1, and the larval mortality was density-dependent. The G1 adult density was resource-limited (the number of newly opened leaves), and its variability was lower than that of G2. The G2 population in April was not resource-limited but subject to intense attack by a species-rich parasitoid complex, and thus total mortality was much larger than that in G1. Significant density dependence was detected not in larval but in pupal mortalities, which were mainly caused by parasitism by parasitoids that attacked the pupa. The host population alternately experienced bottom-up effects during the larval stage in G1 and top-down effects during the pupal stage in G2. Overall population fluctuation was non-cyclic and mainly due to climatically-induced fluctuation of available plant resources in G1.  相似文献   

13.
Classical biological control programmes rely on mass production of high‐quality beneficial insects for subsequent releases into the field. Psyttalia lounsburyi (Silvestri) (Hymenoptera: Braconidae) is a koinobiont larval–pupal endoparasitoid of tephritid flies that is being reared to support a classical biological control programme for olive fruit fly in California. The mass‐rearing system for a P. lounsburyi colony, initiated with insects originally collected in Kenya, was evaluated with the goal of increasing production, while at the same time reducing time requirements for rearing in a quarantine facility. We tested the effect of exposure time of a factitious host Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), on parasitization, adult production, superparasitism, and sex ratio of P. lounsburyi and survival of the host. Parasitization rates were highest (31%) at 3‐ and 4‐hr exposure times, while adult production (i.e., emergence of wasp progeny) was highest (16%) at the 2‐hr exposure time. Superparasitism over the course of the study was 1.5% and did not appear to be a factor affecting parasitoid production. The sex ratio of wasp progeny was male‐biased and did not vary significantly over different exposure times. The rate of stings on host larvae increased with exposure time and was consistent with decreases in pupal eclosion from larvae and emergence rate of adult flies. When compared to current rearing procedures, the 2‐hr exposure time resulted in an overall 2.8‐fold increase in P. lounsburyi production when standardized for time.  相似文献   

14.
Microplitis demolitor Wilkinson is an important larval parasitoid ofHelicoverpa armigera (Hübner) andH. punctigera (Wallengren) in Australia. The effect of host plant on parasitism of second instarH. armigera byM. demolitor was investigated in a glasshouse experiment. Parasitism was low (0%) on chickpea. Moderate to high levels of parasitism (22.4% to 75.4%) were recorded on sorghum, sunflower, maize, cotton and soybean. The results suggest that releases of larval parasitoids into chickpea are unlikely to enhance parasitismlevels during the first spring generation ofHelicoverpa spp.  相似文献   

15.
The zygaenid Pryeria sinicaMoore and the ichneumonid Agrothereutes minousubaeNakanishi form a one host—one parasitoid system in nature. Their seasonal life cycles were investigated by laboratory experiments and field observations, and the life-cycle adaptation of the parasitoid to its host was examined. The moth is univoltine. The larva hatches from mid-February to mid-March and feeds on leaf buds and young leaves of ever green Euonymus japonicusThunb . The thermal constants for completing the 1st, 2nd, 3rd, 4th larval instars and prepupal stage were 85.6, 80.5, 85.2, 177,0 and 197.6 degree-days, respectively. The prepupa and pupa vulnerable to the attack by the parasitoid occurred from mid-April to early May and from mid- to late May, respectively. Diapause in the parasitoid is facultative and occurs in the eonymphal stage. The photoperiodic response for this diapause was a long-day type with a critical photoperiod of 13 hr 40 min at 20°C, but it was not expressed at 25°C, most larvae entering diapause irrespective of photoperiod. About 19, 120, 82 and 112 degree-days above 7°C were required to complete the egg, larval, prepupal and pupal development, respectively. These data were superimposed on the photothermograph of Fukuoka, and it is predicted that the 1st adult eclosion would occur in late April and the partial 2nd adult eclosion in early June. The prediction was supported by field observations. The adult eclosion of the parasitoid synchronized well with the apperance of prepupae and pupae of the moth. The parasitoid has two types of seasonal life cycle, one generation and two generations a year. Both types have an extremely long dormant period of 10–11 months due to aestivo-hibernation. This seasonal life cycle enables the parasitoid to maintain its population when the host is in short supply.  相似文献   

16.
Main aspects of biology and ecology of Bassus tumidulus (Nees), a parasitoid of Gypsonoma aceriana (Dup.), were studied during the period 1989–2000. Poplar tender shoots with G. aceriana larvae were collected at four localities in Bulgaria (Sofia, Svoge, Vardim and Pazardzhik) and examined in laboratory conditions. B. tumidulus was recovered in the Sofia and Svoge localities. It is a solitary internal parasitoid that attacks young larvae of G. aceriana (first–second instars) and kills host pre‐pupae. It develops two generations and overwinters as a larva in the host. Adult emergence of both overwintering and summer generation of B. tumidulus coincides with adult emergence of the host. In 1997, the first generation emergence of B. tumidulus was in relatively good synchrony with the first larval population of G. aceriana. However, the second generation B. tumidulus was not very well synchronized with the life cycle of G. aceriana because adult parasitoids appeared mostly in the beginning of the host larval population. The average mortality of G. aceriana, caused by this parasitoid in 1997 in Sofia, was 15.7 and 23.3% for the overwintering and summer generation, respectively. The highest level of parasitism by B. tumidulus, observed in individual study, was 61.5%, occurring during the summer generation in 1997.  相似文献   

17.
Sclerodermus harmandi (Buysson) (Hymenoptera: Bethylidae) is a generalist parasitoid that has been mass-produced and released for biological control of many agricultural and forest pests in China. However, few studies have examined the potential non-target risks of this parasitoid in targeted agriculture or forest ecosystems. In this study, we demonstrate that S. harmandi successfully attacks Triaspis sp. (Hymenoptera: Braconidae), an important native natural enemy of the pine weevil pest Pissodes punctatus Langor et Zhang in Yunnan Province of China. When exposed to older larvae of Triaspis sp. at three different parasitoid-to-host group sizes (1:1, 2:2 and 3:3) with a constant 1:1 parasitoid-to-host ratio, S. harmandi successfully attacked 100%, 75% and 83.3% of the test larvae, respectively. All life stages (egg, larva, pupa and adult) of S. harmandi were observed on Triaspis sp. larvae, indicating that Triaspis sp. are suitable for the completion of S. harmandi development. There were no significant differences in the number of S. harmandi progeny produced among the different parasitoid-to-host exposure treatments. Immature stages of S. harmandi on parasitized Triaspis sp. took 25.4 days to complete their development (the egg stage: 3.6 days, the larval stage: 5.0 days, the pupal stage: 16.5 days). Together, results from our study indicate that mass-releases of S. harmandi for biological control of forest pests in Yunnan Province may adversely affect some valuable non-target insects such as Triaspis sp. We suggest that the potential non-target risk of S. harmandi be considered in future augmentative release biological control programmes against forest pests.  相似文献   

18.
Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is the most recent of four tephritid fruit fly species accidentally introduced into Hawaii. Although parasitoids have been released against other tephritid fruit fly species and have shown partial success in Hawaii, no parasitoids were released until 2004 to suppress populations of B. latifrons. The present study was conducted to document the parasitoid complex that has naturally established against B. latifrons in Hawaii and to assess whether there is a need for improving the biological control of this species. Based on ripe turkeyberry (Solanum torvum Sw) fruit collections over three consecutive years B. latifrons was the dominant tephritid fruit fly infestating turkeyberry at all four sites surveyed, across three major islands in Hawaii. The overall percentage parasitism of B. latifrons ranged from a low of 0.8% (Hana, Maui) to a high of 8.8% (Kahaluu, Oahu). Five primary parasitoid species were recovered from individually held B. latifrons puparia: Fopius arisanus (Sonan), Psyttalia incisi (Silvestri), Diachasmimorpha longicaudata (Ashmead), D. tryoni (Cameron), and Tetrastichus giffardianus Silvestri. F. arisanus was the predominant parasitoid at three of the four sites. Low levels of parasitism suggest that there is a need to improve biological control of B. latifrons, to minimize chances of this species causing economic impacts on crop production in Hawaii. We discuss the possibility of improving biological control of B. latifrons through augmentative releases of F. arisanus or introduction and release of specific and efficient new parasitoid species.  相似文献   

19.
The beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) is a polyphagous insect that is distributed worldwide and was recently reported as an important pest on African indigenous vegetables. Cotesia icipe Fernandez‐Triana & Fiaboe (Hymenoptera: Braconidae) is a recently described parasitoid, reported from various Afrotropical countries. This work investigated the performance of C. icipe on S. exigua infesting Amaranthus dubius Mart. ex Thell. under laboratory conditions. Cotesia icipe was aggressive on the host and successfully oviposited on S. exigua with 70% of parasitoid females ovipositing after 2 hr of exposure. Parasitoid densities significantly affected the parasitism rate and the nonreproductive larval mortality. Parasitism rate was 9.7 ± 0.8% and 59.5 ± 3.1% for a single and cohort of five females released, respectively, when offered 50 host larvae. The cohort female release resulted in significantly higher larval nonreproductive mortality than the single release. However, there was no significant difference between parasitoid release densities in regard to pupal nonreproductive mortality. The larval and pupal mortalities in the presence of C. icipe were significantly higher than the natural mortalities at both parasitoid release densities. The parasitoid sex ratio was female‐biased for the cohort females but balanced when a single female was released. The hind tibia and forewing lengths were not affected by the density of female parasitoids but there were variations according to sex. The implication of these findings on the potential use of C. icipe for biological control of S. exigua in amaranth production systems is discussed.  相似文献   

20.
Augmentative biological control of tephritid fruit flies would benefit from: (1) synthetic attractants to monitor the survival and dispersal of released parasitoids and (2) synthetic oviposition stimulants to reduce production costs of parasitoid species that are now prohibitively costly to mass-rear. Utetes anastrephae (Viereck) is a widespread and sometimes common opiine braconid parasitoid of several pest Anastrepha spp. Despite its host range, distribution and abundance, it has attracted relatively little research and little is known of its chemical ecology. Its orientation was determined towards two chemical cues hypothesised to be useful at two spatial scales: (1) limonene derived from fruit is presumably abundant and widely dispersed and might identify from a distance patches of potentially host-containing fruit; and (2) para-ethylacetophenone (PEA), a volatile emitted by a number of tephritid larvae, presumably in relatively small amounts, and which could serve as short-range cue or oviposition stimulant. Various concentrations of limonene proved attractive to both females and males, perhaps to the later as a means of locating females accumulated in the vicinity of limonene-emitting host plants. PEA at the concentrations tested did not influence oviposition in U. anastrephae, although it did so for Diachasmimorpha longicaudata (Ashmead), another opiine tephritid parasitoid, previously known to respond to PEA and included in the experiment as a positive control. Limonene at the concentrations tested had no effect on oviposition in either species. These results advance efforts to synthesise attractants and oviposition stimulants for alternative candidates for augmentation such as U. anastrephae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号