首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PELPK1, a novel Arabidopsis thaliana gene was earlier annotated to encode a protein of sub-family, PELPK under hydroxyproline-rich glycoprotein (HRGP) super-family of proteins. Previous bioinformatics and computational analyses predicted PELPK1 to contain an amino-terminal signal peptide destined towards the secretory pathway. In the present study, transgenic plants were developed harboring a translational fusion construct comprising of PELPK1 coding sequence (PELPK1-CDS) and green fluorescent protein (GFP) reporter to determine the localization of PELPK1 in Arabidopsis plants. By employing the techniques of confocal laser scanning microscopy, immunolabeling of GFP with quantum dot (Q-dot), and transmission electron microscopy (TEM), it is shown that the translational fusion product is predominantly deposited to the cell wall. These results are in agreement with the earlier bioinformatics prediction that the PELPK1 is transported via the secretory pathway.  相似文献   

2.
OsGSTL1 gene was isolated from the rice genomic library. Semi-quantitative RT-PCR analysis demonstrated that the expression of the OsGSTL1 in rice was not induced by chlorsulfuron, ethylene, abscisic acid, salicylic acid, and methyl jasmonate. In order to investigate the cis-elements of OsGSTL1 promoter, the promoter regions with different lengths were fused to the β-glucuronidase (GUS) reporter gene. All constructs were transformed into onion epidermal cells or A. thaliana plants to detect the expression patterns. In onion epidermal cells, the 160 bp fragment and longer ones were functional for directing GUS expression. In transgenic A. thaliana, the 2?155 bp upstream region of OsGSTL1 gene directed the GUS expression only in cotyledon after germination, but not in the root of young seedlings. In the later seedling, the 2?155 bp upstream region of OsGSTL1 gene directed GUS expression in roots, stems, and leaves. However, the GUS gene directed by a 1?224 bp upstream fragment is expressed in all the checked tissues. These results suggest that the spatiotemporal expression response elements of OsGSTL1 existed in the 5′-upstream region between −2?155 and −1?224 bp.  相似文献   

3.
4.
Asr is a family of genes that maps to chromosome 4 of tomato. Asr2, a recently reported member of this family, is believed to be regulated by abscisic acid (ABA), stress and ripening. A genomic Asr2 clone has been fully sequenced, and candidate upstream regulatory elements have been identified. To prove that the promoter region is functional in vivo, we fused it upstream of the β-glucuronidase (GUS) reporter gene. The resulting chimeric gene fusion was used for transient expression assays in papaya embryogenic calli and leaves. In addition, the same construct was used to produce transgenic tomato, papaya, tobacco, and potato plants. Asr2 upstream sequences showed promoter function in all of these systems. Under the experimental conditions tested, ABA stimulated GUS expression in papaya and tobacco, but not in tomato and potato systems.  相似文献   

5.
6.
7.
8.
Phosphorus (P) stress responsive genes have been identified and characterized, including the high-affinity phosphate transporter AtPHT1;4 from Arabidopsis thaliana. This gene encodes a membrane protein that is primarily expressed in roots under phosphorus deficiency. A 2.3-kb promoter region from AtPHT1;4 has been fused with the β-glucuronidase (GUS) encoding gene and introduced into maize via biolistic bombardment to evaluate its spatiotemporal activity in a heterologous system. AtPHT1;4::GUS expression is detected preferentially in transgenic maize roots under P deficiency. Further analysis of transgenic plants has also revealed that GUS activity is higher in roots than in leaves by about sixfold. These results demonstrate the ability of AtPHT1;4 promoter to direct expression of the reporter gene in a monocot root system under P stress. This property of AtPHT1;4 promoter makes it useful to engineer maize plants to modify the soil’s rhizosphere and increase efficiency of P acquisition under P stress conditions.  相似文献   

9.
10.
为了探明拟南芥内膜反向转运体AtNHX6基因的组织表达模式,从基因组中克隆了AtNHX6基因开放阅读框(ORF)上游侧翼调控区1 922bp序列,并成功构建AtNHX6基因启动子与GUS融合表达载体pCAM-BIA1381-proNHX6-GUS,通过农杆菌花序浸染法转化野生型拟南芥获得T3代纯合转基因拟南芥株系,经PCR检测扩增得到2 187bp目的条带。利用组织染色法鉴定转基因拟南芥的GUS表达模式发现,在子叶、下胚轴和花中GUS活性显著。在这些广泛表达的部位中,微管系统中的表达最为显著,真叶中只有局部检测到GUS表达;在根中GUS在根毛和侧根生长部位表达;在未成熟果荚中只有在果荚顶端和基部存在GUS活性,成熟果荚中只在果柄检测到GUS表达;在花中,雄蕊的花丝和花粉粒及雌蕊的柱头中检测到GUS表达。GUS染色分析结果表明,AtNHX6基因启动子与GUS的融合表达载体成功构建并正常启动GUS基因表达,且AtNHX6基因主要在拟南芥的子叶、下胚轴、根、花、果荚中的微管系统、根毛和侧根生长部位以及花丝、花粉、柱头中表达。  相似文献   

11.

Background and Aims

Alpha-gliadin proteins are important for the industrial quality of bread wheat flour, but they also contain many epitopes that can trigger celiac (cœliac) disease (CD). The B-genome-encoded α-gliadin genes, however, contain very few epitopes. Controlling α-gliadin gene expression in wheat requires knowledge on the processes of expression and deposition of α-gliadin protein during wheat grain development.

Methods

A 592-bp fragment of the promotor of a B-genome-encoded α-gliadin gene driving the expression of a GUS reporter gene was transformed into wheat. A large number of transgenic lines were used for data collection. GUS staining was used to determine GUS expression during wheat kernel development, and immunogold labelling and tissue printing followed by staining with an α-gliadin-specific antibody was used to detect α-gliadin protein deposited in developing wheat kernels. The promoter sequence was screened for regulatory motifs and compared to other available α-gliadin promoter sequences.

Key Results

GUS expression was detected primarily in the cells of the starchy endosperm, notably in the subaleurone layer but also in the aleurone layer. The α-gliadin promoter was active from 11 days after anthesis (DAA) until maturity, with an expression similar to that of a 326-bp low molecular weight (LMW) subunit gene promoter reported previously. An α-gliadin-specific antibody detected α-gliadin protein in protein bodies in the starchy endosperm and in the subaleurone layer but, in contrast to the promoter activity, no α-gliadin was detected in the aleurone cell layer. Sequence comparison showed differences in regulatory elements between the promoters of α-gliadin genes originating from different genomes (A and B) of bread wheat both in the region used here and upstream.

Conclusions

The results suggest that additional regulator elements upstream of the promoter region used may specifically repress expression in the aleurone cell layer. Observed differences in expression regulator motifs between the α-gliadin genes on the different genomes (A and B) of bread wheat leads to a better understanding how α-gliadin expression can be controlled.Key words: Alpha-gliadin, promoter, expression, deposition, wheat, Triticum aestivum, grain development  相似文献   

12.
13.
To obtain strong inducible promoters to drive abiotic stress-inducible transgene expression with minimal negative effects, we constructed three artificial synthetic promoters (EKCM, EKCRM, and ECCRM) comprising multiple cis-acting stress-response elements. Each promoter was fused independently to the β-glucuronidase (GUS) reporter gene, and GUS expression was analyzed in stable expression systems in Arabidopsis thaliana. T2 transgenic progenies showed integration of the promoter-GUS construct in their genome. RT-PCR assays and histochemical staining analysis showed that GUS expression driven by each promoter increased under desiccation, cold, and high salt conditions. The activity of synthetic promoters, assessed by fluorometric quantitative analysis of GUS enzyme activity, was significantly higher than that of the rd29A promoter under various stress treatments. The most powerful promoter, EKCM, allowed about 1.29-fold in GUS activity relative to the rd29A promoter, on average, under dehydration conditions. All three synthetic promoters could drive stress-inducible GUS expression in different organs of transgenic Arabidopsis. These synthetic promoters represent valuable tools for improving the stress tolerance of crops.  相似文献   

14.
Screening of 10 000 Arabidopsis transgenic lines carrying a gene-trap (GUS) construct has been undertaken to identify markers of seed germination. One of these lines showed GUS activity restricted to the endosperm, at the micropylar end of the germinating seed. The genomic DNA flanking the T-DNA insert was cloned by walking PCR and the insertion was shown to be located 70 bp upstream of a 2285 bp open reading frame (AtEPR1) sharing strong similarities with extensins. The AtEPR1 open reading frame consists of 40 proline-rich repeats and is expressed in both wild-type and mutant lines. The expression of the AtEPR1 gene appears to be under positive control of gibberellic acid, but is not downregulated by abscisic acid during seed germination. No expression was detected in organs other than endosperm during seed germination. The putative role of AtEPR1 is discussed in the light of its specific expression in relation to seed germination.  相似文献   

15.
To confer abscisic acid (ABA) and/or stress-inducible gene expression, an ABA-response complex (ABRC1) from the barley (Hordeum vulgare L.) HVA22 gene was fused to four different lengths of the 5′ region from the rice (Oryza sativa L.) Act1 gene. Transient assay of β-glucuronidase (GUS) activity in barley aleurone cells shows that, coupled with ABRC1, the shortest minimal promoter (Act1–100P) gives both the greatest induction and the highest level of absolute activity following ABA treatment. Two plasmids with one or four copies of ABRC1 combined with the same Act1–100P and HVA22(I) of barley HVA22 were constructed and used for stable expression of uidA in transgenic rice plants. Three Southern blot-positive lines with the correct hybridization pattern for each construct were obtained. Northern analysis indicated that uidA expression is induced by ABA, water-deficit, and NaCl treatments. GUS activity assays in the transgenic plants confirmed that the induction of GUS activity varies from 3- to 8-fold with different treatments or in different rice tissues, and that transgenic rice plants harboring four copies of ABRC1 show 50% to 200% higher absolute GUS activity both before and after treatments than those with one copy of ABRC1.  相似文献   

16.
17.
18.
The aleurone layer of mature Arabidopsis thaliana seed plays important roles in seed germination and dormancy. However, the proteomic profile of this cell layer is unknown partly because it is difficult to separate this thin cell layer from the mature seeds. In this study, we have used a simple technique to separate the aleurone layer along with the seed coat following germination of seeds and determined for the first time the putative protein composition of this cell layer. By subjecting the total proteins extracted from the seed coat to 2D gel electrophoresis followed by liquid chromatography/tandem mass spectrometry, we identified four AGI loci, AT4G28520, AT5G44120, AT1G03880, and AT1G03890; all of which belong to the seed storage family of proteins. Because in Arabidopsis the diploid aleurone cells of the seed coat perform protein storage functions similar to that of triploid endosperm of other plant species, it is assumed that the above AGI loci are associated with the aleurone layer of the seed coat.  相似文献   

19.
20.
从水稻基因组文库中筛选得到一个水稻GST基因,命名为OsGSTL1.半定量RT-PCR分析表明OsGSTL1基因的表达不受绿磺隆、乙烯利、脱落酸、水杨酸和茉莉酸甲酯的诱导,因此该基因可能与植物抗逆性无关.为了研究OsGSTL1启动子在植物体内的表达特性,将OsGSTL1起始位点5'端上游不同长度的调控序列与报告基因GUS融合,并在洋葱表皮瞬间表达和拟南芥中稳定表达.研究表明:在洋葱表皮细胞中,160bp及更长的上游调控序列均能启动GUS基因的表达;而在转基因拟南芥中,含有2155 bp的上游序列的PGZ2.1::GUS具有时空表达的特性,在转基因的早期幼苗中GUS基因在子叶中特异性表达,但在根中没有表达;而在幼苗生长的后期,根、茎、叶中都有少量的表达.但包含1 224 bp的上游序列的PGZ1.2::GUS却表现为组成型表达的特性.由此推测,OsGSTL1启动子启动的基因表达可能与幼苗的营养代谢相关;而OsGSTL1启动子的时空表达相关元件可能位于OsGSTL1翻译起始位点5'端上游-2155 bp至-1224 bp范围内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号