首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequential histologic, ultrastructural, immunohistochemical and morphometric studies were made of the evolutional changes of metaplastic and regenerating alveolar epithelial cells in monkeys from 3 days to 8 weeks after paraquat administration. In the early proliferative phase, many alveoli were lined by single-layered and stratified squamous epithelium and bronchiolized epithelium (i.e., presumably derived from bronchi and bronchioles). The regenerating epithelial cells had well developed bundles of actin-like filaments, which were arranged parallel to the basal surfaces of the cells and were associated with zonulae adherentes; these cells also had intermediate filaments and some desmosomes, but lacked basement membranes, hemidesmosomes and anchoring fibrils. They covered either denuded, wavy and disrupted original epithelial basement membranes or areas of developing intraalveolar fibrosis. In zones of squamous epithelial cell metaplasia associated with intraalveolar fibrosis, fibronexus-like structures appeared to be responsible for the initial adhesion of the cells to the underlying connective tissue. In later phases, single-layered and stratified squamous epithelial cells disappeared, and only bronchiolized epithelial cells, with hemidesmosomes and anchoring fibrils on their basal surfaces, were found in fibrotic alveoli. Although bronchiolized and squamous metaplastic epithelial cells are generally thought to be formed as late events in pulmonary damage, such cells play an important role in early, temporary repair of damaged alveoli.  相似文献   

2.
Summary Monoclonal antibodies that specifically recognize epitopes on keratan sulfate glycosaminoglycans were used in this study to identify carbohydrate epitopes associated with many, but not all, types of epithelial cells. Immunoreactive cells included: keratinocytes, sebaceous gland cells, eccrine sweat gland duct cells, salivary gland excretory duct cells, colon adenocarcinoma cells, embryonic chick lung epithelial cells, embryonic chick mesonephric and metanephric kidney epithelial cells, and selected embryonic chick neural tube cells. Depending upon the type of epithelium, epitopes were located either within the cytoplasm or were located on cell surfaces. These epitopes were shared by cells from both human and chick tissues, indicating the absence of species specificity. Not all anti-keratan sulfate antibodies were equally effective in identifying epithelial-associated epitopes. One of the seven antibodies employed in this study failed to detect epitopes in almost all epithelial tissues studied. Of the remaining six antibodies, three were more effective than the others in recognizing epithelial-associated epitopes. These data indicate that carbohydrates that are typically associated with extracellular matrix can also be associated with epithelial cells, but in a form that is not necessarily related to extracellular matrix. These antibodies should prove to be useful in studies of the development of epithelial cells and tissues.  相似文献   

3.
Monoclonal antibodies that specifically recognize epitopes on keratan sulfate glycosaminoglycans were used in this study to identify carbohydrate epitopes associated with many, but not all, types of epithelial cells. Immunoreactive cells included: keratinocytes, sebaceous gland cells, eccrine sweat gland duct cells, salivary gland excretory duct cells, colon adenocarcinoma cells, embryonic chick lung epithelial cells, embryonic chick mesonephric and metanephric kidney epithelial cells, and selected embryonic chick neural tube cells. Depending upon the type of epithelium, epitopes were located either within the cytoplasm or were located on cell surfaces. These epitopes were shared by cells from both human and chick tissues, indicating the absence of species specificity. Not all anti-keratan sulfate antibodies were equally effective in identifying epithelial-associated epitopes. One of the seven antibodies employed in this study failed to detect epitopes in almost all epithelial tissues studied. Of the remaining six antibodies, three were more effective than the others in recognizing epithelial-associated epitopes. These data indicate that carbohydrates that are typically associated with extracellular matrix can also be associated with epithelial cells, but in a form that is not necessarily related to extracellular matrix. These antibodies should prove to be useful in studies of the development of epithelial cells and tissues.  相似文献   

4.
Summary Type IV collagen is the basic structural component of all basement membranes (BM), and forms the backbone to which other BM components attach. We have found that in the centre of the adult human cornea the epithelium does not display a type IV collagen immunoreactive BM. In fetal corneas (14 and 22 weeks of gestation), however, the epithelial BM shows uninterrupted type IV collagen immunoreactivity. In similar experiments laminin immunoreactivity was observed in the entire corneal epithelial BM, in fetal as well as adult corneas. Ultrastructurally, a normal BM with a lamina lucida and a lamina densa can be observed in the conjunctiva. The adult corneal centre, however, shows epithelium without a lamina densa. Focal deposits of electron-dense material are observed in conjunction with hemidesmosomes and anchoring fibres.These observations indicate that in the development of the eye, the cornea is initially covered with an epithelium which attaches to a normal BM. Later on, however, the BM type IV collagen disappears from the corneal centre. Assuming that highly differentiated epithelium cannot produce a BM, this could be due to the high level of differentiation of central corneal epithelium, which is generated in the limbal proliferation zone. Alternatively, the acellular Bowman's layer might lack triggers to induce type IV collagen production by the epithelial cells.  相似文献   

5.
Hemidesmosomes of normal and regenerating mouse corneal epithelium   总被引:2,自引:0,他引:2  
Hemidesmosomes of normal mouse corneal epithelium observed in tangential thin sections, occupy 14% of the basal plasma membrane. They consist of linear chains of densities with an orientation that is not random with respect to the radial axis of the cornea, tending to parallel it. During the repair of a small epithelial defect, cells of the corneal epithelium peripheral to the defect show chains of hemidesmosomes arranged parallel to the direction of migration of the epithelial sheet. This is parallel to the radius, like the orientation of the normal chains. Cells of the area that was denuded of epithelium, and is being resurfaced, show no hemidesmosomes. During repair of a large defect of the corneal epithelium hemidesmosomes are present on the cells covering the denuded area but they are small, few in number compared to the normal, and many are not arranged in chains. These small hemidesmosomes appear to be points of attachment of very fine basal filaments, possibly actin.  相似文献   

6.
Hemidesmosome formation in vitro   总被引:13,自引:6,他引:7       下载免费PDF全文
Intact, viable sheets of adult rabbit corneal epithelium, 9 mm in diameter, were prepared by the Dispase II method (Gipson, I. K., and S. M. Grill, 1982, Invest. Ophthalmol. Vis. Sci. 23:269-273). The sheets, freed of the basal lamina, retained their desmosomes and stratified epithelial characteristics, but lacked hemidesmosomes (HD). Epithelial sheets were placed on fresh segments of corneal stroma with denuded basal laminae and incubated in serum-free media for 1, 3, 6, 18, or 24 h. Tissue was processed for electron microscopy, and the number of HD/micron membrane, the number of HDs with anchoring fibrils directly across the lamina densa from them, and the number of anchoring fibrils not associated with HDs were counted. After 6 h in culture, the number of newly formed HD was 82% of controls (normal rabbit corneas), and by 24 h the number had reached 95% of controls. At all time periods studied, 80-86% of HDs had anchoring fibrils directly across the lamina densa from them. Anchoring fibrils not associated with HDs decreased with culture time. These data indicate that the sites where anchoring fibrils insert into the lamina densa may be nucleation sites for new HD formation. Corneal epithelial sheets placed on two other ocular basal laminae, Descemet's membrane and lens capsule, had not formed HDs after 24 h in culture. These two laminae do not have anchoring fibrils associated with them. Rabbit epithelial sheets placed on the denuded epithelial basal lamina of rat and human corneas formed new HDs. Thus, at least in these mammalian species, HD formation may involve some of the same molecular components.  相似文献   

7.
The development of the basement membrane and collagen fibrils below placodes, including the corneal region of the ectoderm, lens epithelium, nasal plate, and auditory vesicle in anuran larvae was observed by transmission electron microscopy and compared with that in nonplacodal regions such as the epidermis, neural tube, and optic vesicle. In the corneal region the lamina densa becomes thick concomitantly with the development of the connecting apparatuses such as hemidesmosomes and anchoring fibrils. The collagen fibrils increase in number and form a multilayered structure, showing similar morphology to the connective tissues below the epidermis. These two areas, i.e., the corneal region and epidermis, possess much collagenous connective tissue below them. On the other hand, the neural tube and ophthalmic vesicle that originated from the neural tube each have a thin lamina densa and a small number of underlying collagen fibrils. The lamina densa does not thicken and the number of collagen fibrils do not significantly increase during development. These two areas possess little extracellular matrix. The nasal plate and auditory vesicle show intermediate characteristics between the epidermis-type and the neural tube-type areas. In these areas, the lamina densa becomes thick and hemidesmosomes and anchoring fibrils develop. The number of collagen fibrils increases during development, but does not show an orderly arrangement; rather, they are randomly distributed. It is thought that the difference in the arrangement of collagen fibrils in different tissues is due to differences in the extracellular matrix around the collagen fibrils. Placodal epithelia have the same origin as epidermis, but during development their morphological characteristics differ and they are not associated with the pattern of extracellular matrix with characteristics of epidermal and corneal multilayered collagen fibril areas.  相似文献   

8.
The time course of appearance and distribution of fibronectin in the developing eye have been studied in chick embryos by indirect immunofluorescence. At the 12-somite stage, fibronectin was detected as a layer under the ectodermal cells overlying the forebrain vesicle; it was also present in the head mesenchyme. During formation of the lens placode and its invagination, a zone containing fibronectin persisted around the lens as a component of the capsule. The fibronectin-containing layer was separated from the corneal epithelial cells during the formation of the acellular stroma. The migrating corneal endothelial cells were seen posterior to the fibronectin layer. The secondary stroma was strongly positive for fibronectin. Fibronectin disappeared from the cornea starting from its posterior part along with the corneal condensation. In the newborn chicken cornea, fibronectin was present only in Descemet's membrane. In addition, the embryonic vitreous body had a network of fibronectin-containing material. The distribution of fibronectin in the developing cornea, as well as other data available on this glycoprotein, is consistent with the proposed role of fibronectin in positioning and migration of cells and in organization of the extracellular matrix.  相似文献   

9.
The fine distribution of the extracellular matrix glycoprotein emilin (previously known as glycoprotein gp115) (Bressan, G. M., I. Castellani, A. Colombatti, and D. Volpin. 1983. J. Biol. Chem. 258: 13262-13267) has been studied at the ultrastructural level with specific antibodies. In newborn chick aorta the protein was exclusively found within elastic fibers. In both post- and pre-embedding immunolabeling emilin was mainly associated with regions where elastin and microfibrils are in close contact, such as the periphery of the fibers. This localization of emilin in aorta has been confirmed by quantitative evaluation of the distribution of gold particles within elastic fibers. In other tissues, besides being associated with typical elastic fibers, staining for emilin was found in structures lacking amorphous elastin, but where the presence of tropoelastin has been demonstrated by immunoelectron microscopy. This was particularly evident in the oxitalan fibers of the corneal stroma, in the Descemet's membrane, and in the ciliary zonule. Analysis of embryonic aorta revealed the presence of emilin at early stages of elastogenesis, before the appearance of amorphous elastin. Immunofluorescence studies have shown that emilin produced by chick embryo aorta cells in culture is strictly associated with elastin and that the process of elastin deposition is severely altered by the presence of antiemilin antibodies in the culture medium. The name of the protein was derived from its localization at sites where elastin and microfibrils are in proximity (emilin, elastin microfibril interface located protein).  相似文献   

10.
Focal contacts and hemidesmosomes are cell-matrix adhesion structures of cultured epithelial cells. While focal contacts link the extracellular matrix to microfilaments, hemidesmosomes make connections with intermediate filaments. We have analyzed hemidesmosome assembly in 804G carcinoma cells. Our data show that hemidesmosomes are organized around a core of actin filaments that appears early during cell adhesion. These actin structures look similar to podosomes described in cells of mesenchymal origin. These podosome-like structures are distinct from focal contacts and specifically contain Arp3 (Arp2/3 complex), cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin, and zyxin. We also show that the maintenance of the actin core and hemidesmosomes is dependent on actin polymerization, src-family kinases, and Grb2, but not on microtubules. Video microscopy analysis reveals that assembly of hemidesmosomes is preceded by recruitment of beta4 integrin subunit to the actin core before its positioning at hemidesmosomes. When 804G cells are induced to migrate, actin cores as well as hemidesmosomes disappear and beta4 integrin subunit becomes co-localized with dynamic actin at leading edges. We show that podosome-like structures are not unique to cells of mesenchymal origin, but also appear in epithelial cells, where they seem to be related to basement membrane adhesion.  相似文献   

11.
Bullous pemphigoid antisera and monoclonal antibodies to type VII collagen were used to localize hemidesmosomes and anchoring fibrils, respectively, in tissues of developing eyes and healing corneal wounds of New Zealand white rabbits. In the 17-day fetal rabbit eye, both antibodies colocalize to the epithelial-stromal junction of the lid and conjunctival region, but neither binds to the cornea, and electron microscopy demonstrates hemidesmosomes only where the antibodies bind. By 20 days of fetal development, the antibodies colocalize in cornea, and, by electron microscopy, hemidesmosomes are shown to be present as well. In healing 7-mm corneal wounds, both antibodies colocalize at the wound periphery within 66 h. By electron microscopy, hemidesmosomes along small segments of basal lamina are also shown to be present at the wound periphery at this time. These demonstrations of the synchronous assembly of hemidesmosomes and anchoring fibrils support the hypothesis of linkage of hemidesmosomes through the basement membrane to anchoring fibrils.  相似文献   

12.
The skin of late embryonic, larval, and young postmetamorphic newts, Taricha torosa, has been examined with particular reference to areas of cellular attachment. Stereo electron microscopic techniques and special staining methods for extracellular materials were utilized in addition to conventional avenues of ultrastructural study to investigate the fine architecture of desmosomes, hemidesmosomes, their associated filament systems, and extracellular materials. No evidence has been found that continuity of tonofilaments between adjacent cells exists at desmosomes. Rather, most of the tonofilaments which approach desmosomes (and perhaps also hemidesmosomes) course toward the "attachment plaque" and then loop, either outside the plaque or within it, and return into the main filament tracts of the cell. These facts suggest that the filamentous framework provides intracellular tensile support while adhesion is a product of extracellular materials which accumulate at attachment sites. Evidence is presented that the extracellular material is arranged as pillars or partitions which are continuous with or layered upon the outer unit cell membrane leaflets and adjoined in a discontinuous dense midline of the desmosome. A similar analysis has been made of extracellular materials associated with hemidesmosomes along the basal surface of epidermal cells. An adepidermal globular zone, separating the basal cell boundary from the underlying basal lamina and collagenous lamellae during larval stages, has been interpreted from enzyme and solvent extraction study as a lipid-mucopolysaccharide complex, the function of which remains obscure. These observations are discussed in relation to prevailing theories of cellular adhesion and epidermal differentiation. They appear consistent with the concept that a wide range of adhesive specializations exists in nature, and that the more highly organized of these, such as large desmosomes and hemidesmosomes, serve as strong, highly supported attachment sites, supplemental in function to a more generalized aggregating mechanism.  相似文献   

13.
The ultrastructure of the colon of Locusta migratoria is described. The colon is lined by a thick cuticle that, for the most part, adheres to the underlying epithelium. The cuboid epithelial cells are characterized by moderate invaginations of the apical and, to a lesser extent, basal plasma membranes; the lateral plasma membranes are relatively flat. The bulk of the mitochondria are located in the apical region of the cell and are not particularly associated with any of the plasma membranes. The basal region of the cells contains much rough endoplasmic reticulum, glycogenlike granules, and a predominance of spherical, electron-dense bodies of various sizes. Where muscle fibers make contact with the epithelium, the cells are much reduced; the cytoplasm is usually less electron-dense, and, typically, the nucleus has a thick layer of granular material associated with the inner nuclear membrane. The apical and basal plasma membranes of the reduced epithelial cells contain numerous hemidesmosomes. The apical hemidesmosomes occur in pairs around an extracellular space that contains electron-opaque material. The latter forms tonofibrillae that extend into the endocuticle. Bundles of microtubules are associated with the hemidesmosomes. The tubules traverse the cell from the apical to the basal region. The possible significance of these findings is discussed.  相似文献   

14.
A transmembrane extracellular matrix receptor of the integrin family, alpha 6 beta 4, is a component of the hemidesmosome, an adhesion complex of importance in epithelial cell-connective tissue attachment (Stepp, M. A., S. Spurr-Michaud, A. Tisdale, J. Elwell, and I. K. Gipson. 1990. Proc. Natl. Acad. Sci. USA. 87:8970-8974; Jones, J. C. R., M. A. Kurpakus, H. M. Cooper, and V. Quaranta. 1991. Cell Regulation. 2:427-438). Cytosolic components of hemidesmosomes include bullous pemphigoid (BP) antigens while extracellular components include a 125-kD component of anchoring filaments (CAF) and collagen type VII-containing anchoring fibrils. We have monitored the incorporation of the alpha 6 beta 4 integrins into forming hemidesmosomes in an in vitro wound-healing explant model. In epithelial cells recently migrated from the edges of unwounded sites over bare connective tissue, alpha 6 beta 4 first appears along the entire cell surface. At this stage, these cells contain little or no cytosolic hemidesmosomal components, at least as detectable by immunofluorescence using BP autoantibodies, whereas they are already positive for laminin and CAF. At a later stage, as cells become positive for cytosolic hemidesmosome components such as BP antigens as well as collagen type VII, alpha 6 beta 4 becomes concentrated along the basal pole of the epithelial cell where it abuts the connective tissue of the explant. Polyclonal antibodies to beta 4 do not interfere with the migration of epithelial cells in the explant. However, they prevent assembly of hemidesmosomal complexes and inhibit expression of collagen type VII in cells that have migrated over wound areas. In addition, they induce disruption of established hemidesmosomes in nonmigrating cells of the unwounded area of the explant. Monoclonal antibodies to alpha 6 have a more dramatic effect, since they completely detach epithelial cells in the unwounded area of the explant. Antibodies to CAF also detach epithelial cells in unwounded areas, apparently by inducing separation between epithelium and connective tissue at the lamina lucida of the basement membrane zone. These results suggest a model whereby polarization of alpha 6 beta 4 to the basal surface of the cells, perhaps induced by a putative anchoring filament-associated ligand, triggers assembly of hemidesmosome plaques.  相似文献   

15.
Tissue functions and mechanical coupling of cells must be integrated throughout development. A striking example of this coupling is the interactions of body wall muscle and hypodermal cells in Caenorhabditis elegans. These tissues are intimately associated in development and their interactions generate structures that provide a continuous mechanical link to transmit muscle forces across the hypodermis to the cuticle. Previously, we established that mup-4 is essential in embryonic epithelial (hypodermal) morphogenesis and maintenance of muscle position. Here, we report that mup-4 encodes a novel transmembrane protein that is required for attachments between the apical epithelial surface and the cuticular matrix. Its extracellular domain includes epidermal growth factor-like repeats, a von Willebrand factor A domain, and two sea urchin enterokinase modules. Its intracellular domain is homologous to filaggrin, an intermediate filament (IF)-associated protein that regulates IF compaction and that has not previously been reported as part of a junctional complex. MUP-4 colocalizes with epithelial hemidesmosomes overlying body wall muscles, beginning at the time of embryonic cuticle maturation, as well as with other sites of mechanical coupling. These findings support that MUP-4 is a junctional protein that functions in IF tethering, cell-matrix adherence, and mechanical coupling of tissues.  相似文献   

16.
The chick cornea is comprised of three cellular layers, each associated with a discrete extracellular matrix. The absence of specific markers for these cellular and acellular components has made it difficult to investigate the cell-cell and cell-matrix interactions which occur during development of this organ. We have approached this problem by producing monoclonal antibodies to species-specific, developmentally regulated antigens of the chick cornea. By immunofluorescence staining patterns the antibodies fall into three distinct groups. One group is directed against the corneal extracellular matrix. At 9 days of embryonic development staining by these antibodies is detected at the endothelial surface (in Descemet's membrane), and in the posterior part of the stroma. During development it progresses anteriorly throughout the entire width of the corneal stroma and Bowman's membrane until, by 14 days, it is found in all three specialized extracellular matrices of the cornea. Throughout most of development these antibodies do not recognize any other ocular or nonocular tissue examined. Late in development they begin to lightly stain nerve bundles. A second group of antibodies is highly selective for the corneal epithelial cell layer. These begin to stain at 12 to 13 days of development and cause very bright fluorescence by 14 days. A third group stains the extracellular matrix of the cornea in a manner spatially and temporally identical to that of the first group, but in addition recognizes certain basement membranes. The possible relationship of the antigens recognized by these groups of antibodies to developmental events occurring at the time of their appearance, and the potential use of all three antibody groups in studying corneal development are discussed.  相似文献   

17.
Adult stem cells are important cell sources in regenerative medicine, but isolating them is technically challenging. This study employed a novel strategy to generate stem-like corneal epithelial cells and promote the functional properties of these cells by coculture with embryonic stem cells. The primary corneal epithelial cells were labelled with GFP and cocultured with embryonic stem cells in a transwell or by direct cell-cell contact. The embryonic stem cells were pre-transfected with HSV-tk-puro plasmids and became sensitive to ganciclovir. After 10 days of coculture, the corneal epithelial cells were isolated by treating the cultures with ganciclovir to kill the embryonic stem cells. The expression of stem cell-associated markers (ABCG2, p63) increased whereas the differentiation mark (Keratin 3) decreased in corneal epithelial cells isolated from the cocultures as evaluated by RT-PCR and flow cytometry. Their functional properties of corneal epithelial cells, including cell adhesion, migration and proliferation, were also enhanced. These cells could regenerate a functional stratified corneal epithelial equivalent but did not form tumors. Integrin β1, phosphorylated focal adhesion kinase and Akt were significantly upregulated in corneal epithelial cells. FAK Inhibitor 14 that suppressed the expression of phosphorylated focal adhesion kinase and Akt inhibited cell adhesion, migration and proliferation. LY294002 that suppressed phosphorylated Akt but not phosphorylated focal adhesion kinase inhibited cell proliferation but had no effect on cell adhesion or migration. These findings demonstrated that the functional properties of stem-like corneal epithelial cells were enhanced by cocultured embryonic stem cells via activation of the integrin β1-FAK-PI3K/Akt signalling pathway.  相似文献   

18.
Hemidesmosomes are cell-to-matrix adhesion complexes anchoring keratinocytes to basement membranes. For the first time, we present a method to prepare a fraction from human cultured cells that are highly enriched in hemidesmosomal proteins. Using DJM-1 cells derived from human squamous cell carcinoma, accumulation of hemidesmosomes was observed when these cells were cultured for more than 10 days in a commercial serum-free medium without supplemental calcium. Electron microscopy demonstrated that numerous electron-dense adhesion structures were present along the basal cell membranes of DJM-1 cells cultured under the aforementioned conditions. After removing cellular materials using an ammonia solution, hemidesmosomal proteins and deposited extracellular matrix were collected and separated by electrophoresis. There were eight major polypeptides, which were determined to be plectin, BP230, BP180, integrin α6 and β4 subunits, and laminin-332 by immunoblotting and mass spectrometry. Therefore, we designated this preparation as a hemidesmosome-rich fraction. This fraction contained laminin-332 exclusively in its unprocessed form, which may account for the promotion of laminin deposition, and minimal amounts of Lutheran blood group protein, a nonhemidesmosomal transmembrane protein. This hemidesmosome-rich fraction would be useful not only for biological research on hemidesmosomes but also for developing a serum test for patients with blistering skin diseases.  相似文献   

19.
20.
Podosomes are punctate adhesion structures first described in osteoclasts and next found in src-transformed cells of mesenchymal origin. Podosomes were never observed in cultured epithelial cells where cell-matrix adhesion structures were represented only by focal contacts and hemidesmosomes interacting with microfilaments and intermediate filaments, respectively. Rat bladder carcinoma cells and normal human keratinocytes showed that hemidesmosome-like structures are organized around a core of actin filaments that appears early during cell adhesion and looks similar to those of podosomes described in cells of mesenchymal origin. The epithelial podosome-like structures specifically contain Arp2/3 complex, cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin and zyxin. The maintenance of the F-actin core and the surrounding hemidesmosomes depends on actin polymerization, src family kinases and Grb2, but not on microtubular integrity. Thus, podosomes are not unique to cells of mesenchymal origin, but also appear in epithelial cells where they may take part in regulating basement membrane adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号