首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
To understand the effect of wounding stress on alcohol dehydrogenase(ADH, EC 1.1.1.1) in monocotyledonous and dicotyledonous plants, maize(Zea mays L.) and lettuce (Lactucasativa L.) seedlings were subjected to wounding stress and ADHactivity and abscisic acid (ABA) concentration were determined. In response tothe stress, the ADH activity in seedlings of both species increased rapidly asaresult of increased synthesis of the ADH. At 12 h after thestress,the activities in the wounded lettuce and maize seedlings, respectively,increased to 1.7- and 1.5-fold of that in non-stressed seedlings. Woundingstress also increased the concentration of endogenous ABA during the first 6h in both seedlings. The maximum increased levels of ABA in thelettuce and maize seedlings were 4.9- and 4.7-fold of that in the non-stressedseedlings, respectively.  相似文献   

2.
Ability of metabolic adaptation in upland and lowland rice (Oryza sativa L.) seedlings to flooding stress was compared. Flooding stress increased alcohol dehydrogenase (ADH) activity and ethanol concentration in shoots and roots of the upland and lowland rice seedlings. The difference in ADH activity and ethanol concentration in shoots between the upland and lowland rice was not apparent. However, both ADH activity and ethanol concentration in roots of the lowland rice were 2-fold greater than those in roots of the upland rice, suggesting that flooding-induction of ethanolic fermentation in lowland rice roots may be significantly greater than that in the upland rice roots. Since flooding often causes the anaerobic conditions in rooting zone than aerial part of plants and ethanolic fermentation is essential to survive in the anaerobic conditions, the ability of metabolic adaptation in lowland rice seedlings to flooding stress may be greater than that in upland rice seedlings.  相似文献   

3.
Barley (Hordeum vulgare) seedlings were exposed to flooding and activities of alcohol dehydrogenase (ADH) and their isoform profiles were determined. The flooding increased ADH activities in shoots and roots of the seedlings. By day 3, the activity increased to 4 and 3 times that of the initial level for the shoots and the roots, respectively. Only two bands of ADH isoform were found in the shoots and the roots of non-induced seedling, whereas five bands were identified in those of induced seedlings.  相似文献   

4.
Maize (Zea mays L.) seedlings were exposed to osmotic stress, and alcohol dehydrogenase (ADH) activity and abscisic acid (ABA) concentration were determined. The osmotic stress increased ADH activities in both roots and shoots, whereas the increase was 2-fold greater in roots than the shoots. The stress also increased ABA concentration in both roots and shoots and the increase was greater in the roots than in the shoots.  相似文献   

5.
In order to clarify the induction of alcohol dehydrogenase (ADH) by anaerobiosis in oat (Avena sativa L.), the seedlings were exposed to anaerobiosis and activity of ADH and ADH isozyme profiles were determined. The anaerobiosis increased ADH activities in shoots and roots of the seedlings. By day 2, the activity increased 5 and 4 times in the roots and the shoots, respectively, compared with those under aerobic condition. Based on nondenaturing electrophoresis, ADH isozyme composition analysis revealed six bands consisting of a dimmer enzyme with submits encoded by three different Adh genes. Changes in staining intensity of the isozymes indicated that the increase in ADH activity in oat under anaerobiosis resulted from increased enzyme synthesis.  相似文献   

6.
The catalytic direction of pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP; EC 2.7.1.90) in coleoptiles of rice ( Oryza sativa L.) seedlings subjected to anoxia stress is discussed. The stress greatly induced ethanol synthesis and increased activities of alcohol dehydrogenase (ADH; EC 1.1.1.1) and pyruvate decarboxylase (PDC; EC 4.1.1.1) in the coleoptiles, whereas the elevated PDC activity was much lower than the elevated ADH activity, suggesting that PDC may be one of the limiting factors for ethanolic fermentation in rice coleoptiles. Anoxic stress decreased concentrations of fructose 6-phosphate (Fru-6-P) and glucose 6-phosphate, and increased concentration of fructose 1,6-bisphosphate (Fru-1,6-bisP) in the coleoptiles. PFP activity in rice coleoptiles was low in an aerobic condition and increased during the stress, whereas no significant increase was found in ATP:fructose-6-phosphate 1-phosphotransferase (PFK; EC 2.7.1.11) activity in stressed coleoptiles. Fructose 2,6-bisphosphate concentration in rice coleoptiles was increased by the stress and pyrophosphate concentration was above the Km for the forward direction of PFP and was sufficient to inhibit the reverse direction of PFP. Under stress conditions the potential of carbon flux from Fru-6-P toward ethanol through PFK may be much lower than the potential of carbon flux from pyruvate toward ethanol through PDC. These results suggest that PFP may play an important role in maintaining active glycolysis and ethanolic fermentation in rice coleoptiles in anoxia.  相似文献   

7.
Anoxia tolerance and ethanol sensitivity of rice (Oryza sativa L.) and oat (Avena sativa L.) seedlings were evaluated to clarify their growth habit in anoxia. Anoxic stress inhibited elongation and dry weight gain of coleoptiles of the oat and rice seedlings; however, the inhibition of the oat coleoptiles was much greater than that of the rice coleoptiles. Anoxic stress increased endogenous ethanol concentration and alcohol dehydrogenase activity in oat and rice coleoptiles and their increases in the rice coleoptiles were much greater than those in the oat coleoptiles. At concentrations greater than 30 mM and 300 mM, exogenously applied ethanol inhibited the elongation and weight gain for the oat and the rice coleoptiles, respectively, and the inhibition was increased with increasing ethanol concentrations with marked inhibition being achieved on the oat coleoptiles. These results suggest that anoxia tolerance and induction of ethanolic fermentation in anoxia may be greater in rice than oat, and ethanol sensitivity of rice may be lower than that of oat.  相似文献   

8.
Flooding results in induction of anaerobic metabolism in many higher plants. As an important component of anaerobic energy production, alcohol dehydrogenase (ADH) activity increases markedly in response to flooding in white clover, Trifolium repens. Significant inter-individual variation in flood-induced ADH activity exists in natural populations of T. repens. The genetic basis of this variation was analyzed by offspring-midparent regression of data from 75 greenhouse reared families; the estimated heritability of flood-induced ADH activity was 0.55 (±0.13). Genetic variation in flood-induced ADH activity has pronounced effects on physiological response and flood tolerance in this species. ADH activity is positively correlated with the rate of ethanol production, indicating that observed in vitro activity differences are manifested in in vivo physiological function. T. repens plants with higher ADH activities during flooding have greater flood tolerance (measured as growth rate when flooded/unflooded growth rate). Variation in ADH activity during flooding accounts for more than 79% of the variance in flood tolerance. On the basis of a limited field survey of populations occupying three sites differing in exposure to flooding conditions, individuals from site C, the most frequently flooded site, expressed significantly higher average ADH activity when flooded than individuals from site A, a site with no history of flooding. Since ADH activity levels are not correlated with electrophoretic mobility variation in T. repens, this work supports previous suggestions that regulatory variation in enzyme activity may play a central role in biochemical adaptations to environmental stress.  相似文献   

9.
Pyruvate metabolism in rice coleoptiles under anaerobiosis   总被引:1,自引:0,他引:1  
Relative importance of ethanolic, lactate and alanine fermentation pathways was estimated in coleoptiles of rice seedlings (Oryza sativa L.) subjected to anoxic stress. The in vitro activities of alcohol dehydrogenase (ADH, EC 1.1.1.1), pyruvate decarboxylase (PDC, EC 4.1.1.1) and alanine aminotransferase (AlaAT, EC 2.6.1.2) in the coleoptiles increased in anoxia, whereas no significant increase was measured in lactate dehydrogenase (LDH, EC 1.1.1.27) activity. At 48 h, the ADH, PDC and AlaAT activities in anoxic coleoptiles were 62-, 15- and 7.6-fold greater, respectively, than those in the presence of oxygen. Ethanol and alanine in the coleoptiles accumulated rapidly under anoxia, increasing by 48 h, 57- and 5.6-fold compared with those in the presence of oxygen, respectively. However, lactate concentration did not increase and no initial burst of lactate production was detected. The relative ratio of carbon flux from pyruvate to ethanol, lactate and alanine in anoxic coleoptiles was estimated to be 92, 1 and 7% of the total carbon flux, respectively. These results suggest that the potential carbon flux from pyruvate to ethanol may be much greater than the potential flux from pyruvate to lactate and alanine in rice coleoptiles during anoxia.  相似文献   

10.
When cultured on a defined diet, ethanol was an efficient substrate for lipid synthesis in wild-type Drosophila melanogaster larvae. At certain dietary levels both ethanol and sucrose could displace the other as a lipid substrate. In wild-type larvae more than 90% of the flux from ethanol to lipid was metabolized via the alcohol dehydrogenase (ADH) system. The ADH and aldehyde dehydrogenase activities of ADH were modulated in tandem by dietary ethanol, suggesting that ADH provided substrate for lipogenesis by degrading ethanol to acetaldehyde and then to acetic acid. The tissue activity of catalase was suppressed by dietary ethanol, implying that catalase was not a major factor in ethanol metabolism in larvae. The activities of lipogenic enzymes, sn-glycerol-3-phosphate dehydrogenase, fatty acid synthetase (FAS), and ADH, together with the triacylglycerol (TG) content of wild-type larvae increased in proportion to the dietary ethanol concentration to 4.5% (v/v). Dietary ethanol inhibited FAS and repressed the accumulation of TG in ADH-deficient larvae, suggesting that the levels of these factors may be subject to a complex feedback control.This research was supported by National Institutes of Health Grant GM-28779 to B.W.G. and a Monash University Research Grant to S.W.M.  相似文献   

11.
以‘新泰密刺’黄瓜为材料,采用营养液栽培,外源使用Ca2+、钙离子通道抑制剂La3+与钙调素拮抗剂三氟拉嗪(TFP),研究了钙对根际低氧胁迫下黄瓜幼苗根系ADH、LDH活性和同工酶的影响。结果表明,低氧胁迫诱导产生了新的ADH和LDH同工酶条带。低氧胁迫下,ADH、LDH同工酶丰度和活性显著高于对照;外源增施Ca2+有利于Ca2+信号的形成和逆境信号的传递,营养液添加CaCl2缓解了低氧胁迫对黄瓜植株的伤害,ADH、LDH同工酶丰度和活性接近对照水平;La3+抑制Ca2+的吸收和体内运输,营养液添加LaCl3显著抑制了ADH和LDH同工酶丰度和酶活性,黄瓜幼苗植株生长受到抑制,生物量显著低于低氧处理,表明La3+加重了低氧胁迫对黄瓜幼苗植株的伤害;TFP抑制了低氧逆境胁迫信号的传递,营养液添加TFP抑制了ADH和LDH同工酶丰度和酶活性,ADH和LDH同工酶丰度和酶活性显著低于低氧处理,黄瓜幼苗植株生长受到抑制,黄瓜植株的低氧耐性降低。暗示外源Ca2+参与了低氧胁迫下黄瓜根系无氧呼吸代谢的调节,增强了Ca2+向植物体内的运输,缓解了低氧胁迫对黄瓜幼苗植株的伤害,增强了植物对低氧的耐性。  相似文献   

12.
Abstract Field flooding of established alfalfa (Medicago sativa L.) and birdsfoot trefoil (Lotus corniculatus L.) for up to 12 d resulted in a significant increase in alcohol dehydrogenase activity (ADH) and an increase in the Km of ADH in both species. Root concentration of ethanol increased throughout the flooding regime in alfalfa roots. No ethanol was detected in any trefoil root samples. Alfalfa plants which had shoots removed 5 d prior to flooding accumulated significantly higher levels of root ethanol and showed flooding injury sooner, indicating a significant effect of shoots on development of flooding injury. Alfalfa and trefoil plants grown in the greenhouse were flooded and ethanol in the transpiration effluent was trapped and measured. Alfalfa transpired measurable quantities of ethanol which peaked just prior to development of shoot injury symptoms. No ethanol was detected in the transpiration effluent from trefoil shoots. Flooded roots of both alfalfa and trefoil excreted ethanol but alfalfa roots synthesized more total ethanol and retained a larger proportion in the roots than did trefoil. While the ethanol accumulation response in alfalfa and trefoil are consistent with the ethanol ‘self-poisoning’ hypothesis of flooding injury, the very small quantities of ethanol found in these roots still raises questions as to its absolute effect in the plant.  相似文献   

13.
Difference in the growth response to submergence between coleoptiles and roots of rice (Oryza sativa L.) was investigated in 9-d-old rice seedlings. The coleoptile length in the submergence condition was much greater than that in aerobic condition, whereas the root length in the submergence condition was less than that in the aerobic condition. Alcohol dehydrogenase (ADH) activity in the coleoptiles in the submergence condition was much greater than that in the aerobic condition, but ADH activity in the roots in the submergence condition increased slightly. These results suggest that the preferential ADH induction in rice seedlings may contribute to the difference in the growth response between the coleoptiles and roots under low oxygen conditions.  相似文献   

14.
Ethanolic fermentation and anoxia tolerance in four rice cultivars   总被引:1,自引:0,他引:1  
The relationship between coleoptile elongation and ethanolic fermentation was investigated in rice (Oryza sativa L.) coleoptiles of four cultivars subjected to a 48-h anoxic stress. The coleoptile elongation of all cultivars was suppressed by anoxic stress; however, the elongation of cvs Yukihikari and Nipponbare was much greater than that of cvs Leulikelash and Asahimochi. The stress did not significantly increase lactate dehydrogenase (LDH) activity or lactate concentration, but increased alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) activities, as well as ethanol concentration in the coleoptiles of all cultivars. The elevated ADH and PDC activities and ethanol concentration in cvs Yukihikari and Nipponbare were much greater than those of cvs Leulikelash and Asahimochi, suggesting that ethanolic fermentation is likely more active in cvs Yukihikari and Nipponbare than in cvs Leulikelash and Asahimochi. ATP concentration in cvs Yukihikari and Nipponbare in anoxia was also greater than that in cvs Leulikelash and Asahimochi in anoxia. The ethanol concentration in the coleoptiles was correlated with anoxia tolerance with respect to the ATP concentration and coleoptile elongation. These results suggest that the ability to increase ethanolic fermentation may be one of the determinants in anoxia tolerance of rice coleoptiles.  相似文献   

15.
In order to clarify the effect of abscisic acid (ABA) on anaerobic tolerance in alfalfa ( Medicago sativa L.), the seedlings were subjected to anaerobic stress after pretreatment with ABA. At concentrations> 1 μ M , ABA pretreatment increased the root viability of the seedlings to anaerobic stress and the viability increased with increasing ABA doses. At 100 μ M ABA, the viability was 2.5-fold greater as compared with that of control seedlings. Roots of the seedlings rapidly lost ATP under the anaerobic stress; however, the decrease in ATP was much slower in the ABA-pretreated seedlings than the control seedlings. At 12 h after onset of the stress, ATP concentrations in the roots of 100 and 10 μ M ABA-pretreated seedlings were 2.7- and 2.0-fold that of the control seedlings, respectively. During the period of ABA pretreatment under aerobic condition, ABA increased alcohol dehydrogenase (ADH, EC 1.1.1.1) activity in the roots until 12 h and then leveled off. The maximum ADH activities were 4.3- and 2.8-fold that in the roots of the control seedlings for 100 and 10 μ M ABA-pretreated seedlings, respectively. After being subjected to the anaerobic stress, both ADH activities in the roots of the ABA-pretreated and the control seedlings increased but the differences in their activity remained. These results suggest that ABA pretreatment may maintain ATP level due to induction of ADH activity, which may be one of the causes of increasing anaerobic tolerance in the seedlings.  相似文献   

16.
Two forage grasses, timothy (Phleum pratense L.) and ryegrass (Lolium multiflorum Lam.) were exposed to flooding, and activities of alcohol dehydrogenase (ADH) and their isozyme profiles were determined. The flooding stress increased ADH activities in both species. This increase was 2-times greater in timothy than in ryegrass. Only one ADH isozyme was found in non-flooded seedlings of both species, whereas two and four bands were identified in ryegrass and timothy seedlings, respectively, under flooding stress. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
According to the Davies–Roberts hypothesis, plants primarily respond to oxygen limitation by a burst of lactate production and the resulting pH drop in the cytoplasm activates ethanolic fermentation. To evaluate this system in lettuce ( Lactuca sativa L.), seedlings were subjected to anoxia and in vitro activities of alcohol dehydrogenase (ADH, EC 1.1.1.1), pyruvate decarboxylase (PDC, EC 4.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) and concentrations of ethanol, acetaldehyde and lactate were determined in roots of the seedlings. The in vitro activities of ADH and PDC in the roots increase in anoxia, whereas no significant increase was measured in LDH activity. At 6 h, the ADH and PDC activities in the roots kept in anoxia were 2.8- and 2.9-fold greater than those in air, respectively. Ethanol and acetaldehyde in the roots accumulated rapidly in anoxia and increased 8- and 4-fold compared with those in air by 6 h, respectively. However, lactate concentration did not increase and an initial burst of lactate production was not found. Thus, ethanol and acetaldehyde production occurred without an increase in lactate synthesis. Treatments with antimycin A and salicylhydroxamic acid, which are respiratory inhibitors, to the lettuce seedlings in the presence of oxygen increased the concentrations of ethanol and acetaldehyde but not of lactate. These results suggest that ethanolic fermentation may be activated without preceding activation of lactate fermentation and may be not regulated by oxygen concentration directly.  相似文献   

18.
Rice seedlings (Oryza sativa L.) were subjected to low temperature pretreatment (LT-PT; 10°C) for various length of time (1, 2, 4, 6, 12, 18, 24 h) followed by a 48-h chilling temperature stress (2°C). Chilling temperature tolerance of rice roots was improved with increasing duration of LT-PT, but LT-PT longer than 12 h gave no additional improvement. Alcohol dehydrogenase activity and ethanol concentration in the roots were increased with increasing duration of LT-PT up to 12 h. Chilling tolerance was also improved by exogenously applied ethanol. These results suggest that LT-PT may increase chilling tolerance in rice roots owing to ethanol accumulation in the roots and LT-PT acclimation to chilling temperature may occur within 12 h.  相似文献   

19.
Strains of Drosophila melanogaster homozygous for either the Adh F or the Adh S allele were kept on food supplemented with ethanol for 20 generations. These strains (FE and SE) were tested for tolerance to ethanol and compared with control strains (FN and SN). The E strains showed increased tolerance to ethanol both in the adult and in the juvenile life stages. In adults the increase in tolerance was not accompanied by an increase in overall ADH activity. However, there were changes in the distribution of ADH over the body parts. Flies of the FE strain possessed significantly more ADH in the abdomen, compared with FN. Another set of FN and SN populations were started both on standard food and on ethanol food with reduced yeast concentrations. After 9 months ADH activities were determined in flies from these populations which had been placed on three different media: the food the populations had been kept on, regular food and regular food supplemented with ethanol. The phenotypic effects of yeast reduction on ADH activity were considerably, but longterm genetic effects were limited.  相似文献   

20.
以耐低氧性具有明显差异的两个网纹甜瓜(Cucumis melo var. raticulalus)品种为试材,研究了根际低氧胁迫下幼苗生长、根系活力及根系呼吸关键酶活性的变化。结果表明,根际低氧胁迫下,两品种幼苗生长均受到明显抑制,而根系活力升高;根系PDC活性两品种均显著提高,品种间无显著差异; MDH活性两品种均显著降低,且耐低氧性弱的‘西域一号’下降幅度较大;根系ADH和LDH活性两品种均显著提高,耐低氧性强的‘东方星光’ADH活性增加的幅度显著高于耐低氧性弱的‘西域一号’,而‘西域一号’LDH活性增加幅度显著高于‘东方星光’。说明‘东方星光’在低氧胁迫下能保持较高的有氧呼吸水平,无氧呼吸的主要途径为乙醇发酵,而‘西域一号’在低氧胁迫下无氧呼吸的主要途径为乳酸发酵。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号