首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relationship between anoxia tolerance and reserved carbohydrate catabolism was investigated in four rice (Oryza sativa L.) cultivars subjected to a 48-h anoxic stress. The coleoptile elongation of all cultivars was suppressed by anoxic stress, however, the elongation of cvs Koshihikari and Awa-akamai was much greater than that of cvs Touzoumochi and Asahimochi. The anoxic coleoptiles of cvs Koshihikari and Awa-akamai contained about 2-fold as much ATP as those of cvs Touzoumochi and Asahimochi. Ethanol production in the anoxic coleoptiles of cvs Koshihikari and Awa-akamai was about 2-fold as much as that of cvs Touzoumochi and Asahimochi, which suggests that ethanolic fermentation is probably more active in cvs Koshihikari and Awa-akamai than in cvs Asahimochi and Touzoumochi. Activity of α-amylase, which catabolizes starch to soluble sugars, in endosperms of cvs Koshihikari and Awa-akamai was about 2-fold that of cvs Touzoumochi and Asahimochi, and soluble sugar concentration in the coleoptiles of cvs Koshihikari and Awa-akamai was about 3-fold greater than that of cvs Touzoumochi and Asahimochi. Soluble sugar concentration and ethanol production rate in the coleoptiles of rice seedlings were correlated well with α-amylase activity in their endosperms, which were also correlated well with anoxia tolerance with respect to the coleoptile elongation and ATP concentration in the coleoptiles. These results suggest that the ability to degrade starch to soluble sugar by α-amylase in endosperm may be important for the anoxia tolerance in rice coleoptiles and it may serve to distinguish the anoxia tolerance of rice coleoptiles.  相似文献   

2.
Effects of ethanol, the end product of ethanolic fermentation, on the growth of rice (Oryza sativa L.) seedlings were determined as a means of evaluating growth responses under anoxia. The ethanol concentrations in roots and coleoptiles of the seedlings subjected to 48 h-anoxia, and in their culture medium were 23 and 32 µmol g–1 fresh weight, and 19 µmol ml–1, respectively. The growth of the roots and coleoptiles of the seedlings was restricted by exogenous ethanol at concentrations above 50 mM and 100 mM, respectively, suggesting that the roots are more sensitive to ethanol than the coleoptiles.  相似文献   

3.
Ethanolic fermentation and anoxia tolerance in four rice cultivars   总被引:1,自引:0,他引:1  
The relationship between coleoptile elongation and ethanolic fermentation was investigated in rice (Oryza sativa L.) coleoptiles of four cultivars subjected to a 48-h anoxic stress. The coleoptile elongation of all cultivars was suppressed by anoxic stress; however, the elongation of cvs Yukihikari and Nipponbare was much greater than that of cvs Leulikelash and Asahimochi. The stress did not significantly increase lactate dehydrogenase (LDH) activity or lactate concentration, but increased alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) activities, as well as ethanol concentration in the coleoptiles of all cultivars. The elevated ADH and PDC activities and ethanol concentration in cvs Yukihikari and Nipponbare were much greater than those of cvs Leulikelash and Asahimochi, suggesting that ethanolic fermentation is likely more active in cvs Yukihikari and Nipponbare than in cvs Leulikelash and Asahimochi. ATP concentration in cvs Yukihikari and Nipponbare in anoxia was also greater than that in cvs Leulikelash and Asahimochi in anoxia. The ethanol concentration in the coleoptiles was correlated with anoxia tolerance with respect to the ATP concentration and coleoptile elongation. These results suggest that the ability to increase ethanolic fermentation may be one of the determinants in anoxia tolerance of rice coleoptiles.  相似文献   

4.
Pyruvate metabolism in rice coleoptiles under anaerobiosis   总被引:1,自引:0,他引:1  
Relative importance of ethanolic, lactate and alanine fermentation pathways was estimated in coleoptiles of rice seedlings (Oryza sativa L.) subjected to anoxic stress. The in vitro activities of alcohol dehydrogenase (ADH, EC 1.1.1.1), pyruvate decarboxylase (PDC, EC 4.1.1.1) and alanine aminotransferase (AlaAT, EC 2.6.1.2) in the coleoptiles increased in anoxia, whereas no significant increase was measured in lactate dehydrogenase (LDH, EC 1.1.1.27) activity. At 48 h, the ADH, PDC and AlaAT activities in anoxic coleoptiles were 62-, 15- and 7.6-fold greater, respectively, than those in the presence of oxygen. Ethanol and alanine in the coleoptiles accumulated rapidly under anoxia, increasing by 48 h, 57- and 5.6-fold compared with those in the presence of oxygen, respectively. However, lactate concentration did not increase and no initial burst of lactate production was detected. The relative ratio of carbon flux from pyruvate to ethanol, lactate and alanine in anoxic coleoptiles was estimated to be 92, 1 and 7% of the total carbon flux, respectively. These results suggest that the potential carbon flux from pyruvate to ethanol may be much greater than the potential flux from pyruvate to lactate and alanine in rice coleoptiles during anoxia.  相似文献   

5.
Ethanol sensitivity of rice and oat coleoptiles   总被引:4,自引:0,他引:4  
The ability to avoid the ethanol-induced injury was evaluated in rice ( Oryza sativa L.) and oat ( Avena sativa L.) coleoptiles. The growth of the rice and oat coleoptiles was inhibited by ethanol exogenously applied at concentrations greater than 200 and 30 m M , respectively. At 300 m M ethanol, oat coleoptiles were brown and flaccid but rice coleoptiles did not show any visible symptoms of toxicity. The acetaldehyde level in rice and oat coleoptiles was increased by exogenously applied ethanol and the increases were greater in oat than in rice coleoptiles under aerobic and anaerobic conditions. At 300 m M ethanol, the acetaldehyde concentrations in the rice and oat coleoptiles were 46 and 87 nmol g−1 FW under aerobic conditions, respectively, and 52 and 124 nmol g−1 FW under anaerobic conditions, respectively. The activity of alcohol dehydrogenase (ADH; EC 1.1.1.1) in the direction of ethanol to acetaldehyde was greater in oat than in rice coleoptiles and ADH protein in oat coleoptiles was more induced by exogenously applied ethanol than that in rice coleoptiles. These results suggest that in vivo conversion rate of ethanol to acetaldehyde by ADH is lower in rice than oat coleoptiles, which may be one of the reasons that ethanol sensitivity of rice is much lower than that of oat coleoptiles. The great ability of rice to avoid the ethanol-induced injuries may contribute its anoxia tolerance when glycolysis and ethanolic fermentation replace the Krebs cycle as the main source of energy under anaerobic conditions.  相似文献   

6.
Difference in the growth response to submergence between coleoptiles and roots of rice (Oryza sativa L.) was investigated in 9-d-old rice seedlings. The coleoptile length in the submergence condition was much greater than that in aerobic condition, whereas the root length in the submergence condition was less than that in the aerobic condition. Alcohol dehydrogenase (ADH) activity in the coleoptiles in the submergence condition was much greater than that in the aerobic condition, but ADH activity in the roots in the submergence condition increased slightly. These results suggest that the preferential ADH induction in rice seedlings may contribute to the difference in the growth response between the coleoptiles and roots under low oxygen conditions.  相似文献   

7.
The short-term growth response of oat (Avena sativa L.) coleoptiles to exogenously applied uridine was studied both in excised apical segments and in the intact seedlings. In both cases growth of coleoptile tissue was inhibited by uridine. The inhibition of coleoptile growth consistently occurred 20–30 min after uridine treatment, which is within the lag period of their phototropic response. Asymmetric application of uridine to coleoptiles in the intact seedlings resulted in their bending toward the direction to which uridine was applied in the absence of light stimulus. These findings suggest that uridine or its metabolites, plays an important role in the phototropism of oat coleoptiles and provide support to the Bruinsma–Hasegawa theory as an alternative to the Cholodny–Went theory for explaining phototropism.  相似文献   

8.
Rice (Oriza sativa L.) seedlings were subjected tohypoxic pretreatment (H-PT; incubated in 5% O2 atmosphere) forvarious lengths of time followed by a 24-h anoxic stress. Anoxiatolerance of rice coleoptiles was improved with increasing duration of H-PT, butH-PT longer than 6 h gave no additional improvement. ATP andethanol concentrations in the coleoptiles were increased by H-PT, and the timeand pattern of increase in ATP level and ethanol production rate were similar tothose of increase in the anoxia tolerance. These results suggest that the H-PTmay increase anoxia tolerance due to maintenance of anaerobic glycolysis withinduction of ethanolic fermentation to generate ATP, and hypoxic acclimation toanoxic stress in rice coleoptiles may occur within 6 h.  相似文献   

9.
Coleoptiles of rice (Oryza sativa L.) show a spontaneous (automorphic) curvature toward the caryopsis under microgravity conditions. The possible involvement of the reorientation of cortical microtubules in automorphic curvature was studied in rice coleoptiles grown on a three-dimensional clinostat. When rice seedlings that had been grown in the normal gravitational field were transferred to the clinostat in the dark, cortical microtubules of epidermal cells in the dorsal side of the coleoptiles oriented more transversely than the ventral side within 0.5 h. The rotation on the clinostat also increased the cell wall extensibility in the dorsal side and decreased the extensibility in the ventral side, and induced automorphic curvature. The reorientation of cortical microtubules preceded the changes in the cell wall extensibility and the curvature. The irradiation of rice seedlings with white light from above inhibited microtubule reorientation and changes in the cell wall extensibility, as well as curvature of coleoptiles. Also, colchicine, applied to the bending region of coleoptiles, partially inhibited the automorphic curvature. These results suggest that reorientation of cortical microtubules is involved in causing automorphic curvature in rice coleoptiles on the clinostat.  相似文献   

10.
Ability of metabolic adaptation in upland and lowland rice (Oryza sativa L.) seedlings to flooding stress was compared. Flooding stress increased alcohol dehydrogenase (ADH) activity and ethanol concentration in shoots and roots of the upland and lowland rice seedlings. The difference in ADH activity and ethanol concentration in shoots between the upland and lowland rice was not apparent. However, both ADH activity and ethanol concentration in roots of the lowland rice were 2-fold greater than those in roots of the upland rice, suggesting that flooding-induction of ethanolic fermentation in lowland rice roots may be significantly greater than that in the upland rice roots. Since flooding often causes the anaerobic conditions in rooting zone than aerial part of plants and ethanolic fermentation is essential to survive in the anaerobic conditions, the ability of metabolic adaptation in lowland rice seedlings to flooding stress may be greater than that in upland rice seedlings.  相似文献   

11.
To determine the allelopathic potential of root exudate from early developmental stage of rice (Oryza sativa L), 6-d-old seedlings of eight cultivars were grown with 3-d-old alfalfa (Medicago sativa L.), cress (Lepidium sativum L.) or lettuce (Lactuca sativa L.) seedlings in Petri dishes under controlled condition. All rice cultivars (cv. Norin 8, Kamenoo, Nipponbare, Kinuhikari, Koshihikari, Sasanishiki, Yukihikari and Hinohikari) inhibited growth of roots, shoots and fresh mass of alfalfa, cress and lettuce seedlings. Effectiveness of cv. Koshihikari was the greatest and more than 60% inhibition was recorded in all bioassays, followed by that of cv. Norin 8 of which effectiveness was more than 40%.  相似文献   

12.
As described previously, the sensitivity of rice (Oryza sativa L.) coleoptiles to auxin is modulated by oxygen. Under anoxia, coleoptile elongation is insensitive to exogenously applied indole-3-acetic acid (IAA), whereas its sensitivity increases in air in the presence of the exogenous stimulus. Here we report the presence of two independent classes of membrane-bound IAA-binding sites in air-grown coleoptiles. Their binding activity is strictly correlated with the system's sensitivity to IAA. We designate them as site A (high affinity) and site B (low affinity). Site A shows a relatively fast response to anoxia, and is highly specific for auxins. Regulation of site-A binding activity through ATP, whose availability decreases under anoxia, is postulated. A role as auxin carrier is suggested for site B.Abbreviations ABS(s) auxin-binding site(s) - IAA indole-3-acctic acid - NAA 2-naphthaleneacetic acid - ION3 valinomycin, nigericin, carbonylcyanide p-trifluoromethoxyphenyl hydrazone Dedicated to the memory of Professor G. Torti, who passed away on 2 May, 1988  相似文献   

13.
The catalytic direction of pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP; EC 2.7.1.90) in coleoptiles of rice ( Oryza sativa L.) seedlings subjected to anoxia stress is discussed. The stress greatly induced ethanol synthesis and increased activities of alcohol dehydrogenase (ADH; EC 1.1.1.1) and pyruvate decarboxylase (PDC; EC 4.1.1.1) in the coleoptiles, whereas the elevated PDC activity was much lower than the elevated ADH activity, suggesting that PDC may be one of the limiting factors for ethanolic fermentation in rice coleoptiles. Anoxic stress decreased concentrations of fructose 6-phosphate (Fru-6-P) and glucose 6-phosphate, and increased concentration of fructose 1,6-bisphosphate (Fru-1,6-bisP) in the coleoptiles. PFP activity in rice coleoptiles was low in an aerobic condition and increased during the stress, whereas no significant increase was found in ATP:fructose-6-phosphate 1-phosphotransferase (PFK; EC 2.7.1.11) activity in stressed coleoptiles. Fructose 2,6-bisphosphate concentration in rice coleoptiles was increased by the stress and pyrophosphate concentration was above the Km for the forward direction of PFP and was sufficient to inhibit the reverse direction of PFP. Under stress conditions the potential of carbon flux from Fru-6-P toward ethanol through PFK may be much lower than the potential of carbon flux from pyruvate toward ethanol through PDC. These results suggest that PFP may play an important role in maintaining active glycolysis and ethanolic fermentation in rice coleoptiles in anoxia.  相似文献   

14.
Anoxia tolerance of rice (Oryza sativa L.) seedlings was investigated using wild type (WT) and root hair defective mutant RH2. The elongation of both RH2 and WT roots was suppressed by anoxia, but this suppression was less in RH2 than in WT roots. The anoxic treatment increased the activity of alcohol dehydrogenase in both RH2 and WT roots, but the induction was greater in RH2 roots. These results suggest that anoxia tolerance of RH2 roots is greater than that of WT roots, indicating that root hairs may interfere with the anoxia tolerance of rice roots.  相似文献   

15.
Cheng Y  Long M 《Biotechnology letters》2007,29(7):1129-1134
NADP-malic enzyme (NADP-ME, EC 1.1.1.40) functions in many different pathways in plant and may be involved in plant defense such as wound and UV-B radiation. Here, expression of the gene encoding cytosolic NADP-ME (cytoNADP-ME, GenBank Accession No. AY444338) in rice (Oryza sativa L.) seedlings was induced by salt stress (NaCl). NADP-ME activities in leaves and roots of rice also increased in response to NaCl. Transgenic Arabidopsis plants over-expressing rice cytoNADP-ME had a greater salt tolerance at the seedling stage than wild-type plants in MS medium-supplemented with different levels of NaCl. Cytosolic NADPH/NADP+ concentration ratio of transgenic plants was higher than those of wild-type plants. These results suggest that rice cytoNADP-ME confers salt tolerance in transgenic Arabidopsis seedlings.  相似文献   

16.
Rice seedlings (Oryza sativa L.) were subjected to low temperature pretreatment (LT-PT; 10°C) for various length of time (1, 2, 4, 6, 12, 18, 24 h) followed by a 48-h chilling temperature stress (2°C). Chilling temperature tolerance of rice roots was improved with increasing duration of LT-PT, but LT-PT longer than 12 h gave no additional improvement. Alcohol dehydrogenase activity and ethanol concentration in the roots were increased with increasing duration of LT-PT up to 12 h. Chilling tolerance was also improved by exogenously applied ethanol. These results suggest that LT-PT may increase chilling tolerance in rice roots owing to ethanol accumulation in the roots and LT-PT acclimation to chilling temperature may occur within 12 h.  相似文献   

17.
Rice (Oryza sativa L.) seedlings inhibited the growth of hypocotyls and roots of cress (Lepidium sativum L.) seedlings when both seedlings were grown together. Two growth inhibiting substances were found in the culture solution in which rice seedlings were hydroponically grown for 14 d. One growth inhibitor was further purified. This suggests that the rice seedlings may produce growth inhibiting substances, acting as allelochemicals to other plants, and release them from their roots into the environment.  相似文献   

18.
19.
Although most cereal roots cannot elongate under anoxic conditions, primary roots of three-day-old rice (Oryza sativa L.) seedlings were able to elongate during a 24-h period of anoxia. Hypoxic pretreatment (H-PT) increased the elongation of their roots. Sucrose synthase (EC 2.4.1.13), glucokinase (EC 2.7.1.2), fructokinase (EC 2.7.1.4), pyruvate decarboxylase (EC 4.1.1.1) and alcohol dehydrogenase (EC 1.1.1.1) activities were increased by anoxia in both H-PT and non-pretreated (N-PT) roots. However, these activities were greater in the H-PT roots than in the N-PT roots. The average rate of production of ethanol for the initial 6h after the onset of anoxia was 3.7 and 1.4 micromolg(-1) fresh weight h(-1) for the H-PT and N-PT roots, respectively, suggesting that ethanolic fermentation may increase more quickly in the H-PT roots than in the N-PT roots. Roots of the seedlings lost ATP and total adenine nucleotides in anoxia, however, the H-PT roots maintained higher levels of ATP and total adenine nucleotides compared to the N-PT roots. These results show that rice roots are able to utilize the set of enzymes involved in the metabolism of soluble sugars under anoxia. The ability to maintain an active fermentative metabolism for production of ATP by fueling the glycolytic pathway with fermentable carbohydrate is probably greater in H-PT than in N-PT roots.  相似文献   

20.
To elucidate the physiological role of exogenous nitrate under anaerobic conditions, we studied the effect of 10 mM KNO3 on the mitochondrial ultrastructure in rice (Oryza sativa L.) coleoptiles and in wheat (Triticum aestivum L.) roots, detached from four-day-old seedlings, under strict anoxia. In wheat roots, following 6-h-long anoxia in the absence of exogenous nitrate, the mitochondrial membranes were partially degraded and, after 9 h under anoxia, the mitochondrial membranes and the membranes of other organelles were completely destroyed. In rice coleoptiles, the partial membrane degradation was observed only after 24 h and their complete breakdown after 48 h of anaerobiosis. In the presence of exogenous nitrate, no membrane destruction was noticed even after 9 and 48 h of anaerobiosis in wheat roots and rice coleoptiles, respectively. These results indicate that exogenous nitrate exerts protective action as a terminal electron acceptor, alternative to the molecular oxygen. Our findings are compared with the results of other researchers concerning the adverse or favorable nitrate action on plant growth, metabolism, and energy status under anaerobic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号