首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Crimean-congo hemorrhagic fever virus (CCHFV) is a geographically widespread fatal pathogen. Identification of the epitope regions of the virus is important for the diagnosis and epidemiological studies of CCHFV infections. In this study, expression vectors carrying series truncated fragments of the NP (nucleocapsid protein) gene from the S fragment of CCHFV strain YL04057 were constructed. The recombinant proteins were expressed in E.coli and purified for detection. The antigenic of the truncated fragments of NP was detected with a polyclonal serum (rabbit) and 2 monoclonal (mAbs) (14B7 and 43E5) against CCHFV by Western-blot analyses. The results showed that the three expressed constructs, which all contained the region 235AA to 305AA could be detected by mAbs polyclonal serum. The results suggest that region 235-305 aa of NP is a highly antigenic region and is highly conserved in the NP protein.  相似文献   

2.
Crimean-Congo Haemorrhagic Fever Virus (CCHFV) is a tick-born virus of the Nairovirus genus within the Bunyaviridae family,which is widespread and causes high fatality.The nucleocapsid of CCHFV is comprised of N proteins that are encoded by the S segment.In this research,the N protein of CCHFV was expressed in insect cells using a recombinant baculovirus.Under an electron microscope,Virus-Like Particles (VLPs) with various size and morphology were observed in cytoplasmic vesicles in the infected cells.Sucro...  相似文献   

3.
Crimean-Congo Haemorrhagic Fever Virus (CCHFV) is a tick-born virus of the Nairovirus genus within the Bunyaviridae family, which is widespread and causes high fatality. The nucleocapsid of CCHFV is comprised of N proteins that are encoded by the S segment. In this research, the N protein of CCHFV was expressed in insect cells using a recombinant baculovirus. Under an electron microscope, Virus-Like Particles (VLPs) with various size and morphology were observed in cytoplasmic vesicles in the infected cells. Sucrose-gradient purification of the cell lysate indicated that the VLPs were mainly located in the upper fraction after ultracentrifugation, which was confirmed by Western blot analysis and immuno-electron microscopy (IEM).  相似文献   

4.
Crimean-Congo hemorrhagic fever virus (CCHFV) is a causative agent of serious hemorrhagic diseases in humans with high mortality rates. CCHFV glycoprotein Gc plays critical roles in mediating virus-host membrane fusion and has been studied extensively as an immunogen. However, the molecular mechanisms involved in membrane fusion and Gc-specific antibody-antigen interactions remain unresolved largely because structural information of this glycoprotein is missing. We designed a trimeric protein including most of the ectodomain region of Gc from the prototype CCHFV strain, IbAr10200, which enabled the cryo-electron microscopy structure to be solved at a resolution of 2.8 ?. The structure confirms that CCHFV Gc is a class II fusion protein. Unexpectedly, structural comparisons with other solved Gc trimers in the postfusion conformation revealed that CCHFV Gc adopted hybrid architectural features of the fusion loops from hantaviruses and domain III from phenuiviruses, suggesting a complex evolutionary pathway among these bunyaviruses. Antigenic sites on CCHFV Gc that protective neutralizing antibodies target were mapped onto the CCHFV Gc structure, providing valuable information that improved our understanding of potential neutralization mechanisms of various antibodies.  相似文献   

5.
Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus with a fatality rate of up to 50% in humans. CCHFV is widely distributed in countries around the world. Outbreaks of CCHFV infection in humans have occurred in prior years in Xinjiang Province, China. Epidemiological surveys have detected CCHFV RNA in ticks and animals; however, few isolates were identified. In this study, we identified and isolated a new CCHFV strain from Hyalomma asiaticum asiaticum ticks collected from north of Tarim Basin in Xinjiang, China. A preliminary investigation of infection and antigens expression of CCHFV was performed in newborn mice. The target tissues for CCHFV replication in newborn mice were identified. The analysis of the phylogenetic relationships with other Chinese strains suggested that diverse genotypes of CCHFV have circulated in Xinjiang for years. These findings provide important insights into our understanding of CCHFV infection and evolution as well as disease prevention and control for local residents.
  相似文献   

6.
Entry of enveloped viruses into cells is initiated by binding of their envelope glycoproteins (Envs) to cell surface-associated receptors. The Crimean-Congo hemorrhagic fever virus (CCHFV) has two Envs, Gn and Gc, with poorly understood role in binding to susceptible cells. We expressed codon optimized Gn and Gc, and identified independently folded soluble Env fragments, one of which (Gc residues 180–300) bound CCHFV susceptible cells supposedly by interacting with a putative receptor. This receptor binding domain (RBD) was used to identify its interacting partner by coimmunoprecipitation and mass spectrometry. Thus we identified the human cell surface nucleolin as a putative CCHFV entry factor. Nucleolin was expressed on all susceptible cells tested but not on the surface of cells resistant to CCHFV infection. Further studies are needed to explore the nucleolin function as a plausible CCHFV receptor and the molecular mechanisms of the Gc-nucleolin interactions. The identification of the CCHFV RBD and its binding partner could provide novel targets for therapy and tools for prevention as well as more complete understanding of the mechanisms of CCHFV entry and pathogenesis.  相似文献   

7.
8.
9.
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus in the Nairoviridae family within the Bunyavirales order of viruses. Crimean-Congo hemorrhagic fever (CCHF) is the most widespread among tick-borne human viral diseases. It is endemic in many areas of Africa, Asia, the Middle East, in the Balkans, Russia and countries of the former Soviet Union. The confirmed CCHF cases were seen in Spain in 2016 to signify expansion of the virus into new geographical areas. CCHFV causes a viral human disease characterized by sudden onset of fever, headache, abdominal pain, nausea, hypotension, hemorrhage, and hepatic dysfunction with fatality rates up to 30%. Currently, there are no spesific treatments or licensed vaccines available for CCHFV. The absence of a susceptible animal model for CCHFV infection was severely hindered work on the development of vaccines. However, several animal models of CCHFV infection have been recently developed and used to assess vaccine efficacy. In this study, we have used the transiently immune-suppressed (IS) mouse model that MAb-5A3 was used to block IFN-I signaling in immune intact, wild-type mice at the time of CCHFV infection to evaluate the immune response and efficacy of the cell culture based and the mouse brain derived inactivated vaccines against CCHFV. Both vaccine preparations have provided complete protection but the cell culture based vaccine more effectively induced to CCFHV spesific antibodies and T cell responses. This is the first comparison of the cell culture based and the mouse brain derived vaccines for assessing the protective efficacy and the immunogenicity in the IS mouse CCHFV model.  相似文献   

10.
Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging tick-borne virus of the Bunyaviridae family that is responsible for a fatal human disease for which preventative or therapeutic measures do not exist. We solved the crystal structure of the CCHFV strain Baghdad-12 nucleocapsid protein (N), a potential therapeutic target, at a resolution of 2.1 Å. N comprises a large globular domain composed of both N- and C-terminal sequences, likely involved in RNA binding, and a protruding arm domain with a conserved DEVD caspase-3 cleavage site at its apex. Alignment of our structure with that of the recently reported N protein from strain YL04057 shows a close correspondence of all folds but significant transposition of the arm through a rotation of 180 degrees and a translation of 40 Å. These observations suggest a structural flexibility that may provide the basis for switching between alternative N protein conformations during important functions such as RNA binding and oligomerization. Our structure reveals surfaces likely involved in RNA binding and oligomerization, and functionally critical residues within these domains were identified using a minigenome system able to recapitulate CCHFV-specific RNA synthesis in cells. Caspase-3 cleaves the polypeptide chain at the exposed DEVD motif; however, the cleaved N protein remains an intact unit, likely due to the intimate association of N- and C-terminal fragments in the globular domain. Structural alignment with existing N proteins reveals that the closest CCHFV relative is not another bunyavirus but the arenavirus Lassa virus instead, suggesting that current segmented negative-strand RNA virus taxonomy may need revision.  相似文献   

11.
Viruses have developed distinct strategies to overcome the host defense system. Regulation of apoptosis in response to viral infection is important for virus survival and dissemination. Like other viruses, Crimean-Congo hemorrhagic fever virus (CCHFV) is known to regulate apoptosis. This study, for the first time, suggests that the non-structural protein NSs of CCHFV, a member of the genus Nairovirus, induces apoptosis. In this report, we demonstrated the expression of CCHFV NSs, which contains 150 amino acid residues, in CCHFV-infected cells. CCHFV NSs undergoes active degradation during infection. We further demonstrated that ectopic expression of CCHFV NSs induces apoptosis, as reflected by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase, in different cell lines that support CCHFV replication. Using specific inhibitors, we showed that CCHFV NSs induces apoptosis via both intrinsic and extrinsic pathways. The minimal active region of the CCHFV NSs protein was determined to be 93–140 amino acid residues. Using alanine scanning, we demonstrated that Leu-127 and Leu-135 are the key residues for NSs-induced apoptosis. Interestingly, CCHFV NSs co-localizes in mitochondria and also disrupts the mitochondrial membrane potential. We also demonstrated that Leu-127 and Leu-135 are important residues for disruption of the mitochondrial membrane potential by NSs. Therefore, these results indicate that the C terminus of CCHFV NSs triggers mitochondrial membrane permeabilization, leading to activation of caspases, which, ultimately, leads to apoptosis. Given that multiple factors contribute to apoptosis during CCHFV infection, further studies are needed to define the involvement of CCHFV NSs in regulating apoptosis in infected cells.  相似文献   

12.
13.
The possible effect of virus adaptation to different transmission routes on virus stability in the environment is not well known. In this study we have compared the stabilities of three viruses within the Bunyaviridae family: the rodent-borne Hantavirus Hantaan virus (HTNV), the sand fly-borne Phlebovirus sandfly fever Sicilian virus (SFSV), and the tick-borne Nairovirus Crimean-Congo hemorrhagic fever virus (CCHFV). These viruses differ in their transmission routes: SFSV and CCHFV are vector borne, whereas HTNV is spread directly between its hosts, and to humans, via the environment. We studied whether these viruses differed regarding stability when kept outside of the host. Viral survival was analyzed at different time points upon exposure to different temperatures (4 degrees C, 20 degrees C, and 37 degrees C) and drying at 20 degrees C. We observed clearly different stabilities under wet conditions, particularly at 4 degrees C, where infectious SFSV, HTNV, and CCHFV were detectable after 528, 96, and 15 days, respectively. All three viruses were equally sensitive to drying, as shown by drying on aluminum discs. Furthermore, HTNV and SFSV partially survived for 2 min in 30% ethanol, whereas CCHFV did not. Electron microscopy images of HTNV, SSFSV, and CCHFV stored at 37 degrees C until infectivity was lost still showed the occurrence of virions, but with abnormal shapes and densities compared to those of the nonincubated samples. In conclusion, our study points out important differences in ex vivo stability among viruses within the Bunyaviridae family.  相似文献   

14.
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne bunyavirus causing outbreaks of severe disease in humans, with a fatality rate approaching 30%. There are no widely accepted therapeutics available to prevent or treat the disease. CCHFV enters host cells through clathrin-mediated endocytosis and is subsequently transported to an acidified compartment where the fusion of virus envelope with cellular membranes takes place. To better understand the uptake pathway, we sought to identify host factors controlling CCHFV transport through the cell. We demonstrate that after passing through early endosomes in a Rab5-dependent manner, CCHFV is delivered to multivesicular bodies (MVBs). Virus particles localized to MVBs approximately 1 hour after infection and affected the distribution of the organelle within cells. Interestingly, blocking Rab7 activity had no effect on association of the virus with MVBs. Productive virus infection depended on phosphatidylinositol 3-kinase (PI3K) activity, which meditates the formation of functional MVBs. Silencing Tsg101, Vps24, Vps4B, or Alix/Aip1, components of the endosomal sorting complex required for transport (ESCRT) pathway controlling MVB biogenesis, inhibited infection of wild-type virus as well as a novel pseudotyped vesicular stomatitis virus (VSV) bearing CCHFV glycoprotein, supporting a role for the MVB pathway in CCHFV entry. We further demonstrate that blocking transport out of MVBs still allowed virus entry while preventing vesicular acidification, required for membrane fusion, trapped virions in the MVBs. These findings suggest that MVBs are necessary for infection and are the sites of virus-endosome membrane fusion.  相似文献   

15.
Crimean-Congo hemorrhagic fever virus (CCHFV) belongs to the genus Nairovirus within the family Bunyaviridae and is the causative agent of severe hemorrhagic fever. Despite increasing knowledge about hemorrhagic fever viruses, the factors determining their pathogenicity are still poorly understood. The interferon-induced MxA protein has been shown to have an inhibitory effect on several members of the Bunyaviridae family, but the effect of MxA against CCHFV has not previously been studied. Here, we report that human MxA has antiviral activity against CCHFV. The yield of progeny virus in cells constitutively expressing MxA was reduced up to 1,000-fold compared with control cells, and accumulation of viral genomes was blocked. Confocal microscopy revealed that MxA colocalizes with the nucleocapsid protein (NP) of CCHFV in the perinuclear regions of infected cells. Furthermore, we found that MxA interacted with NP by using a coimmunoprecipitation assay. We also found that an amino acid substitution (E645R) within the C-terminal domain of MxA resulted in a loss of MxA antiviral activity and, concomitantly, in the capacity to interact with CCHFV NP. These results suggest that MxA, by interacting with a component of the nucleocapsid, prevents replication of CCHFV viral RNA and thereby inhibits the production of new infectious virus particles.  相似文献   

16.
Crimean-Congo hemorrhagic fever virus (CCHFV) is a zoonotic agent that causes severe, life-threatening disease, with a case fatality rate of 10–50%. It is the most widespread tick-borne virus in the world, with cases reported in Africa, Asia and Eastern Europe. CCHFV is a genetically diverse virus. Its genetic diversity is often correlated to its geographical origin. Genetic variability of CCHFV was determined within few endemic areas, however limited data is available for Kosovo. Furthermore, there is little information about the spatiotemporal genetic changes of CCHFV in endemic areas. Kosovo is an important endemic area for CCHFV. Cases were reported each year and the case-fatality rate is significantly higher compared to nearby regions. In this study, we wanted to examine the genetic variability of CCHFV obtained directly from CCHF-confirmed patients, hospitalized in Kosovo from 1991 to 2013. We sequenced partial S segment CCHFV nucleotide sequences from 89 patients. Our results show that several viral variants are present in Kosovo and that the genetic diversity is high in relation to the studied area. We also show that variants are mostly uniformly distributed throughout Kosovo and that limited evolutionary changes have occurred in 22 years. Our results also suggest the presence of a new distinct lineage within the European CCHF phylogenetic clade. Our study provide the largest number of CCHFV nucleotide sequences from patients in 22 year span in one endemic area.  相似文献   

17.
18.
Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ~80-90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases.  相似文献   

19.
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) and Hazara virus (HAZV) belong to the same viral serotype and family. HAZV has lately been used as a model system and surrogate to CCHFV. However, virus-host cell interaction and level of pathogenicity for these viruses are not well investigated nor compared. In this study, we compared HAZV and CCHFV infection of human polarized epithelial cells to shed light on similarities and differences in virus-host cell interaction between these two viruses. We investigated the pattern of infection of CCHFV and HAZV in fully polarized human cells, the Caco-2 cell line. Polarization of Caco-2 cells lead to difference in expression level and pattern of proteins between the apical and the basolateral membranes. We found that CCHFV virus, in contrast to HAZV, is more likely infecting polarized cells basolaterally. In addition, we found that cytokines/pro-inflammatory factors or other viral factors secreted from CCHFV infected moDC cells enhance the entry of CCHFV contrary to HAZV. We have shown that CCHFV and HAZV early in infection use different strategies for entry. The data presented in this study also highlight the important role of cytokines in CCHFV-host cell interaction.  相似文献   

20.
The possible effect of virus adaptation to different transmission routes on virus stability in the environment is not well known. In this study we have compared the stabilities of three viruses within the Bunyaviridae family: the rodent-borne Hantavirus Hantaan virus (HTNV), the sand fly-borne Phlebovirus sandfly fever Sicilian virus (SFSV), and the tick-borne Nairovirus Crimean-Congo hemorrhagic fever virus (CCHFV). These viruses differ in their transmission routes: SFSV and CCHFV are vector borne, whereas HTNV is spread directly between its hosts, and to humans, via the environment. We studied whether these viruses differed regarding stability when kept outside of the host. Viral survival was analyzed at different time points upon exposure to different temperatures (4°C, 20°C, and 37°C) and drying at 20°C. We observed clearly different stabilities under wet conditions, particularly at 4°C, where infectious SFSV, HTNV, and CCHFV were detectable after 528, 96, and 15 days, respectively. All three viruses were equally sensitive to drying, as shown by drying on aluminum discs. Furthermore, HTNV and SFSV partially survived for 2 min in 30% ethanol, whereas CCHFV did not. Electron microscopy images of HTNV, SSFSV, and CCHFV stored at 37°C until infectivity was lost still showed the occurrence of virions, but with abnormal shapes and densities compared to those of the nonincubated samples. In conclusion, our study points out important differences in ex vivo stability among viruses within the Bunyaviridae family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号