首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The outflow tract of the heart is recruited from a novel heart-forming field.   总被引:19,自引:0,他引:19  
As classically described, the precardiac mesoderm of the paired heart-forming fields migrate and fuse anteriomedially in the ventral midline to form the first segment of the straight heart tube. This segment ultimately forms the right trabeculated ventricle. Additional segments are added to the caudal end of the first in a sequential fashion from the posteriolateral heart-forming field mesoderm. In this study we report that the final major heart segment, which forms the cardiac outflow tract, does not follow this pattern of embryonic development. The cardiac outlet, consisting of the conus and truncus, does not derive from the paired heart-forming fields, but originates separately from a previously unrecognized source of mesoderm located anterior to the initial primitive heart tube segment. Fate-mapping results show that cells labeled in the mesoderm surrounding the aortic sac and anterior to the primitive right ventricle are incorporated into both the conus and the truncus. Conversely, if cells are labeled in the existing right ventricle no incorporation into the cardiac outlet is observed. Tissue explants microdissected from this anterior mesoderm region are capable of forming beating cardiac muscle in vitro when cocultured with explants of the primitive right ventricle. These findings establish the presence of another heart-forming field. This anterior heart-forming field (AHF) consists of mesoderm surrounding the aortic sac immediately anterior to the existing heart tube. This new concept of the heart outlet's embryonic origin provides a new basis for explaining a variety of gene-expression patterns and cardiac defects described in both transgenic animals and human congenital heart disease.  相似文献   

2.
Soon after fertilization, vertebrate embryos grow very rapidly. Thus, early in gestation, a sizeable yet underdeveloped organism requires circulating blood. This need dictates the early appearance of a contractile heart, which is the first functional organ in both the avian and mammalian embryo. The heart arises from paired mesodermal regions within the anterior half of the embryo. As development proceeds, these bilateral precardiac fields merge at the midline to give rise to the primary heart tube. How specific areas of nondifferentiated mesoderm organize into myocardial tissue has been a question that has long intrigued developmental biologists. In recent years, the regulation of Wnt signal transduction has been implicated as an important event that initiates cardiac development. While initial reports in Drosophila and the bird had implicated Wnt proteins as promoters of cardiac tissue formation, subsequent findings that the WNT inhibitors Dkk1 and crescent possess cardiac-inducing activities led to the contrary hypothesis that WNTs actively inhibit cardiogenesis. This seeming contradiction has been resolved, in part, by more recent information indicating that Wnts stimulate multiple signal transduction pathways. In this review, we will examine what is presently known about the importance of regulated Wnt activity for the formation of the heart and the development of the myocardium and discuss this information in context of the emerging complexity of Wnt signal transduction.  相似文献   

3.
The effects of retinoic acid on heart formation in the early chick embryo.   总被引:2,自引:0,他引:2  
The vitamin A derivative retinoic acid has previously been shown to have teratogenic effects on heart development in mammalian embryos. The craniomedial migration of the precardiac mesoderm during the early stages of heart formation is thought to depend on a gradient of extracellular fibronectin associated with the underlying endoderm. Here, the effects of retinoic acid on migration of the precardiac mesoderm have been investigated in the early chick embryo. When applied to the whole embryo in culture, the retinoid inhibits the craniomedial migration of the precardiac mesoderm resulting in a heart tube that is stunted cranially, while normal or enlarged caudally. Similarly, a local application of retinoic acid to the heart-forming area disrupts the formation of the cardiogenic crescent and the subsequent development of a single mid-line heart tube. This effect is analogous to removing a segment of endoderm and mesoderm across the heart-forming area and results in various degrees of cardia bifida. At higher concentrations of retinoic acid and earlier developmental stages, two completely separate hearts are produced, while at lower concentrations and later stages there are partial bifurcations. The controls, in which the identical operation is carried out except that dimethyl sulphoxide (DMSO) is used instead of the retinoid, are almost all normal. We propose that one of the teratogenic effects of retinoic acid on the heart is to disrupt the interaction between precardiac cells and the extracellular matrix thus inhibiting their directed migration on the endodermal substratum.  相似文献   

4.
The embryonic vertebrate heart is divided into two major chambers, an anterior ventricle and a posterior atrium. Although the fundamental differences between ventricular and atrial tissues are well documented, it is not known when and how cardiac anterior-posterior (A-P) patterning occurs. The expression patterns of two zebrafish cardiac myosin genes, cardiac myosin light chain 2 (cmlc2) and ventricular myosin heavy chain (vmhc), allow us to distinguish two populations of myocardial precursors at an early stage, well before the heart tube forms. These myocardial subpopulations, which may represent the ventricular and atrial precursors, are organized in a medial-lateral pattern within the precardiac mesoderm. Our examinations of cmlc2 and vmhc expression throughout the process of heart tube assembly indicate the important role of an intermediate structure, the cardiac cone, in the conversion of this early medial-lateral pattern into the A-P pattern of the heart tube. To gain insight into the genetic regulation of heart tube assembly and patterning, we examine cmlc2 and vmhc expression in several zebrafish mutants. Analyses of mutations that cause cardia bifida demonstrate that the achievement of a proper cardiac A-P pattern does not depend upon cardiac fusion. On the other hand, cardiac fusion does not ensure the proper A-P orientation of the ventricle and atrium, as demonstrated by the heart and soul mutation, which blocks cardiac cone morphogenesis. Finally, the pandora mutation interferes with the establishment of the early medial-lateral myocardial pattern. Altogether, these data suggest new models for the mechanisms that regulate the formation of a patterned heart tube and provide an important framework for future analyses of zebrafish mutants with defects in this process.  相似文献   

5.
Nkx2.5 is expressed in the cardiogenic mesoderm of avian, mouse, and amphibian embryos. To understand how various cardiac fates within this domain are apportioned, we fate mapped the mesodermal XNkx2.5 domain of neural tube stage Xenopus embryos. The lateral portions of the XNkx2.5 expression domain in the neural tube stage embryo (stage 22) form the dorsal mesocardium and roof of the pericardial cavity while the intervening ventral region closes to form the myocardial tube. XNkx2.5 expression is maintained throughout the period of heart tube morphogenesis and differentiation of myocardial, mesocardial, and pericardial tissues. A series of microsurgical experiments showed that myocardial differentiation in the lateral portion of the field is suppressed during normal development by signals from the prospective myocardium and by tissues located more dorsally in the embryo, in particular the neural tube. These signals combine to block myogenesis downstream of XNkx2.5 and at or above the level of contractile protein gene expression. We propose that the entire XNkx2.5/heart field is transiently specified as cardiomyogenic. Suppression of this program redirects lateral cells to adopt dorsal mesocardial and dorsal pericardial fates and subdivides the field into distinct myogenic and nonmyogenic compartments.  相似文献   

6.
Proepicardial cells give rise to epicardium, coronary vasculature and cardiac fibroblasts. The proepicardium is derived from the mesodermal lining of the prospective pericardial cavity that simultaneously contributes myocardium to the venous pole of the elongating primitive heart tube. Using proepicardial explant cultures, we show that proepicardial cells have the potential to differentiate into cardiac muscle cells, reflecting the multipotency of this pericardial mesoderm. The differentiation into the myocardial or epicardial lineage is mediated by the cooperative action of BMP and FGF signaling. BMP2 is expressed in the distal IFT myocardium and stimulates cardiomyocyte formation. FGF2 is expressed in the proepicardium and stimulates differentiation into the epicardial lineage. In the base of the proepicardium, coexpression of BMP2 and FGF2 inhibits both myocardial and epicardial differentiation. We conclude that the epicardial/myocardial lineage decisions are mediated by an extrinsic, inductive mechanism, which is determined by the position of the cells in the pericardial mesoderm.  相似文献   

7.
Immunocytochemistry has been employed to map the appearance of bFGF-like proteins in precardiac and preseptation myocardial cells between stages 6 and 15 of chicken embryogenesis. Stage 6 embryos exhibited no staining, with the exception of a subtle signal in endoderm cells. At subsequent stages, staining was observed only in cells of the developing myocardium, first appearing at the time of heart tube fusion (stage 9+) as punctate cytoplasmic aggregates. While the expression of bFGF-like antigen was temporally similar to that of myosin heavy chain, their staining patterns differed in that bFGF-like proteins were nonsarcomeric and did not extend into the inflow or outflow tracts. Western blotting of heparin agarose affinity-isolated proteins from stage 15 hearts revealed an antigen migrating at approximately 19 kDa. In contrast with the unique localization of bFGF-like proteins in myocardial cells, FGF receptor (FGFR) staining was widely distributed in the embryo; however, concentrated deposits of FGFR were detected in endothelial and myocardial cells, which diminished in the myocardium but not in the endothelium by stage 15. These results suggest that FGF-like proteins may have autocrine and/or paracrine functions during early cardiac morphogenesis.  相似文献   

8.
Lithium is a commonly used drug for the treatment of bipolar disorder. At high doses, lithium becomes teratogenic, which is a property that has allowed this agent to serve as a useful tool for dissecting molecular pathways that regulate embryogenesis. This study was designed to examine the impact of lithium on heart formation in the developing frog for insights into the molecular regulation of cardiac specification. Embryos were exposed to lithium at the beginning of gastrulation, which produced severe malformations of the anterior end of the embryo. Although previous reports characterized this deformity as a posteriorized phenotype, histological analysis revealed that the defects were more comprehensive, with disfigurement and disorganization of all interior tissues along the anterior-posterior axis. Emerging tissues were poorly segregated and cavity formation was decreased within the embryo. Lithium exposure also completely ablated formation of the heart and prevented myocardial cell differentiation. Despite the complete absence of cardiac tissue in lithium treated embryos, exposure to lithium did not prevent myocardial differentiation of precardiac dorsal marginal zone explants. Moreover, precardiac tissue freed from the embryo subsequent to lithium treatment at gastrulation gave rise to cardiac tissue, as demonstrated by upregulation of cardiac gene expression, display of sarcomeric proteins, and formation of a contractile phenotype. Together these data indicate that lithium's effect on the developing heart was not due to direct regulation of cardiac differentiation, but an indirect consequence of disrupted tissue organization within the embryo.  相似文献   

9.
10.
The heart is the first organ to form and function during vertebrate embryogenesis. Using a secreted protein, noggin, which specifically antagonizes bone morphogenetic protein (BMP)-2 and -4, we examined the role played by BMP during the initial myofibrillogenesis in chick cultured precardiac mesoendoderm (mesoderm + endoderm; ME). Conditioned medium from COS7 cells transfected with Xenopus noggin cDNA inhibited the expression of sarcomeric proteins (such as sarcomeric alpha-actinin, Z-line titin, and sarcomeric myosin), and so myofibrillogenesis was perturbed in cultured stage 4 precardiac ME; however, it did not inhibit the expression of smooth muscle alpha-actin (the first isoform of alpha-actin expressed during cardiogenesis). In cultured stage 5 precardiac ME, noggin did not inhibit either the formation of I-Z-I components or the expression of sarcomeric myosin, but it did inhibit the formation of A-bands. Although BMP4 was required to induce expressions of sarcomeric alpha-actinin, titin, and sarcomeric myosin in cultured stage 6 posterolateral mesoderm (noncardiogenic mesoderm), smooth muscle alpha-actin was expressed without the addition of BMP4. Interestingly, in cultured stage 6 posterolateral mesoderm, BMP2 induced the expressions of sarcomeric alpha-actinin and titin, but not of sarcomeric myosin. These results suggest that (1) BMP4 function lies upstream of the initial formation of I-Z-I components and A-bands separately in a stage-dependent manner, and (2) at least two signaling pathways are involved in the initial cardiac myofibrillogenesis: one is an unknown pathway responsible for the expression of smooth muscle alpha-actin; the other is BMP signaling, which is involved in the expression of sarcomeric alpha-actinin, titin, and sarcomeric myosin.  相似文献   

11.
12.
N-cadherin, a Ca(2+)-dependent cell adhesion molecule, has been localized previously to the mesoderm during chick gastrulation and to adherens junctions in beating avian hearts. However, a systematic study of the dynamic nature of N-cadherin localization in the critical early stages of heart development is lacking. The presented work defines the changes in the spatial and temporal expression of N-cadherin during early stages of chick heart development, principally between Hamburger and Hamilton stages 5-8, 18-29 hr of development. During gastrulation N-cadherin appears evenly distributed in the heart forming region. As development proceeds to form the pericardial coelom (stages 6, 7, and 8, i.e., between 22 and 26 hr of development) N-cadherin localization becomes restricted to the more central areas of the mesoderm. The localization also shows a periodicity that correlates closely with the distance between foci of cavities that eventually coalesce to form the coelom. This distribution suggests that N-cadherin may have a function in the sorting out of somatic and splanchnic mesoderm cells to form the coelom. This separation of the mesoderm in the embryo for the first time physically delineates the precardiac mesoderm population. Concomitant with cell sorting during coelom formation, the precardiac cells change shape and show a distinct polarity as conveyed by (1) the apical expression of N-cadherin on precardiac cell surfaces lining the pericardial coelom, (2) the primarily lateral expression of Na+,K(+)-ATPase, and (3) an enrichment of integrin (beta 1 subunit) on basal cell surfaces. The somatic mesoderm cells apparently down-regulate N-cadherin expression. N-cadherin is also absent from the precardiac cells close to the endoderm. The latter cells eventually form the endocardium, i.e., the endothelial lining of the heart. By contrast, in the tubular, beating heart N-cadherin is found throughout the myocardium. In summary, immunolocalization patterns of N-cadherin during early cardiogenesis suggest that this cell adhesion molecule has a major role in the dynamics of pericardial coelom formation. Subsequently, its continued expression during cell differentiation of the cardiomyocyte to form the myocardium, but not endocardium, suggests N-cadherin is an essential morphoregulatory molecule in heart organogenesis.  相似文献   

13.
The NK homeobox gene tinman (tin) is required for the specification of the cardiac, visceral muscle and somatic muscle progenitors in the early dorsal mesoderm of Drosophila. Like its vertebrate counterpart Nkx2.5, the expression of tin is maintained in cardiac cells during cardiac maturation and differentiation; however, owing to the complete lack of a dorsal vessel in tin mutant embryos, the function of tin in these cells has not been defined. Here we show that myocardial cells and dorsal vessels can form even though they lack Tin, and that viable adults can develop, as long as Tin is provided in the embryonic precardiac mesoderm. However, embryos in which tin expression is specifically missing from cardial cells show severe disruptions in the normal diversification of the myocardial cells, and adults exhibit severe defects in cardiac remodeling and function. Our study reveals that the normal expression and activity of Tin in four of the six bilateral cardioblasts within each hemisegment of the heart allows these cells to adopt a cell fate as ;working' myocardium, as opposed to a fate as inflow tract (ostial) cells. This function of tin involves the repression of Dorsocross (Doc) T-box genes and, hence, the restriction of Doc to the Tin-negative cells that will form ostia. We conclude that tin has a crucial role within myocardial cells that is required for the proper diversification, differentiation, and post-embryonic maturation of cardiomyocytes, and we present a pathway involving regulatory interactions among seven-up, midline, tinman and Dorsocross that establishes these developmental events upon myocardial cell specification.  相似文献   

14.
Development of the heart requires recruitment of cardiovascular progenitor cells (CPCs) to the future heart-forming region. CPCs are the building blocks of the heart, and have the potential to form all the major cardiac lineages. However, little is known regarding what regulates CPC fate and behavior. Activity of GATA4, SMARCD3 and TBX5 - the `cardiac BAF' (cBAF) complex, can promote myocardial differentiation in embryonic mouse mesoderm. Here, we exploit the advantages of the zebrafish embryo to gain mechanistic understanding of cBAF activity. Overexpression of smarcd3b and gata5 in zebrafish results in an enlarged heart, whereas combinatorial loss of cBAF components inhibits cardiac differentiation. In transplantation experiments, cBAF acts cell autonomously to promote cardiac fate. Remarkably, cells overexpressing cBAF migrate to the developing heart and differentiate as cardiomyocytes, endocardium and smooth muscle. This is observed even in host embryos that lack endoderm or cardiac mesoderm. Our results reveal an evolutionarily conserved role for cBAF activity in cardiac differentiation. Importantly, they demonstrate that Smarcd3b and Gata5 can induce a primitive, CPC-like state.  相似文献   

15.
16.
The anterior heart-forming field: voyage to the arterial pole of the heart   总被引:7,自引:0,他引:7  
Studies of vertebrate heart development have identified key genes and signalling molecules involved in the formation of a myocardial tube from paired heart-forming fields in splanchnic mesoderm. The posterior region of the paired heart-forming fields subsequently contributes myocardial precursor cells to the inflow region or venous pole of the heart. Recently, a population of myocardial precursor cells in chick and mouse embryos has been identified in pharyngeal mesoderm anterior to the early heart tube. This anterior heart-forming field gives rise to myocardium of the outflow region or arterial pole of the heart. The amniote heart is therefore derived from two myocardial precursor cell populations, which appear to be regulated by distinct genetic programmes. Discovery of the anterior heart-forming field has important implications for the interpretation of cardiac defects in mouse mutants and for the study of human congenital heart disease.  相似文献   

17.
18.
During early embryogenesis, heart and skeletal muscle progenitor cells are thought to derive from distinct regions of the mesoderm (i.e. the lateral plate mesoderm and paraxial mesoderm, respectively). In the present study, we have employed both in vitro and in vivo experimental systems in the avian embryo to explore how mesoderm progenitors in the head differentiate into both heart and skeletal muscles. Using fate-mapping studies, gene expression analyses, and manipulation of signaling pathways in the chick embryo, we demonstrate that cells from the cranial paraxial mesoderm contribute to both myocardial and endocardial cell populations within the cardiac outflow tract. We further show that Bmp signaling affects the specification of mesoderm cells in the head: application of Bmp4, both in vitro and in vivo, induces cardiac differentiation in the cranial paraxial mesoderm and blocks the differentiation of skeletal muscle precursors in these cells. Our results demonstrate that cells within the cranial paraxial mesoderm play a vital role in cardiogenesis, as a new source of cardiac progenitors that populate the cardiac outflow tract in vivo. A deeper understanding of mesodermal lineage specification in the vertebrate head is expected to provide insights into the normal, as well as pathological, aspects of heart and craniofacial development.  相似文献   

19.
Genes involved in differentiation of notochord or muscle are expressed in specific regions of the involuted dorsal mesoderm in mid-gastrula Xenopus embryo. The presumptive notochord or the presomitic mesoderm have been cultured either in isolation or recombination to investigate whether these tissues have been determined. Cell differentiation was checked by specific markers of notochord (Shh) or muscle cell (desmin, myosin). The results show that the presumptive notochord can differentiate into vacuolated notochord with a weak expression of Shh, while the presomitic mesoderm differentiate into muscle cells with a normal expression of desmin and myosin in vitro. The same result was obtained when the two tissues have been cocultured. These data suggest that the cell fate of the involuted dorsal mesoderm in mid-gastrula has been determined, cells can differentiate according to their fates without further signals from the adjacent tissues, but no functional structures can be formed by these tissues in vitro.  相似文献   

20.
SUMMARY Vertebrate hearts have evolved from undivided tubular hearts of chordate ancestors. One of the most intriguing issues in heart evolution is the abrupt appearance of multichambered hearts in the agnathan vertebrates. To explore the developmental mechanisms behind the drastic morphological changes that led to complex vertebrate hearts, we examined the developmental patterning of the agnathan lamprey Lethenteron japonicum . We isolated lamprey orthologs of genes thought to be essential for heart development in chicken and mouse embryos, including genes responsible for differentiation and proliferation of the myocardium ( LjTbx20, LjTbx4/5 , and LjIsl1/2A ), establishment of left–right heart asymmetry ( LjPitxA ), and partitioning of the heart tube ( LjTbx2/3A ), and studied their expression patterns during lamprey cardiogenesis. We confirmed the presence of the cardiac progenitors expressing LjIsl1/2A in the pharyngeal and splanchnic mesoderm and the heart tube of the lamprey. The presence of LjIsl1/2A -positive cardiac progenitor cells in cardiogenesis may have permitted an increase of myocardial size in vertebrates. We also observed LjPitxA expression in the left side of lamprey cardiac mesoderm, suggesting that asymmetric expression of Pitx in the heart has been acquired in the vertebrate lineage. Additionally, we observed LjTbx2/3A expression in the nonchambered myocardium, supporting the view that acquisition of Tbx2/3 expression may have allowed primitive tubular hearts to partition, giving rise to multichambered hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号