首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
综述了近年来发现的植物油菜素内酯生物合成缺陷型及反应不敏感型突变体,BR生物合成的早期C 6氧化和晚期C 6氧化途径,参与合成的酶以及BR信号转导等方面的研究进展,并提出了这一问题今后研究的前景.  相似文献   

2.
植物赤霉素矮化突变体研究进展   总被引:10,自引:0,他引:10  
赤霉素(GAs)在植物种子萌发、茎的伸长和花的发育等方面起着非常重要的作用。近年来,随着研究手段和技术不断进步,对赤霉素(GA)生物合成和信号传导过程中相关基因的研究取得了惊人的进展。与GA有关的矮化突变体主要有GA缺陷型和不敏感型两类,本文对与GA生物合成和信号传导过程中有关的这两类矮突变体的研究进展进行综述。对这些这些突变体的研究促进了对赤霉素生物合成和信号传导途径的认识,同时为赤霉素更好地利用提供了科学依据。  相似文献   

3.
植物激素乙烯生物合成与乙烯感受的分子机理   总被引:5,自引:0,他引:5  
陈浩  杨素铀 《生命科学》1997,9(3):119-122
乙烯是分子结构最简单的植物激素,其生物合成途径的最后两个酶是ACC合成酶和ACC氧化酶。这两个酶基因已从许多植物中克隆,两个酶均由多基因家族编码。通过对乙烯不敏感突变体和结构性三重反应突变体的遗传分析表明,乙烯感受以及信号传递途径是由ETR1、CTR1和EIN3等成分组成,最终导致乙烯调节基因的表达。  相似文献   

4.
高等植物脱落酸的生物合成及其调控   总被引:10,自引:2,他引:8  
介绍了近年来高等植物体内ABA的合成部位,ABA生物合成缺陷型突变体,ABA生物合成途径及其调控的最新研究进展。  相似文献   

5.
抑制ABA的生物合成可以缓解葡萄糖抑制拟南芥种子萌发作用,说明ABA的生物合成参与葡萄糖诱导种子萌发的延迟。ABA生物合成基因9-顺式环氧类胡萝卜素双加氧酶6(NCED6)可以被不同浓度的葡萄糖上调表达,而nced6突变体的种子对葡萄糖不敏感。  相似文献   

6.
株高和穗型是决定水稻产量密切相关的农艺性状.本研究从粳稻品种台北309经甲基磺酸乙酯诱变的群体中分离出一个能稳定遗传的矮化小穗突变体,主要表现矮化、粒长增加而宽度变小和穗型变小等特点.遗传分析表明,该突变体受单隐性核基因控制.定位于水稻第1号染色体的Indel标记P4和P5之间,物理距离约为20 kb.由于该区间只有一个已经克隆的矮化基因Dwarf18(d18),其功能编码赤霉素3β-羟化酶(GA3ox2).所以,表明突变基因与d18可能等位.测序比对发现,该突变基因的第2个外显子发生了1个碱基(G)的缺失,造成无义突变,实时荧光定量PCR结果显示,OsGA3ox2基因在突变体中表达量显著下降.因此,将该突变基因暂命名为d18-1.组织切片观察结果显示,与野生型相比,突变体的茎部倒三节间纵向细胞长度显著变短,但细胞数目增多.生理功能结果分析表明,突变体对外源激素GA更敏感,但对外源激素BR不如野生型敏感.检测与GA和BR生物合成与信号传导途径相关基因的表达结果发现,与野生型相比,在突变体中参与GA失活基因OsGA2ox3出现了下调表达,GA生物合成相关基因OsGA20ox2和OsGA3ox2也出现了下调表达,GA信号传导途径中的关键基因都没有明显的差异表达变化.另外,参与BR的合成或者信号传导途径的大部分相关基因在突变体中的表达都出现了下调.由此证明,突变体矮化是由于GA激素的不能正常合成所导致,并且对外源活性BR的响应通路受损而造成对BR激素的低敏感反应.另外,对孕穗期的野生型和突变体的幼穗进行转录组测序分析表明,与野生型相比,突变体检测到1497个差异表达基因,这些差异基因涉及苯丙素的生物合成、糖代谢和碳代谢等.因此,推测突变体中的OsGA3ox2基因发生了无义突变影响了GA和BR生物合成与信号传导途径以及穗型发育相关调控途径,这为更深入研究调控水稻矮化以及穗型的遗传网络提供了新的信息.  相似文献   

7.
通过对ein3-1功能缺失型突变体种子进行EMS诱变,筛选到47株盐敏感突变体。根据对盐敏感程度的不同将其分为3类,分别为低盐超敏感突变体(low concentration of salt hyper-sensitive mutants,lsh),低盐中等敏感突变体(low con-centration of salt moderate-sensitive mutants,lsm)和低盐弱敏感突变体(lowconcentration of salt slight-sensitive mutants,lss)。以其中一株lss-3为例,进行了深入研究。根据遗传分析和生理试验表明,lss-3是以ein3-1为背景的隐性双突变体,而且具有比Col-0和ein3-1更加敏感的盐表型。三重反应表明,lss-3与ein3-1类似,表现出对ACC不敏感的表型。推测lss-3突变的基因可能与乙烯信号途径组分EIN3有关,也可能与之无关,仅是参与抗盐的一个新基因。  相似文献   

8.
脱落酸(ABA)对植物生长发育和适应环境胁迫等多方面有重要的调节作用,其信号转导机制非常引人注目,近年来这方面研究进展很快。本文利用现有文献,对脱落酸不敏感和超敏感性突变体、脱落酸的结合位点与受体、ABA信号转导涉及的细胞第二信使(Ca2+、磷酸肌醇、cADPR、阴离子通道与H+)、蛋白质可逆磷酸化以及ABA诱导基因表达所必需的顺式作用元件(cis-acting element) 和反式作用因子trans-acting factor)等几方面的最新研究进展作了介绍。  相似文献   

9.
赤霉素的矮化作用及在草坪草育种中应用展望   总被引:2,自引:1,他引:1  
赤霉素(GA)在植物的种子萌发、茎的伸长和花的发育等许多方面起着非常重要的作用。GA矮化突变体可分为两类,合成型突变体和非应答型突变体。合成型突变体在于抑制、阻碍了激素的生物合成和代谢步骤,使得内源GA缺乏或痕量存在。在GA的非应答突变体中,其突变体表现出GA合成缺陷型矮化,但体内含有大量有生物活性的GAs。在草坪草育种中,利用GA的矮化作用,通过基因克隆和转基因技术育成矮化的草坪草品种,以降低修剪费用。  相似文献   

10.
油菜素内酯生物合成与功能的研究进展   总被引:2,自引:0,他引:2  
植物激素油菜素内酯广泛调节植物的生长发育及对外界环境因子变化的反应,在作物上的应用也已引起人们的广泛兴趣。通过遗传学等手段对相关突变体及功能基因的研究为其生物合成与功能研究提供了基础。本文总结了油菜素内酯在植物各组织内的分布、生物合成、相关合成突变体及其编码基因的性质、生理功能以及与其它激素间的相互作用等。  相似文献   

11.
Since Pseudomonas aeruginosa is capable of biosynthesis of polyhydroxyalkanoic acid (PHA) and rhamnolipids, which contain lipid moieties that are derived from fatty acid biosynthesis, we investigated various fab mutants from P. aeruginosa with respect to biosynthesis of PHAs and rhamnolipids. All isogenic fabA, fabB, fabI, rhlG, and phaG mutants from P. aeruginosa showed decreased PHA accumulation and rhamnolipid production. In the phaG (encoding transacylase) mutant rhamnolipid production was only slightly decreased. Expression of phaG from Pseudomonas putida and expression of the beta-ketoacyl reductase gene rhlG from P. aeruginosa in these mutants indicated that PhaG catalyzes diversion of intermediates of fatty acid de novo biosynthesis towards PHA biosynthesis, whereas RhlG catalyzes diversion towards rhamnolipid biosynthesis. These data suggested that both biosynthesis pathways are competitive. In order to investigate whether PhaG is the only linking enzyme between fatty acid de novo biosynthesis and PHA biosynthesis, we generated five Tn5 mutants of P. putida strongly impaired in PHA production from gluconate. All mutants were complemented by the phaG gene from P. putida, indicating that the transacylase-mediated PHA biosynthesis route represents the only metabolic link between fatty acid de novo biosynthesis and PHA biosynthesis in this bacterium. The transacylase-mediated PHA biosynthesis route from gluconate was established in recombinant E. coli, coexpressing the class II PHA synthase gene phaC1 together with the phaG gene from P. putida, only when fatty acid de novo biosynthesis was partially inhibited by triclosan. The accumulated PHA contributed to 2 to 3% of cellular dry weight.  相似文献   

12.
Jasmonic acid (JA) is an important regulator of plant development and stress responses. Several enzymes involved in the biosynthesis of JA from alpha-linolenic acid have been characterized. The final biosynthesis steps are the beta-oxidation of 12-oxo-phytoenoic acid. We analyzed JA biosynthesis in the Arabidopsis mutants pex6, affected in peroxisome biogenesis, and aim1, disrupted in fatty acid beta-oxidation. Upon wounding, these mutants exhibit reduced JA levels compared to wild type. pex6 accumulated the precursor OPDA. Feeding experiments with deuterated OPDA substantiate this accumulation pattern, suggesting the mutants are impaired in the beta-oxidation of JA biosynthesis at different steps. Decreased expression of JA-responsive genes, such as VSP1, VSP2, AtJRG21 and LOX2, following wounding in the mutants compared to the wild type reflects the reduced JA levels of the mutants. By use of these additional mutants in combination with feeding experiments, the necessity of functional peroxisomes for JA-biosynthesis is confirmed. Furthermore an essential function of one of the two multifunctional proteins of fatty acid beta-oxidation (AIM1) for wound-induced JA formation is demonstrated for the first time. These data confirm that JA biosynthesis occurs via peroxisomal fatty acid beta-oxidation machinery.  相似文献   

13.
An effective shotgun cloning procedure was developed for Bacillus megaterium by amplifying gene libraries in Bacillus subtilis. This technique was useful in isolating at least 11 genes from B. megaterium which are involved with cobalamin (vitamin B12) biosynthesis. Amplified plasmid banks were transformed into protoplasts of both a series of Cob mutants blocked before the biosynthesis of cobinamide and Cbl mutants blocked in the conversion of cobinamide into cobalamin. Amplification of gene libraries overcame the cloning barriers inherent in the relatively low protoplast transformation frequency of B. megaterium. A family of plasmids was isolated by complementation of seven different Cob and Cbl mutants. Each plasmid capable of complementing a Cob or Cbl mutant was transformed into each one of the series of Cob and Cbl mutants; many of the plasmids isolated by complementation of one mutation carried genetic activity for complementation of other mutations. By these criteria, four different complementation groups were resolved. At least six genes involved in the biosynthesis of cobinamide are carried on a fragment of DNA approximately 2.7 kilobase pairs in length; other genes involved in the biosynthesis of cobinamide were located in two other complementation groups. The physical and genetic data permitted an ordering of genes within several of the complementation groups. The presence of complementing plasmids in mutants blocked in cobalamin synthesis resulted in restoration of cobalamin biosynthesis.  相似文献   

14.
Schizosaccharomyces pombe synthesize small cadmium-binding peptides cadystin, structure of which is (gamma-Glu-Cys)n-Gly, in response to cadmium. Mutants unable to synthesize cadystin were found in the mutants hypersensitive to cadmium. Some of them lack activity of either gamma-glutamylcysteine synthetase (EC 6.3.2.2) or glutathione synthetase (EC 6.3.2.3), enzyme involved in glutathione biosynthesis. Some mutants have the same activity levels of these enzymes as wild type has. These results indicate that some steps of cadystin biosynthesis are catalyzed by the enzymes catalyzing glutathione biosynthesis.  相似文献   

15.
In complementation analysis of low active streptidine dependent strains of Act. streptomycini, 170 and 145 with mutants having different blocks in biosynthesis of streptomycin it was found that these strains were the donors of some thermostable substances and could reduce the biosynthesis of streptomycin in the mutants having impairements in biosynthesis of streptidine and streptobiosamine, as well as in a number of strains with unknown blocks. It is supposed that the substances produced by mutants 170 and 145 were intermediate products in streptomycin biosynthesis.  相似文献   

16.
Bis(monoacylglycero)phosphate (BMP) is a unique lipid enriched in the late endosomes participating in the trafficking of lipids and proteins through this organelle. The de novo biosynthesis of BMP has not been clearly demonstrated. We investigated whether phosphatidylglycerol (PG) and cardiolipin (CL) could serve as precursors of de novo BMP synthesis using two different cellular models: CHO cells deficient in phosphatidylglycerophosphate (PGP) synthase, the enzyme responsible for the first step of PG synthesis; and human lymphoblasts from patients with Barth syndrome (BTHS), characterized by mutations in tafazzin, an enzyme implicated in the deacylation-reacylation cycle of CL. The biosynthesis of both PG and BMP was reduced significantly in the PGP synthase-deficient CHO mutants. Furthermore, overexpression of PGP synthase in the deficient mutants induced an increase of BMP biosynthesis. In contrast to CHO mutants, BMP biosynthesis and its fatty acid composition were not altered in BTHS lymphoblasts. Our results thus suggest that in mammalian cells, PG, but not CL, is a precursor of the de novo biosynthesis of BMP. Despite the decrease of de novo synthesis, the cellular content of BMP remained unchanged in CHO mutants, suggesting that other pathway(s) than de novo biosynthesis are also used for BMP synthesis.  相似文献   

17.
Isoprenoid compounds are found in all organisms. In Escherichia coli the isoprene pathway has three distinct branches: the modification of tRNA; the respiratory quinones ubiquinone and menaquinone; and the dolichols, which are long-chain alcohols involved in cell wall biosynthesis. Very little is known about procaryotic isoprene biosynthesis compared with what is known about eucaryote isoprene biosynthesis. This study approached some of the questions about isoprenoid biosynthesis and regulation in procaryotes by isolating and characterizing mutants in E. coli. Mutants were selected by determining their resistance to low levels of aminoglycoside antibiotics, which require an electron transport chain for uptake into bacterial cells. The mutants were characterized with regard to their phenotypes, map positions, enzymatic activities, and total ubiquinone content. In particular, the enzymes studied were isopentenyldiphosphate delta-isomerase (EC 5.3.3.2), farnesyldiphosphate synthetase (EC 2.5.1.1), and higher prenyl transferases.  相似文献   

18.
S-Adenosylmethionine (SAM) is an important metabolite that participates in many reactions as a methyl group donor in all organisms, and has attracted much interest in clinical research because of its potential to improve many diseases, such as depression, liver disease, and osteoarthritis. Because of these potential applications, a more efficient means is needed to produce SAM. Accordingly, we developed a positive selection method to isolate SAM-accumulating yeast in this study. In Saccharomyces cerevisiae, one of the main reactions consuming SAM is thought to be the methylation reaction in the biosynthesis of ergosterol that is catalyzed by Erg6p. Mutants with deficiencies in ergosterol biosynthesis may accumulate SAM as a result of the reduction of SAM consumption in ergosterol biosynthesis. We have applied this method to isolate SAM-accumulating yeasts with nystatin, which has been used to select mutants with deficiencies in ergosterol biosynthesis. SAM-accumulating mutants from S. cerevisiae K-9 and X2180-1A were efficiently isolated through this method. These mutants accumulated 1.7–5.5 times more SAM than their parental strains. NMR and GC-MS analyses suggested that two mutants from K-9 have a mutation in the erg4 gene, and erg4 disruptants from laboratory strains also accumulated more SAM than their parental strains. These results indicate that mutants having mutations in the genes for enzymes that act downstream of Erg6p in ergosterol biosynthesis are effective in accumulating SAM.  相似文献   

19.
Screening for brassinosteroid (BR) biosynthesis inhibitors was performed to find chemicals that induce dwarfism in Arabidopsis, mutants that resembled BR biosynthesis mutants that can be rescued by BR. Through this screening experiment, the compound brassinazole was selected as the most potent chemical. In dark-grown Arabidopsis, brassinazole-induced morphological changes were nearly restored to those of wild type by treatment with brassinolide. The structure of brassinazole is similar to pacrobutrazol, a gibberellin biosynthesis inhibitor. However, in assays with cress (Lepidium sativum) plants, brassinazole-treated plants did not show recovery after the addition of gibberellin but showed good recovery after the addition of brassinolide. These data demonstrate that brassinazole is a specific BR biosynthesis inhibitor. Brassinazole-treated cress also showed dwarfism, with altered leaf morphology, including the downward curling and dark green color typical of Arabidopsis BR-deficient mutants, and this dwarfism was reversed by the application of 10 nM brassinolide. This result suggests that BRs are essential for plant growth, and that brassinazole can be used to clarify the function of BRs in plants as a complement to BR-deficient mutants. The brassinazole action site was also investigated by feeding BR biosynthesis intermediates to cress grown in the light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号