首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BackgroundThe c-MET oncoprotein drives cancer progression in a variety of tumors through its signaling transduction pathways. This oncoprotein is also degraded by multiple mechanisms involving the lysosome, proteasome and cleavage by proteases. Targeting c-MET degradation pathways may result in effective therapeutic strategies.Scope of reviewSince the discovery of oncogenic functions of c-MET, there has been a great deal of effort to develop anti-cancer drugs targeting this oncoprotein. Unexpectedly, novel di-2-pyridylketone thiosemicarbazones that demonstrate marked anti-tumor activity, down-regulate c-MET through their ability to bind intracellular iron and via mechanisms including, down-regulation of MET mRNA, enhanced lysosomal processing and increased metalloprotease-mediated cleavage.Major conclusionsThe c-MET oncoprotein regulation and degradation pathways are complex. However, with increasing understanding of its degradation mechanisms, there is also greater opportunities to therapeutically target these pathways.General significanceUnderstanding the mechanisms of degradation of c-MET protein and its regulation could lead to novel therapeutics.  相似文献   

2.
Prostate cancer consists of secretory cells and a population of immature cells. The function of immature cells and their mutual relation with secretory cells are still poorly understood. Immature cells either have a hierarchical relation to secretory cells (stem cell model) or represent an inducible population emerging upon appropriate stimulation of differentiated cells. Hepatocyte Growth Factor (HGF) receptor c-MET is specifically expressed in immature prostate cells. Our objective is to determine the role of immature cells in prostate cancer by analysis of the HGF/c-MET pathway.Gene-expression profiling of DU145 prostate cancer cells stimulated with HGF revealed induction of a molecular signature associated with stem cells, characterized by up-regulation of CD49b, CD49f, CD44 and SOX9, and down-regulation of CD24 ('stem-like signature'). We confirmed the acquisition of a stem-like phenotype by quantitative PCR, FACS analysis and Western blotting. Further, HGF led to activation of the stem cell related Notch pathway by up-regulation of its ligands Jagged-1 and Delta-like 4. Small molecules SU11274 and PHA665752 targeting c-MET activity were both able to block the molecular and biologic effects of HGF. Knock-down of c-MET by shRNA infection resulted in significant reduction and delay of orthotopic tumour-formation in male NMRI mice. Immunohistochemical analysis in prostatectomies revealed significant enrichment of c-MET positive cells at the invasive front, and demonstrated co-expression of c-MET with stem-like markers CD49b and CD49f.In conclusion, activation of c-MET in prostate cancer cells induced a stem-like phenotype, indicating a dynamic relation between differentiated and stem-like cells in this malignancy. Its mediation of efficient tumour-formation in vivo and predominant receptor expression at the invasive front implicate that c-MET regulates tumour infiltration in surrounding tissues putatively by acquisition of a stem-like phenotype.  相似文献   

3.
《MABS-AUSTIN》2013,5(2):340-353
The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of “second generation” antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert.  相似文献   

4.
The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of “second generation” antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert.  相似文献   

5.
Adult muscle stem cells, satellite cells (SCs), endow skeletal muscle with tremendous regenerative capacity. Upon injury, SCs activate, proliferate, and migrate as myoblasts to the injury site where they become myocytes that fuse to form new muscle. How migration is regulated, though, remains largely unknown. Additionally, how migration and fusion, which both require dynamic rearrangement of the cytoskeleton, might be related is not well understood. c-MET, a receptor tyrosine kinase, is required for myogenic precursor cell migration into the limb for muscle development during embryogenesis. Using a genetic system to eliminate c-MET function specifically in adult mouse SCs, we found that c-MET was required for muscle regeneration in response to acute muscle injury. c-MET mutant myoblasts were defective in lamellipodia formation, had shorter ranges of migration, and migrated slower compared to control myoblasts. Surprisingly, c-MET was also required for efficient myocyte fusion, implicating c-MET in dual functions of regulating myoblast migration and myocyte fusion.  相似文献   

6.
p185(her2/neu) belongs to the ErbB receptor tyrosine kinase family, which has been associated with human breast, ovarian, and lung cancers. Targeted therapies employing ectodomain-specific p185(her2/neu) monoclonal antibodies (mAbs) have demonstrated clinical efficacy for breast cancer. Our previous studies have shown that p185(her2/neu) mAbs are able to disable the kinase activity of homomeric and heteromeric kinase complexes and induce the conversion of the malignant to normal phenotype. We previously developed a chimeric antibody chA21 that specifically inhibits the growth of p185(her2/neu)-overexpressing cancer cells in vitro and in vivo. Herein, we report the crystal structure of the single-chain Fv of chA21 in complex with an N-terminal fragment of p185(her2/neu), which reveals that chA21 binds a region opposite to the dimerization interface, indicating that chA21 does not directly disrupt the dimerization. In contrast, the bivalent chA21 leads to internalization and down-regulation of p185(her2/neu). We propose a structure-based model in which chA21 cross-links two p185(her2/neu) molecules on separate homo- or heterodimers to form a large oligomer in the cell membrane. This model reveals a mechanism for mAbs to drive the receptors into the internalization/degradation path from the inactive hypophosphorylated tetramers formed dynamically by active dimers during a "physiologic process."  相似文献   

7.
It has been suggested that effects of anti-transferrin receptor antibodies on cell growth and receptor expression are the result of varying degrees of receptor crosslinking by bi- and multivalet binding agents. In order to study this question directly, we have cultured murine lymphoma cells in mono- and divalent fragments from IgG and IgM monoclonal anti-transferrin receptor antibodies and in intact antibodies. The studies presented here demonstrate that effects of antibody binding on transferrin receptor distribution, metabolism, and function depend, at least in part, on antibody valence, and therefore on the degree of crosslinking of receptors by antibody. We found that monovalent antibody fragments did not significantly alter cell growth, receptor surface expression, intracellular localization, or degradation. Diavalent antibody caused a uniform down-regulation of cell-surface receptor expression, which was accompanied by increased degradation only when antibody Fc was present. Normal receptor cycling apparently continued, despite the reduction in surface expression. Culture in multivalent IgM antibody, however, resulted in accumulation of antibody-complexed receptor on the cell surface without internalization and caused profound inhibition of cell growth. Thus, we show two mechanisms by which different degrees of antibody crosslinking can influence transferrin receptor function: by receptor down-regulation and blocking internalization.  相似文献   

8.
Both the epidermal growth factor receptor (EGFR) and the insulin-like growth factor receptor (IGFR) have been implicated in the tumorigenesis of a variety of cancers. Here we propose that simultaneous targeting of both receptors with a bispecific antibody would lead to enhanced antitumor activity. To this end, we produced a recombinant human IgG-like bispecific antibody, a Di-diabody, using the variable regions from two antagonistic antibodies: IMC-11F8 to EGFR and IMC-A12 to IGFR. The Di-diabody binds to both EGFR and IGFR and effectively blocked both EGF- and IGF-stimulated receptor activation and tumor cell proliferation. The Di-diabody also inherited the biological properties from both of its parent antibodies; it triggers rapid and significant IGFR internalization and degradation and mediates effective antibody-dependent cellular cytotoxicity in a variety of tumor cells. Finally, the Di-diabody strongly inhibited the growth of two different human tumor xenografts in vivo. Our results underscore the benefits of simultaneous targeting of two tumor targets with bispecific antibodies.  相似文献   

9.
Immunotherapy targeting aggregated α-synuclein has emerged as a potential treatment strategy against Parkinson’s disease and other α-synucleinopathies. We have developed α-synuclein oligomer/protofibril selective antibodies that reduce toxic α-synuclein in a human cell line and, upon intraperitoneal administration, in spinal cord of transgenic mice. Here, we investigated under which conditions and by which mechanisms such antibodies can be internalized by cells. For this purpose, human neuroglioma H4 cells were treated with either monoclonal oligomer/protofibril selective α-synuclein antibodies, linear epitope monoclonal α-synuclein antibodies, or with a control antibody. The oligomer/protofibril selective antibody mAb47 displayed the highest cellular uptake and was therefore chosen for additional analyses. Next, α-synuclein overexpressing cells were incubated with mAb47, which resulted in increased antibody internalization as compared to non-transfected cells. Similarly, regular cells exposed to mAb47 together with media containing α-synuclein displayed a higher uptake as compared to cells incubated with regular media. Finally, different Fcγ receptors were targeted and we then found that blockage of FcγRI and FcγRIIB/C resulted in reduced antibody internalization. Our data thus indicate that the robust uptake of the oligomer/protofibril selective antibody mAb47 by human CNS-derived cells is enhanced by extracellular α-synuclein and mediated via Fcγ receptors. Altogether, our finding lend further support to the belief that α-synuclein pathology can be modified by monoclonal antibodies and that these can target toxic α-synuclein species in the extracellular milieu. In the context of immunotherapy, antibody binding of α-synuclein would then not only block further aggregation but also mediate internalization and subsequent degradation of antigen–antibody complexes.  相似文献   

10.
The monoclonal antibody to the epidermal growth factor (EGF) receptor was generated after fusion of PAI myeloma cells with immunized BALB/c mouse spleen cells, using intact A431 epidermoid carcinoma cells as an immunogen. The antibody, denoted 5A9, is an IgG, which recognizes a protein with molecular mass 170 kDa during immunoblot analysis, immunoprecipitates phosphoprotein with molecular mass 170 kDa from the membrane preparations of A431 cells, and, according to immunofluorescence experiments, is distributed in the cell similar to the EGF-rhodamine conjugate. It is concluded that the produced antibodies are specific to EGF-receptor. At the same time the 5A9 (50 nM) do not compete with EGF for binding with high and low affinity receptors. They fail to induce internalization of the EGF-receptor and do not exert influence on intracellular degradation of EGF-receptor. Monoclonal antibodies 5A9 are also unable to inhibit the EGF-induced protein kinase activity of the receptor and do not stimulate protein kinase activity by themselves. Thus, the prepared monoclonal antibodies can be used to register the EGF-receptor cellular localization without affecting biologic activity of the receptor.  相似文献   

11.
Inappropriate activation of c-mesenchymal-epithelial transition (MET), the receptor tyrosine kinase (RTK) for hepatocyte growth factor (HGF), has been implicated in tumorigenesis and represented a promising therapeutic target for developing anticancer agents. In contrast to other solid tumors, there are limited data describing the functional role of HGF/c-MET signaling pathway in lymphoma. In the current review, we summarize recent findings about the expression, cellular mechanisms/functions, and therapeutic application of HGF/c-MET in different types of lymphoma, especially B cell lymphoma, T and NK cell lymphoma, and Hodgkin lymphoma. We also discuss the existing problems and future directions about studying the HGF/c-MET pathway in lymphoma cells.  相似文献   

12.
The epidermal growth factor receptor (EGFR) is frequently dysregulated in human malignancies and a validated target for cancer therapy. Two monoclonal anti-EGFR antibodies (cetuximab and panitumumab) are approved for clinical use. However, the percentage of patients responding to treatment is low and many patients experiencing an initial response eventually relapse. Thus, the need for more efficacious treatments remains. Previous studies have reported that mixtures of antibodies targeting multiple distinct epitopes are more effective than single mAbs at inhibiting growth of human cancer cells in vitro and in vivo. The current work describes the rational approach that led to discovery and selection of a novel anti-EGFR antibody mixture Sym004, which is currently in Phase 2 clinical testing. Twenty-four selected anti-EGFR antibodies were systematically tested in dual and triple mixtures for their ability to inhibit cancer cells in vitro and tumor growth in vivo. The results show that targeting EGFR dependent cancer cells with mixtures of antibodies is superior at inhibiting their growth both in vitro and in vivo. In particular, antibody mixtures targeting non-overlapping epitopes on domain III are efficient and indeed Sym004 is composed of two monoclonal antibodies targeting this domain. The superior growth inhibitory activity of mixtures correlated with their ability to induce efficient EGFR degradation.Key words: EGFR, antibody synergy, functional screening, epitope binning, antibody combinations  相似文献   

13.
《MABS-AUSTIN》2013,5(6):584-595
The epidermal growth factor receptor (EGFR) is frequently dysregulated in human malignancies and a validated target for cancer therapy. Two monoclonal anti-EGFR antibodies (cetuximab and panitumumab) are approved for clinical use. However, the percentage of patients responding to treatment is low and many patients experiencing an initial response eventually relapse. Thus, the need for more efficacious treatments remains. Previous studies have reported that mixtures of antibodies targeting multiple distinct epitopes are more effective than single mAbs at inhibiting growth of human cancer cells in vitro and in vivo. The current work describes the rational approach that led to discovery and selection of a novel anti-EGFR antibody mixture Sym004, which is currently in Phase 2 clinical testing. Twenty-four selected anti-EGFR antibodies were systematically tested in dual and triple mixtures for their ability to inhibit cancer cells in vitro and tumor growth in vivo. The results show that targeting EGFR dependent cancer cells with mixtures of antibodies is superior at inhibiting their growth both in vitro and in vivo. In particular, antibody mixtures targeting non-overlapping epitopes on domain III are efficient and indeed Sym004 is composed of two monoclonal antibodies targeting this domain. The superior growth inhibitory activity of mixtures correlated with their ability to induce efficient EGFR degradation.  相似文献   

14.
Reducing the blood supply of tumors is one modality to combat cancer. Monoclonal antibodies are now established as a key therapeutic approach for a range of diseases. Owing to the ability of antibodies to selectively target endothelial cells within the tumor vasculature, vascular targeting programs have become a mainstay in oncology drug development. However, the antitumor activity of single agent administration of conventional anti-angiogenic compounds is limited and the improvements in patient survival are most prominent in combinations with chemotherapy. Furthermore, prolonged treatment with conventional anti-angiogenic drugs is associated with toxicity and drug resistance. These circumstances provide a strong rationale for novel approaches to enhance the efficacy of mAbs targeting tumor vasculature such as antibody-drug conjugates (ADCs). Here, we review trends in the development of ADCs targeting tumor vasculature with the aim of informing future research and development of this class of therapeutics.Key words: tumor, vasculature, immunotherapy, antibody-drug conjugates, monoclonal antibody, cancer, angiogenesis  相似文献   

15.
Targeting of the epidermal growth factor receptor (EGFR) with monoclonal antibodies has become an established antitumor strategy in clinical use or in late stages of drug development. The mAbs effector mechanisms have been widely analyzed based on in vivo or cell studies. Hereby we intend to complement these functional studies by investigating the mAb-EGFR interactions on a molecular level. Surface plasmon resonance, isothermal titration calorimetry, and static light scattering were employed to characterize the interactions of matuzumab, cetuximab, and panitumumab with the extracellular soluble form ecEGFR. The kinetic and thermodynamic determinants dissected the differences in mAbs binding mechanism toward ecEGFR. The quantitative stoichiometric data clearly demonstrated the bivalent binding of the mAbs to two ecEGFR molecules. Our results complement earlier studies on simultaneous binding of cetuximab and matuzumab. The antibodies retain their bivalent binding mode achieving a 1:2:1 complex formation. Interestingly the binding parameters remain nearly constant for the individual antibodies in this ternary assembly. In contrast the binding of panitumumab is almost exclusive either by directly blocking the accessibility for the second antibody or by negative allosteric modulation. Overall we provide a comprehensive biophysical dataset on binding parameters, the complex assembly, and relative epitope accessibility for therapeutic anti-EGFR antibodies.  相似文献   

16.
The human epidermal growth factor receptor 2 (HER2/ErbB2) is overexpressed in a number of human cancers. HER2 is the preferred heterodimerization partner for other epidermal growth factor receptor (EGFR) family members and is considered to be resistant to endocytic down‐regulation, properties which both contribute to the high oncogenic potential of HER2. Antibodies targeting members of the EGFR family are powerful tools in cancer treatment and can function by blocking ligand binding, preventing receptor dimerization, inhibiting receptor activation and/or inducing receptor internalization and degradation. With respect to antibody‐induced endocytosis of HER2, various results are reported, and the effect seems to depend on the HER2 expression level and whether antibodies are given as individual antibodies or as mixtures of two or more. In this study, the effect of a mixture of two monoclonal antibodies against non‐overlapping epitopes of HER2 was investigated with respect to localization and stability of HER2. Individual antibodies had limited effect, but the combination of antibodies induced internalization and degradation of HER2 by multiple endocytic pathways. In addition, HER2 was phosphorylated and ubiquitinated upon incubation with the antibody combination, and the HER2 kinase activity was found to be instrumental in antibody‐induced HER2 down‐regulation.  相似文献   

17.
Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALK(WT)), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALK(WT) and ALK(F1174L) receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALK(WT) whereas both ALK(WT) and ALK(F1174L) were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALK(WT). We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization.  相似文献   

18.
A therapeutic antibody candidate (AT-19) isolated using multivalent phage display binds native tomoregulin (TR) as a mul-timer not as a monomer. This report raises the importance of screening and selecting phage antibodies on native antigen and reemphasizes the possibility that potentially valuable antibodies are discarded when a monomeric phage display system is used for screening. A detailed live cell panning selection and screening method to isolate multivalently active antibodies is described. AT-19 is a fully human antibody recognizing the cell surface protein TR, a proposed prostate cancer target for therapeutic antibody internalization. AT-19 was isolated from a multivalent single-chain variable fragment (scFv) antibody library rescued with hyperphage. The required multivalency for isolation of AT-19 is supported by fluorescence activated cell sorting data demonstrating binding of the multivalent AT-19 phage particles at high phage concentrations and failure of monovalent particles to bind. Pure monomeric scFv AT-19 does not bind native receptor on cells, whereas dimeric scFv or immunoglobulin G binds with nanomolar affinity. The isolation of AT-19 antibody with obligate bivalent binding activity to native TR is attributed to the use of a multivalent display of scFv on phage and the method for selecting and screening by alternate use of 2 recombinant cell lines.  相似文献   

19.
We have developed a simple fluorescence-based method to monitor antibody internalization. Panitumumab was dual-labeled with the fluorophore IRDye 800CW and quencher IRDye QC-1 to yield the biomolecular probe Pan800QC. The fluorescence of IRDye 800CW is quenched by IRDye QC-1 on the same intact antibody. After incubation with epidermal growth factor receptor (EGFR)-expressing cells, internalization of Pan800QC was detected by an increase in fluorescence signal due to enzymatic digestion of the antibody and separation of IRDye 800CW and IRDye QC-1. By optimizing reaction conditions, a signal-to-background ratio of 8.5 was obtained. This homogeneous assay can be applied in the characterization and screening of internalizing antibodies.  相似文献   

20.
Jo SG  Hong SW  Yoo JW  Lee CH  Kim S  Kim S  Lee DK 《Molecules and cells》2011,32(6):543-548
The silencing of specific oncogenes via RNA interference (RNAi) holds great promise for the future of cancer therapy. RNAi is commonly carried out using small interfering RNA (siRNA) composed of a 19 bp duplex region with a 2-nucleotide overhang at each 3′ end. This classical siRNA structure, however, can trigger non-specific effects, which has hampered the development of specific and safe RNAi therapeutics. Previously, we developed a novel siRNA structure, called asymmetric shorter-duplex siRNA (asiRNA), which did not cause the non-specific effects triggered by conventional siRNA, such as off-target gene silencing mediated by the sense strand. In this study, we first screened potent asiRNA molecules targeting the human c-MET gene, a promising anticancer target. Next, the activity of a selected asiRNA was further optimized by introducing a locked nucleic acid (LNA) to maximize the gene silencing potency. The optimized asiRNA targeted to c-MET may have potential as a specific and safe anticancer RNAi therapeutic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号