首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A significant consequence of protein phosphorylation is to alter protein-protein interactions, leading to dynamic regulation of the components of protein complexes that direct many core biological processes. Recent proteomic studies have populated databases with extensive compilations of cellular phosphoproteins and phosphorylation sites and a similarly deep coverage of the subunit compositions and interactions in multiprotein complexes. However, considerably less data are available on the dynamics of phosphorylation, composition of multiprotein complexes or that define their interdependence. We describe a method to identify candidate phosphoprotein complexes by combining phosphoprotein affinity chromatography, separation by size, denaturing gel electrophoresis, protein identification by tandem mass spectrometry, and informatics analysis. Toward developing phosphoproteome profiling, we have isolated native phosphoproteins using a phosphoprotein affinity matrix, Pro-Q Diamond resin (Molecular Probes-Invitrogen). This resin quantitatively retains phosphoproteins and associated proteins from cell extracts. Pro-Q Diamond purification of a yeast whole cell extract followed by 1-D PAGE separation, proteolysis and ESI LC-MS/MS, a method we term PA-GeLC-MS/MS, yielded 108 proteins, a majority of which were known phosphoproteins. To identify proteins that were purified as parts of phosphoprotein complexes, the Pro-Q eluate was separated into two fractions by size, <100 kDa and >100 kDa, before analysis by PAGE and ESI LC-MS/MS and the component proteins queried against databases to identify protein-protein interactions. The <100 kDa fraction was enriched in phosphoproteins indicating the presence of monomeric phosphoproteins. The >100 kDa fraction contained 171 proteins of 20-80 kDa, nearly all of which participate in known protein-protein interactions. Of these 171, few are known phosphoproteins, consistent with their purification by participation in protein complexes. By comparing the results of our phosphoprotein profiling with the informational databases on phosphoproteomics, protein-protein interactions and protein complexes, we have developed an approach to examining the correlation between protein interactions and protein phosphorylation.  相似文献   

2.
The complexity of canonical Wnt signaling comes not only from the numerous components but also from multiple post-translational modifications. Protein phosphorylation is one of the most common modifications that propagates signals from extracellular stimuli to downstream effectors. To investigate the global phosphorylation regulation and uncover novel phosphoproteins at the early stages of canonical Wnt signaling, HEK293 cells were metabolically labeled with two stable isotopic forms of lysine and were stimulated for 0, 1, or 30 min with purified Wnt3a. After phosphoprotein enrichment and LC-MS/MS analysis, 1057 proteins were identified in all three time points. In total 287 proteins showed a 1.5-fold or greater change in at least one time point. In addition to many known Wnt signaling transducers, other phosphoproteins were identified and quantitated, implicating their involvement in canonical Wnt signaling. k-Means clustering analysis showed dynamic patterns for the differential phosphoproteins. Profile pattern and interaction network analysis of the differential phosphoproteins implicated the possible roles for those unreported components in Wnt signaling. Moreover 100 unique phosphorylation sites were identified, and 54 of them were quantitated in the three time points. Site-specific phosphopeptide quantitation revealed that Ser-20 phosphorylation on RRM2 increased upon 30-min Wnt3a stimulation. Further studies with mutagenesis, the Wnt reporter gene assay, and RNA interference indicated that RRM2 functioned downstream of beta-catenin as an inhibitor of Wnt signaling and that Ser-20 phosphorylation of RRM2 counteracted its inhibition effect. Our systematic profiling of dynamic phosphorylation changes responding to Wnt3a stimulation not only presented a comprehensive phosphorylation network regulated by canonical Wnt signaling but also found novel molecules and phosphorylation involved in Wnt signaling.  相似文献   

3.
We have used 2-DE for a time-course study of the changes in protein and phosphoprotein expression that occur immediately after fertilization in Solanum chacoense. The phosphorylation status of the detected proteins was determined with three methods: in vivo labeling, immunodetection, and phosphoprotein-specific staining. Using a pI range of 4-7, 262 phosphorylated proteins could be mapped to the 619 proteins detected by Sypro Ruby staining, representing 42% of the total proteins. Among these phosphoproteins, antibodies detected 184 proteins from which 78 were also detected with either of the other two methods (42%). Pro-Q Diamond phosphoprotein stain detected 111 proteins, of which 76 were also detected with either of the other two methods (68%). The 32P in vivo labeling method detected 90 spots from which 78 were also detected with either of other two methods (87%). On comparing before and after fertilization profiles, 38 proteins and phosphoproteins presented a reproducible change in their accumulation profiles. Among these, 24 spots were selected and analyzed by LC-MS/MS using a hybrid quadrupole-TOF (Q-TOF) instrument. Peptide data were searched against publicly available protein and EST databases, and the putative roles of the identified proteins in early fertilization events are discussed.  相似文献   

4.
We analyzed the mouse forebrain cytosolic phosphoproteome using sequential (protein and peptide) IMAC purifications, enzymatic dephosphorylation, and targeted tandem mass spectrometry analysis strategies. In total, using complementary phosphoenrichment and LC-MS/MS strategies, 512 phosphorylation sites on 540 non-redundant phosphopeptides from 162 cytosolic phosphoproteins were characterized. Analysis of protein domains and amino acid sequence composition of this data set of cytosolic phosphoproteins revealed that it is significantly enriched in intrinsic sequence disorder, and this enrichment is associated with both cellular location and phosphorylation status. The majority of phosphorylation sites found by MS were located outside of structural protein domains (97%) but were mostly located in regions of intrinsic sequence disorder (86%). 368 phosphorylation sites were located in long regions of disorder (over 40 amino acids long), and 94% of proteins contained at least one such long region of disorder. In addition, we found that 58 phosphorylation sites in this data set occur in 14-3-3 binding consensus motifs, linear motifs that are associated with unstructured regions in proteins. These results demonstrate that in this data set protein phosphorylation is significantly depleted in protein domains and significantly enriched in disordered protein sequences and that enrichment of intrinsic sequence disorder may be a common feature of phosphoproteomes. This supports the hypothesis that disordered regions in proteins allow kinases, phosphatases, and phosphorylation-dependent binding proteins to gain access to target sequences to regulate local protein conformation and activity.  相似文献   

5.
A systematic approach to the analysis of protein phosphorylation   总被引:29,自引:0,他引:29  
Reversible protein phosphorylation has been known for some time to control a wide range of biological functions and activities. Thus determination of the site(s) of protein phosphorylation has been an essential step in the analysis of the control of many biological systems. However, direct determination of individual phosphorylation sites occurring on phosphoproteins in vivo has been difficult to date, typically requiring the purification to homogeneity of the phosphoprotein of interest before analysis. Thus, there has been a substantial need for a more rapid and general method for the analysis of protein phosphorylation in complex protein mixtures. Here we describe such an approach to protein phosphorylation analysis. It consists of three steps: (1) selective phosphopeptide isolation from a peptide mixture via a sequence of chemical reactions, (2) phosphopeptide analysis by automated liquid chromatography-tandem mass spectrometry (LC-MS/MS), and (3) identification of the phosphoprotein and the phosphorylated residue(s) by correlation of tandem mass spectrometric data with sequence databases. By utilizing various phosphoprotein standards and a whole yeast cell lysate, we demonstrate that the method is equally applicable to serine-, threonine- and tyrosine-phosphorylated proteins, and is capable of selectively isolating and identifying phosphopeptides present in a highly complex peptide mixture.  相似文献   

6.
Han D  Moon S  Kim Y  Ho WK  Kim K  Kang Y  Jun H  Kim Y 《Journal of proteome research》2012,11(4):2206-2223
Type 2 diabetes results from aberrant regulation of the phosphorylation cascade in beta-cells. Phosphorylation in pancreatic beta-cells has not been examined extensively, except with regard to subcellular phosphoproteomes using mitochondria. Thus, robust, comprehensive analytical strategies are needed to characterize the many phosphorylated proteins that exist, because of their low abundance, the low stoichiometry of phosphorylation, and the dynamic regulation of phosphoproteins. In this study, we attempted to generate data on a large-scale phosphoproteome from the INS-1 rat pancreatic beta-cell line using linear ion trap MS/MS. To profile the phosphoproteome in-depth, we used comprehensive phosphoproteomic strategies, including detergent-based protein extraction (SDS and SDC), differential sample preparation (in-gel, in-solution digestion, and FASP), TiO2 enrichment, and MS replicate analyses (MS2-only and multiple-stage activation). All spectra were processed and validated by stringent multiple filtering using target and decoy databases. We identified 2467 distinct phosphorylation sites on 1419 phosphoproteins using 4 mg of INS-1 cell lysate in 24 LC-MS/MS runs, of which 683 (27.7%) were considered novel phosphorylation sites that have not been characterized in human, mouse, or rat homologues. Our informatics data constitute a rich bioinformatics resource for investigating the function of reversible phosphorylation in pancreatic beta-cells. In particular, novel phosphorylation sites on proteins that mediate the pathology of type 2 diabetes, such as Pdx-1, Nkx.2, and Srebf1, will be valuable targets in ongoing phosphoproteomics studies.  相似文献   

7.
Protein phosphorylation is essential for numerous cellular processes. Large-scale profiling of phosphoproteins continues to enhance the depth and speed at which we understand these processes. The development of effective phosphoprotein and peptide enrichment techniques and improvements to mass spectrometric instrumentation have intensified phosphoproteomic research in recent years, leading to unprecedented achievements. Here, we describe a large-scale phosphorylation analysis of alpha-factor-arrested yeast. Using a multidimensional separation strategy involving preparative SDS-PAGE for prefractionation, in-gel digestion with trypsin, and immobilized metal affinity chromatography (IMAC) enrichment of phosphopeptides, followed by LC-MS/MS analysis employing a hybrid LTQ-Orbitrap mass spectrometer, we were able to catalog a substantial portion of the phosphoproteins present in yeast whole-cell lysate. This analysis yielded the confident identification of 2288 nonredundant phosphorylation sites from 985 proteins. The ambiguity score (Ascore) algorithm was utilized to determine the certainty of site localization for the entire data set. In addition, the size of the data set permitted extraction of known and novel kinase motifs using the Motif-X algorithm. Finally, a large number of members of the pheromone signaling pathway were found as phosphoproteins and are discussed.  相似文献   

8.
In-depth knowledge of bodily fluid phosphoproteomes, such as whole saliva, is limited. To better understand the whole saliva phosphoproteome, we generated a large-scale catalog of phosphorylated proteins. To circumvent the wide dynamic range of phosphoprotein abundance in whole saliva, we combined dynamic range compression using hexapeptide beads, strong cation exchange HPLC peptide fractionation, and immobilized metal affinity chromatography prior to mass spectrometry. In total, 217 unique phosphopeptides sites were identified representing 85 distinct phosphoproteins at 2.3% global FDR. From these peptides, 129 distinct phosphorylation sites were identified of which 57 were previously known, but only 11 of which had been previously identified in whole saliva. Cellular localization analysis revealed salivary phosphoproteins had a distribution similar to all known salivary proteins, but with less relative representation in "extracellular" and "plasma membrane" categories compared to salivary glycoproteins. Sequence alignment showed that phosphorylation occurred at acidic-directed kinase, proline-directed, and basophilic motifs. This differs from plasma phosphoproteins, which predominantly occur at Golgi casein kinase recognized sequences. Collectively, these results suggest diverse functions for salivary phosphoproteins and multiple kinases involved in their processing and secretion. In all, this study should lay groundwork for future elucidation of the functions of salivary protein phosphorylation.  相似文献   

9.
The physiological role of proteins phosphorylated on serine/threonine/tyrosine (Ser/Thr/Tyr) residues or the identity of the corresponding kinases and phosphatases is generally poorly understood in bacteria. As a first step in analysing the importance of such phosphorylation, we sought to establish the nature of the Ser/Thr/Tyr phosphoproteome in Bacillus subtilis, using in vivo labelling with [(32)P]-orthophosphate, one-unit pH 2-DE, combined with MS. Highly reproducible 2-D profiles of phosphoproteins were obtained with early stationary-phase cells. The 2-D profiles contained at least 80 clearly labelled spots in the pH range 4-7. Forty-six spots were analysed by MS (confirmed in most cases by LC-MS/MS), identifying a total of 29 different proteins, with 19 identified for the first time as bacterial phosphoproteins. These phosphoproteins are implicated in a wide variety of cellular processes, including carbon and energy metabolism, transport, stress and development. Significant changes to the profiles were obtained as a result of cold, heat or osmotic shock, demonstrating that, in stationary-phase cells, the phosphoproteome is dynamic. An initial comparative study indicated that at least 25 [(32)P]-labelled spots were also stained by Pro-Q Diamond, with apparently six additional phosphoproteins uniquely detected by Pro-Q.  相似文献   

10.
The zebrafish (Danio rerio) is a popular animal model used for studies on vertebrate development and organogenesis. Recent research has shown a similarity of approximately 70% between the human and zebrafish genomes and about 84% of human disease‐causing genes have common ancestry with that of the zebrafish genes. Zebrafish embryos have a number of desirable features, including transparency, a large size, and rapid embryogenesis. Protein phosphorylation is a well‐known PTM, which can carry out various biological functions. Recent MS developments have enabled the study of global phosphorylation patterns by using MS‐based proteomics coupled with titanium dioxide phosphopeptide enrichment. In the present study, we identified 3500 nonredundant phosphorylation sites on 2166 phosphoproteins and quantified 1564 phosphoproteins in developing embryos of zebrafish. The distribution of Ser/Thr/Tyr phosphorylation sites in zebrafish embryos was found to be 88.9, 10.2, and 0.9%, respectively. A potential kinase motif was predicted using Motif‐X analysis, for 80% of the identified phosphorylation sites, with the proline‐directed motif appearing most frequently, and 35 phosphorylation sites having the pSF motif. In addition, we created six phosphoprotein clusters based on their dynamic pattern during the development of zebrafish embryos. Here, we report the largest dataset of phosphoproteins in zebrafish embryos and our results can be used for further studies on phosphorylation sites or phosphoprotein dynamics in zebrafish embryos.  相似文献   

11.
Yu G  Xiao CL  Lu CH  Jia HT  Ge F  Wang W  Yin XF  Jia HL  He JX  He QY 《Molecular bioSystems》2011,7(2):472-479
As an in vitro model for type II human lung cancer, A549 cells resist cytotoxicity via phosphorylation of proteins as demonstrated by many studies. However, to date, no large-scale phosphoproteome investigation has been conducted on A549. Here, we performed a systematical analysis of the phosphoproteome of A549 by using mass spectrometry (MS)-based strategies. This investigation led to the identification of 337 phosphorylation sites on 181 phosphoproteins. Among them, 67 phosphoproteins and 230 phosphorylation sites identified appeared to be novel with no previous characterization in lung cancer. Based on their known functions as reported in the literature, these phosphoproteins were functionally organized into highly interconnected networks. Western blotting and immunohistochemistry analyses were performed to validate the expression of a bottleneck phosphoprotein YAP1 in cancer cell lines and tissues. This dataset provides a valuable resource for further studies on phosphorylation and lung carcinogenesis.  相似文献   

12.
13.
Akashi T  Yamori T 《Proteomics》2007,7(14):2350-2354
A novel SELDI-TOF MS-based method for analyzing phosphoproteins was developed using a series of recombinant wild-type and mutant ribosomal P2 proteins. We demonstrated that the phosphorylation status of the overexpressed proteins in cells was easily and rapidly confirmed using this method. The ribosomal P2 protein contained two phosphorylation sites, which were sequentially phosphorylated in vivo. We also quantitatively detected the phosphoprotein by using SELDI-TOF MS.  相似文献   

14.

Background

The proteasome inhibitor bortezomib represents an important advance in the treatment of multiple myeloma (MM). Bortezomib inhibits the activity of the 26S proteasome and induces cell death in a variety of tumor cells; however, the mechanism of cytotoxicity is not well understood.

Methodology/Principal Findings

We investigated the differential phosphoproteome upon proteasome inhibition by using stable isotope labeling by amino acids in cell culture (SILAC) in combination with phosphoprotein enrichment and LC-MS/MS analysis. In total 233 phosphoproteins were identified and 72 phosphoproteins showed a 1.5-fold or greater change upon bortezomib treatment. The phosphoproteins with expression alterations encompass all major protein classes, including a large number of nucleic acid binding proteins. Site-specific phosphopeptide quantitation revealed that Ser38 phosphorylation on stathmin increased upon bortezomib treatment, suggesting new mechanisms associated to bortezomib-induced apoptosis in MM cells. Further studies demonstrated that stathmin phosphorylation profile was modified in response to bortezomib treatment and the regulation of stathmin by phosphorylation at specific Ser/Thr residues participated in the cellular response induced by bortezomib.

Conclusions/Significance

Our systematic profiling of phosphorylation changes in response to bortezomib treatment not only advanced the global mechanistic understanding of the action of bortezomib on myeloma cells but also identified previously uncharacterized signaling proteins in myeloma cells.  相似文献   

15.
We have developed a method for on-membrane direct identification of phosphoproteins, which are detected by a phosphate-binding tag (Phos-tag) that has an affinity to phosphate groups with a chelated Zn2+ ion. This rapid profiling approach for phosphoproteins combines chemical inkjet technology for microdispensing of reagents onto a tiny region of target proteins with mass spectrometry for on-membrane digested peptides. Using this method, we analyzed human epidermoid carcinoma cell lysates of A-431 cells stimulated with epidermal growth factor, and identified six proteins with intense signals upon affinity staining with the phosphate-binding tag. It was already known that these proteins are phosphorylated, and our new approach proved to be effective at rapid profiling of phosphoproteins. Furthermore, we tried to determine their phosphorylation sites by MS/MS analysis after in-gel digestion of the corresponding spots on the 2DE gel to the rapid on-membrane identifications. As one example of use of information gained from the rapid-profiling approach, we successfully characterized a phosphorylation site at Ser-113 on prostaglandin E synthase 3.  相似文献   

16.
Like other types of plastids, chromoplasts have essential biosynthetic and metabolic activities which may be regulated via post‐translational modifications, such as phosphorylation, of their resident proteins. We here report a proteome‐wide mapping of in vivo phosphorylation sites in chromoplast‐enriched samples prepared from sweet orange [Citrus sinensis (L.) Osbeck] at different ripening stages by titanium dioxide‐based affinity chromatography for phosphoprotein enrichment with LC‐MS/MS. A total of 109 plastid‐localized phosphoprotein candidates were identified that correspond to 179 unique phosphorylation sites in 135 phosphopeptides. On the basis of Motif‐X analysis, two distinct types of phosphorylation sites, one as proline‐directed phosphorylation motif and the other as casein kinase II motif, can be generalized from these identified phosphopeptides. While most identified phosphoproteins show high homology to those already identified in plastids, approximately 22% of them are novel based on BLAST search using the public databases PhosPhAt and P3DB. A close comparative analysis showed that approximately 50% of the phosphoproteins identified in citrus chromoplasts find obvious counterparts in the chloroplast phosphoproteome, suggesting a rather high‐level of conservation in basic metabolic activities in these two types of plastids. Not surprisingly, the phosphoproteome of citrus chromoplasts is also characterized by the lack of phosphoproteins involved in photosynthesis and by the presence of more phosphoproteins implicated in stress/redox responses. This study presents the first comprehensive phosphoproteomic analysis of chromoplasts and may help to understand how phosphorylation regulates differentiation of citrus chromoplasts during fruit ripening.  相似文献   

17.
The transition between the quiescent mature and the metabolically active germinating pollen grain most probably involves changes in protein phosphorylation status, since phosphorylation has been implicated in the regulation of many cellular processes. Given that, only a minor proportion of cellular proteins are phosphorylated at any one time, and that phosphorylated and nonphosphorylated forms of many proteins can co‐exist within a cell, the identification of phosphoproteins requires some prior enrichment from a crude protein extract. Here, we have used metal oxide/hydroxide affinity chromatography (MOAC) based on an aluminum hydroxide matrix for this purpose, and have generated a population of phosphoprotein candidates from both mature and in vitro activated tobacco pollen grains. Both electrophoretic and nonelectrophoretic methods, allied to MS, were applied to these extracts to identify a set of 139 phosphoprotein candidates. In vitro phosphorylation was also used to validate the spectrum of phosphoprotein candidates obtained by the MOAC phosphoprotein enrichment. Since only one phosphorylation site was detected by the above approach, titanium dioxide phosphopeptide enrichment of trypsinized mature pollen crude extract was performed as well. It resulted in a detection of additional 51 phosphorylation sites giving a total of 52 identified phosphosites in this set of 139 phosphoprotein candidates.  相似文献   

18.
Human pathogenic protozoa of the genus Leishmania undergo various developmental transitions during the infectious cycle that are triggered by changes in the host environment. How these parasites sense, transduce, and respond to these signals is only poorly understood. Here we used phosphoproteomic approaches to monitor signaling events in L. donovani axenic amastigotes, which may be important for intracellular parasite survival. LC-ESI-MS/MS analysis of IMAC-enriched phosphoprotein extracts identified 445 putative phosphoproteins in two independent biological experiments. Functional enrichment analysis allowed us to gain insight into parasite pathways that are regulated by protein phosphorylation and revealed significant enrichment in our data set of proteins whose biological functions are associated with protein turn-over, stress response, and signal transduction. LC-ESI-MS/MS analysis of TiO(2)-enriched phosphopeptides confirmed these results and identified 157 unique phosphopeptides covering 181 unique phosphorylation sites in 126 distinct proteins. Investigation of phosphorylation site conservation across related trypanosomatids and higher eukaryotes by multiple sequence alignment and cluster analysis revealed L. donovani-specific phosphoresidues in highly conserved proteins that share significant sequence homology to orthologs of the human host. These unique phosphorylation sites reveal important differences between host and parasite biology and post-translational protein regulation, which may be exploited for the design of novel anti-parasitic interventions.  相似文献   

19.
IMAC in combination with mass spectrometry is a promising approach for global analysis of protein phosphorylation. Nevertheless this approach suffers from two shortcomings: inadequate efficiency of IMAC and poor fragmentation of phosphopeptides in the mass spectrometer. Here we report optimization of the IMAC procedure using (32)P-labeled tryptic peptides and development of MS/MS/MS (MS3) for identifying phosphopeptide sequences and phosphorylation sites. The improved IMAC method allowed recovery of phosphorylated tryptic peptides up to approximately 77% with only minor retention of unphosphorylated peptides. MS3 led to efficient fragmentation of the peptide backbone in phosphopeptides for sequence assignment. Proteomics of mitochondrial phosphoproteins using the resulting IMAC protocol and MS3 revealed 84 phosphorylation sites in 62 proteins, most of which have not been reported before. These results revealed diverse phosphorylation pathways involved in the regulation of mitochondrial functions. Integration of the optimized batchwise IMAC protocol with MS3 offers a relatively simple and more efficient approach for proteomics of protein phosphorylation.  相似文献   

20.
Protein phosphorylation plays a critical role in normal cellular function and is often subverted in disease. Although major advances have recently been made in identification and quantitation of protein phosphorylation sites by MS, current methodological limitations still preclude routine, easily usable, and comprehensive quantitative analysis of protein phosphorylation. Here we report a simple LC-MS method to quantify gel-separated proteins and their sites of phosphorylation; in this approach, integrated chromatographic peak areas of peptide analytes from proteins under study are normalized to those of a non-isotopically labeled internal standard protein spiked into the excised gel samples just prior to in-gel digestion. The internal standard intensities correct for differences in enzymatic activities and sample losses that may occur during the processes of in-gel digestion and peptide extraction from the gel pieces. We used this method of peak area measurement with an internal standard to investigate the effects of pervanadate on protein phosphorylation in the WEHI-231 B cell lymphoma cell line and to assess the role of phosphoinositide 3-kinase (PI3K) in these phosphorylation events. Phosphoproteins, isolated from total cell lysates using IMAC or by immunoprecipitation using Tyr(P) antibodies, were analyzed using this method, leading to identification of >400 proteins, several of which were found at higher levels in phosphoprotein fractions after pervanadate treatment. Pretreatment of cells with the PI3K inhibitor wortmannin reduced the phosphorylation level of certain proteins (e.g. STAT1 and phospholipase Cgamma2) while increasing the phosphorylation of several others. Peak area measurement with an internal standard was also used to follow the dynamics of PI3K-dependent and -independent changes in the post-translational modification of both known and novel phospholipase Cgamma2 phosphorylation sites. Our results illustrate the capacity of this conceptually simple LC-MS method for quantification of gel-separated proteins and their phosphorylation sites and for quantitative profiling of biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号