首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the Ikappa B-kinase NEMO binding domain   总被引:5,自引:0,他引:5  
Proinflammatory activation of NF-kappaB requires an upstream kinase complex (IkappaB-kinase; IKK) composed of two catalytic subunits (IKKalpha and IKKbeta) and a noncatalytic regulatory component named NEMO (NF-kappaB essential modulator). NEMO interacts with a COOH-terminal sequence within both IKKs termed the NEMO-binding domain (NBD), and a cell-permeable NBD peptide blocks NEMO/IKKbeta interactions and inhibits tumor necrosis factor-alpha-induced NF-kappaB. We report here that a peptide encompassing the NBD not only blocked association of both IKKs with NEMO but also disrupted preformed NEMO/IKK complexes in vitro. Furthermore, peptide blocking and alanine-scanning mutation studies revealed differences between the NBDs of IKKalpha and IKKbeta, and mutational analysis of the IKKbeta NBD identified the physical properties required at each position to maintain association with NEMO. Finally, we demonstrate that loss of NEMO-binding by IKKbeta through deletion of the NBD renders it catalytically active and that potential phosphorylation within the IKKbeta NBD may serve as a signal to down-regulate IKK activity. Our findings therefore provide critical insight into the physical properties of the NBD that will be valuable for the design of drugs aimed at disrupting the IKK complex and also reveal potential regulatory mechanisms controlling the function of the IKK complex.  相似文献   

2.
Activation of NF-kappaB by the pro-inflammatory cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1) requires the IkappaB kinase (IKK) complex, which contains two kinases named IKKalpha and IKKbeta and a critical regulatory subunit named NEMO. Although we have previously demonstrated that NEMO associates with both IKKs, genetic studies reveal that only its interaction with IKKbeta is required for TNF-induced NF-kappaB activation. To determine whether NEMO and IKKalpha can form a functional IKK complex capable of activating the classical NF-kappaB pathway in the absence of IKKbeta, we utilized a panel of mouse embryonic fibroblasts (MEFs) lacking each of the IKK complex subunits. This confirmed that TNF-induced IkappaBalpha degradation absolutely requires NEMO and IKKbeta. In contrast, we consistently observed intact IkappaBalpha degradation and NF-kappaB activation in response to IL-1 in two separate cell lines lacking IKKbeta. Furthermore, exogenously expressed, catalytically inactive IKKbeta blocked TNF- but not IL-1-induced IkappaBalpha degradation in wild-type MEFs, and reconstitution of IKKalpha/beta double knockout cells with IKKalpha rescued IL-1- but not TNF-induced NF-kappaB activation. Finally, we have shown that incubation of IKKbeta-deficient MEFs with a cell-permeable peptide that blocks the interaction of NEMO with the IKKs inhibits IL-1-induced NF-kappaB activation. Our results therefore demonstrate that NEMO and IKKalpha can form a functional IKK complex that activates the classical NF-kappaB pathway in response to IL-1 but not TNF. These findings further suggest NEMO differentially regulates the fidelity of the IKK subunits activated by distinct upstream signaling pathways.  相似文献   

3.
Lo YC  Maddineni U  Chung JY  Rich RL  Myszka DG  Wu H 《Biochemistry》2008,47(10):3109-3116
The Ser/Thr-specific IkappaB kinase (IKK), which comprises IKKalpha or IKKbeta and the regulatory protein NEMO, is at the bottleneck for NF-kappaB activation. IKK activity relies on interaction between NEMO and IKKalpha or IKKbeta. A conserved region in the C-terminal tail of IKKbeta or IKKalpha (NEMO-binding domain, NBD, residues 734-745 of IKKbeta) is important for interaction with NEMO. Here we show that the NBD peptide of IKKbeta is not sufficient for interaction with NEMO. Instead, a longer region of the IKKbeta C-terminal region provides high affinity for NEMO. Quantitative measurements using surface plasmon resonance and isothermal titration calorimetry confirm the differential affinities of these interactions and provide insight into the kinetic and thermodynamic behaviors of the interactions. Biochemical characterization using multiangle light scattering (MALS) coupled with refractive index shows that the longer IKKbeta C-terminal region forms a 2:2 stoichiometirc complex with NEMO.  相似文献   

4.
5.
Previous studies have demonstrated that peptides corresponding to a six-amino-acid NEMO-binding domain from the C terminus of IkappaB kinase alpha (IKKalpha) and IKKbeta can disrupt the IKK complex and block NF-kappaB activation. We have now mapped and characterized the corresponding amino-terminal IKK-binding domain (IBD) of NEMO. Peptides corresponding to the IBD were efficiently recruited to the IKK complex but displayed only a weak inhibitory potential on cytokine-induced NF-kappaB activity. This is most likely due to the formation of sodium dodecyl sulfate- and urea-resistant NEMO dimers through a dimerization domain at the amino terminus of NEMO that overlaps with the region responsible for binding to IKKs. Mutational analysis revealed different alpha-helical subdomains within an amino-terminal coiled-coil region are important for NEMO dimerization and IKKbeta binding. Furthermore, NEMO dimerization is required for the tumor necrosis factor alpha-induced NF-kappaB activation, even when interaction with the IKKs is unaffected. Hence, our data provide novel insights into the role of the amino terminus of NEMO for the architecture of the IKK complex and its activation.  相似文献   

6.
The IkappaB kinase (IKK) complex includes the catalytic components IKKalpha and IKKbeta in addition to the scaffold protein IKKgamma/NEMO. Increases in the activity of the IKK complex result in the phosphorylation and subsequent degradation of IkappaB and the activation of the NF-kappaB pathway. Recent data indicate that the constitutive activation of the NF-kappaB pathway by the human T-cell lymphotrophic virus, type I, Tax protein leads to enhanced phosphorylation of IKKgamma/NEMO by IKKbeta. To address further the significance of IKKbeta-mediated phosphorylation of IKKgamma/NEMO, we determined the sites in IKKgamma/NEMO that were phosphorylated by IKKbeta, and we assayed whether IKKgamma/NEMO phosphorylation was involved in modulating IKKbeta activity. IKKgamma/NEMO is rapidly phosphorylated following treatment of cells with stimuli such as tumor necrosis factor-alpha and interleukin-1 that activate the NF-kappaB pathway. By using both in vitro and in vivo assays, IKKbeta was found to phosphorylate IKKgamma/NEMO predominantly in its carboxyl terminus on serine residue 369 in addition to sites in the central region of this protein. Surprisingly, mutation of these carboxyl-terminal serine residues increased the ability of IKKgamma/NEMO to stimulate IKKbeta kinase activity. These results indicate that the differential phosphorylation of IKKgamma/NEMO by IKKbeta and perhaps other kinases may be important in regulating IKK activity.  相似文献   

7.
NF-kappaB essential modulator (NEMO) plays an essential role in the nuclear factor kappaB (NF-kappaB) pathway as a modulator of the two other subunits of the IkappaB kinase (IKK) complex, i.e. the protein kinases, IKKalpha and IKKbeta. Previous reports all envision the IKK complex to be a static entity. Using glycerol-gradient ultracentrifugation, we observed stimulus-dependent dynamic IKK complex assembly. In wild-type fibroblasts, the kinases and a portion of cellular NEMO associate in a 350-kDa high-molecular-mass complex. In response to constitutive NF-kappaB stimulation by Tax, we observed NEMO recruitment and oligomerization to a shifted high-molecular-mass complex of 440 kDa which displayed increased IKK activity. This stimulus-dependent oligomerization of NEMO was also observed using fluorescence resonance energy transfer after a transient pulse with interleukin-1beta. In addition, fully activated, dimeric kinases not bound to NEMO were detected in these Tax-activated fibroblasts. By glycerol gradient ultracentrifugation, we also showed that: (a) in fibroblasts deficient in IKKalpha and IKKbeta, NEMO predominantly exists as a monomer; (b) in NEMO-deficient fibroblasts, IKKbeta dimers are present that are less stable than IKKalpha dimers. Intriguingly, in resting Rat-1 fibroblasts, 160-kDa IKKalpha-NEMO and IKKbeta-NEMO heterocomplexes were observed as well as a significant proportion of NEMO monomer. These results suggest that most NEMO molecules do not form a tripartite IKK complex with an IKKalpha-IKKbeta heterodimer as previously reported in the literature but, instead, NEMO is able to form a complex with the monomeric forms of IKKalpha and IKKbeta.  相似文献   

8.
Cytokine treatment stimulates the IkappaB kinases, IKKalpha and IKKbeta, which phosphorylate the IkappaB proteins, leading to their degradation and activation of NF-kappaB regulated genes. A clear definition of the specific roles of IKKalpha and IKKbeta in activating the NF-kappaB pathway and the upstream kinases that regulate IKK activity remain to be elucidated. Here, we utilized small interfering RNAs (siRNAs) directed against IKKalpha, IKKbeta and the upstream regulatory kinase TAK1 in order to better define their roles in cytokine-induced activation of the NF-kappaB pathway. In contrast to previous results with mouse embryo fibroblasts lacking either IKKalpha or IKKbeta, which indicated that only IKKbeta is involved in cytokine-induced NF-kappaB activation, we found that both IKKalpha and IKKbeta were important in activating the NF-kappaB pathway. Furthermore, we found that the MAP3K TAK1, which has been implicated in IL-1-induced activation of the NF-kappaB pathway, was also critical for TNFalpha-induced activation of the NF-kappaB pathway. TNFalpha activation of the NF-kappaB pathway is associated with the inducible binding of TAK1 to TRAF2 and both IKKalpha and IKKbeta. This analysis further defines the distinct in vivo roles of IKKalpha, IKKbeta and TAK1 in cytokine-induced activation of the NF-kappaB pathway.  相似文献   

9.
10.
11.
IKKgamma/NEMO is a protein that is critical for the assembly of the high molecular weight IkappaB kinase (IKK) complex. To investigate the role of IKKgamma/NEMO in the assembly of the IKK complex, we conducted a series of experiments in which the chromatographic distribution of extracts prepared from cells transiently expressing epitope-tagged IKKgamma/NEMO and the IKKs were examined. When expressed alone following transfection, IKKalpha and IKKbeta were present in low molecular weight complexes migrating between 200 and 400 kDa. However, when coexpressed with IKKgamma/NEMO, both IKKalpha and IKKbeta migrated at approximately 600 kDa which was similar to the previously described IKK complex that is activated by cytokines such as tumor necrosis factor-alpha. When either IKKalpha or IKKbeta was expressed alone with IKKgamma/NEMO, IKKbeta but not IKKalpha migrated in the higher molecular weight IKK complex. Constitutively active or inactive forms of IKKbeta were both incorporated into the high molecular weight IKK complex in the presence of IKKgamma/NEMO. The amino-terminal region of IKKgamma/NEMO, which interacts directly with IKKbeta, was required for formation of the high molecular weight IKK complex and for stimulation of IKKbeta kinase activity. These results suggest that recruitment of the IKKs into a high molecular complex by IKKgamma/NEMO is a crucial step involved in IKK function.  相似文献   

12.
13.
14.
15.
Chen G  Cao P  Goeddel DV 《Molecular cell》2002,9(2):401-410
The IKK complex, containing two catalytic subunits IKKalpha and IKKbeta and a regulatory subunit NEMO, plays central roles in signal-dependent activation of NF-kappaB. We identify Cdc37 and Hsp90 as two additional components of the IKK complex. IKKalpha/IKKbeta/NEMO and Cdc37/Hsp90 form an approximately 900 kDa heterocomplex, which is assembled via direct interactions of Cdc37 with Hsp90 and with the kinase domain of IKKalpha/IKKbeta. Geldanamycin (GA), an antitumor agent that disrupts the formation of this heterocomplex, prevents TNF-induced activation of IKK and NF-kappaB. GA treatment reduces the size of the IKK complex and abolishes TNF-dependent recruitment of the IKK complex to TNF receptor 1 (TNF-R1). Therefore, heterocomplex formation with Cdc37/Hsp90 is a prerequisite for TNF-induced activation and trafficking of IKK from the cytoplasm to the membrane.  相似文献   

16.
The Nuclear factor (NF)-kappaB signalling pathway plays a critical role in the regulation and coordination of a wide range of cellular events such as cell growth, apoptosis and cell differentiation. Activation of the IKK (inhibitor of NF-kappaB kinase) complex is a crucial step and a point of convergence of all known NF-kappaB signalling pathways. To analyse bovine IKKalpha (IKK1), IKKbeta (IKK2) and IKKgamma (or NF-kappaB Essential MOdulator, NEMO) and their substrate IkappaBalpha (Inhibitor of NF-kappaB), the corresponding cDNAs of these molecules were isolated, sequenced and characterized. A comparison of the amino acid sequences with those of their orthologues in other species showed a very high degree of identity, suggesting that the IKK complex and its substrate IkappaBalpha are evolutionarily highly conserved components of the NF-kappaB pathway. Bovine IKKalpha and IKKbeta are related protein kinases showing 50% identity which is especially prominent in the kinase and leucine zipper domains. Co-immunoprecipitation assays and GST-pull-down experiments were carried out to determine the composition of bovine IKK complexes compared to that in human Jurkat T cells. Using these approaches, the presence of bovine IKK complexes harbouring IKKalpha, IKKbeta, NEMO and the interaction of IKK with its substrate IkappaBalpha could be demonstrated. Parallel experiments using human Jurkat T cells confirmed the high degree of conservation also at the level of protein-protein interactions. Finally, a yeast two-hybrid analysis showed that bovine NEMO molecules, in addition to the binding to IKKalpha and IKKbeta, also strongly interact with each other.  相似文献   

17.
Inflammatory mediators such as TNF-alpha, IL-6, and IL-1 are important in the pathogenesis of inflammatory bowel diseases and are regulated by the activation of NF-kappaB. The aim of the present study was to investigate whether the NF-kappaB essential modulator (NEMO)-binding domain (NBD) peptide, which has been shown to block the association of NEMO with the IkappaB kinasebeta subunit (IKKbeta) and inhibit NF-kappaB activity, reduces inflammatory injury in mice with colitis. Two colitis models were established by the following: 1) inclusion of dextran sulfate sodium salt (DSS) in the drinking water of the mice; and 2) a trinitrobenzene sulfonic acid enema. Marked NF-kappaB activation and expression of proinflammatory cytokines were observed in colonic tissues. The NBD peptide ameliorated colonic inflammatory injury through the down-regulation of proinflammatory cytokines mediated by NF-kappaB inhibition in both models. These results indicate that an IKKbeta-targeted NF-kappaB blockade using the NBD peptide could be an attractive therapeutic approach for inflammatory bowel disease.  相似文献   

18.
IkappaB kinase-1 and IkappaB kinase-2 (IKK1 and IKK2; also called IKKalpha and IKKbeta, respectively) are part of the signal complex that regulates NF-kappaB activity in many cell types, including fibroblast-like synoviocytes (FLS). We determined which of these two kinases is responsible for cytokine-induced NF-kappaB activation in synoviocytes and assessed the functional consequences of IKK1 or IKK2 overexpression and inhibition. FLS were infected with adenovirus constructs encoding either wild-type (wt) IKK1 or IKK2, the dominant negative (dn) mutant of both kinases, or a control construct encoding green fluorescence protein. Analysis of the NF-kappaB pathway revealed that cytokine-induced IKK activation, IkappaB degradation, and NF-kappaB activation was prevented in cells expressing the IKK2 dn mutant, whereas baseline NF-kappaB activity was increased by IKK2 wt. In addition, synthesis of IL-6 and IL-8, as well as expression of ICAM-1 and collagenase, was only increased by IKK2 wt, and their cytokine-induced production was abrogated by IKK2 dn mutant. However, the IKK1 dn mutant did not inhibit cytokine-mediated activation of NF-kappaB or any of the functional assays. These data indicate that IKK2 is the key convergence pathway for cytokine-induced NF-kappaB activation. Furthermore, IKK2 regulates adhesion molecule, matrix metalloproteinase, and cytokine production in FLS.  相似文献   

19.
The IkappaB kinase (IKK) complex serves as the master regulator for the activation of NF-kappaB by various stimuli. It contains two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, IKKgamma/NEMO. The activation of IKK complex is dependent on the phosphorylation of IKKalpha/beta at its activation loop and the K63-linked ubiquitination of NEMO. However, the molecular mechanism by which these inducible modifications occur remains undefined. Here, we demonstrate that CARMA1, a key scaffold molecule, is essential to regulate NEMO ubiquitination upon T-cell receptor (TCR) stimulation. However, the phosphorylation of IKKalpha/beta activation loop is independent of CARMA1 or NEMO ubiquitination. Further, we provide evidence that TAK1 is activated and recruited to the synapses in a CARMA1-independent manner and mediate IKKalpha/beta phosphorylation. Thus, our study provides the biochemical and genetic evidence that phosphorylation of IKKalpha/beta and ubiquitination of NEMO are regulated by two distinct pathways upon TCR stimulation.  相似文献   

20.
IKKgamma/NEMO is an essential regulatory component of the IkappaB kinase complex that is required for NF-kappaB activation in response to various stimuli including tumor necrosis factor-alpha and interleukin-1beta. To investigate the mechanism by which IKKgamma/NEMO regulates the IKK complex, we examined the ability of IKKgamma/NEMO to recruit the IkappaB proteins into this complex. IKKgamma/NEMO binding to wild-type, but not to a kinase-deficient IKKbeta protein, facilitated the association of IkappaBalpha and IkappaBbeta with the high molecular weight IKK complex. Following tumor necrosis factor-alpha treatment of HeLa cells, the majority of the phosphorylated form of endogenous IkappaBalpha was associated with the high molecular weight IKK complex in HeLa cells and parental mouse embryo fibroblasts but not in IKKgamma/NEMO-deficient cells. Finally, we demonstrate that IKKgamma/NEMO facilitates the association of the IkappaB proteins and IKKbeta and leads to increases in IKKbeta kinase activity. These results suggest that an important function of IKKgamma/NEMO is to facilitate the association of both IKKbeta and IkappaB in the high molecular weight IKK complex to increase IkappaB phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号