首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interfacial chemistry between lithium metal anodes and electrolytes plays a vital role in regulating the Li plating/stripping behavior and improving the cycling performance of Li metal batteries. Constructing a stable solid electrolyte interphase (SEI) on Li metal anodes is now understood to be a requirement for progress in achieving feasible Li‐metal batteries. Recently, the application of novel analytical tools has led to a clearer understanding of composition and the fine structure of the SEI. This further promoted the development of interface engineering for stable Li metal anodes. In this review, the SEI formation mechanism, conceptual models, and the nature of the SEI are briefly summarized. Recent progress in probing the atomic structure of the SEI and elucidating the fundamental effect of interfacial stability on battery performance are emphasized. Multiple factors including current density, mechanical strength, operating temperature, and structure/composition homogeneity that affect the interfacial properties are comprehensively discussed. Moreover, strategies for designing stable Li‐metal/electrolyte interfaces are also reviewed. Finally, new insights and future directions associated with Li‐metal anode interfaces are proposed to inspire more revolutionary solutions toward commercialization of Li metal batteries.  相似文献   

2.
The solid electrolyte interphase (SEI) spontaneously formed on anode surfaces as a passivation layer plays a critical role in the lithium dissolution and deposition upon discharge/charge in lithium ion batteries and lithium‐metal batteries. The formation kinetics and failure of the SEI films are the key factors determining the safety, power capability, and cycle life of lithium ion and lithium‐metal batteries. Since SEI films evolve with the volumetric and interfacial changes of anodes, it is technically challenging in experimental study of SEI kinetics. Here operando observations are reported of SEI formation, growth, and failure at a high current density by utilizing a mass‐sensitive Cs‐corrected scanning transmission electron microscopy. The sub‐nano‐scale observations reveal a bilayer hybrid structure of SEI films and demonstrate the radical assisted SEI growth after the SEI thickness beyond the electron tunneling regime. The failure of SEI films is associated with rapid dissolution of inorganic layers when they directly contact with the electrolyte in broken SEI films. The initiation of cracks in SEI films is caused by heterogeneous volume changes of the electrodes during delithiation. These microscopic insights have important implications in understanding SEI kinetics and in developing high‐performance anodes with the formation of robust SEI films.  相似文献   

3.
Use of a protective coating on a lithium metal anode (LMA) is an effective approach to enhance its coulombic efficiency and cycling stability. Here, a facile approach to produce uniform silver nanoparticle‐decorated LMA for high‐performance Li metal batteries (LMBs) is reported. This effective treatment can lead to well‐controlled nucleation and the formation of a stable solid electrolyte interphase (SEI). Ag nanoparticles embedded in the surface of Li anodes induce uniform Li plating/stripping morphologies with reduced overpotential. More importantly, cross‐linked lithium fluoride‐rich interphase formed during Ag+ reduction enables a highly stable SEI layer. Based on the Ag‐LiF decorated anodes, LMBs with LiNi1/3Mn1/3Co1/3O2 cathode (≈1.8 mAh cm?2) can retain >80% capacity over 500 cycles. The similar approach can also be used to treat sodium metal anodes. Excellent stability (80% capacity retention in 10 000 cycles) is obtained for a Na||Na3V2(PO4)3 full cell using a Na‐Ag‐NaF/Na anode cycled in carbonate electrolyte. These results clearly indicate that synergetic control of the nucleation and SEI is an efficient approach to stabilize rechargeable metal batteries.  相似文献   

4.
Lithium metal anodes are expected to drive practical applications that require high energy‐density storage. However, the direct use of metallic lithium causes safety concerns, low rate capabilities, and poor cycling performance due to unstable solid electrolyte interphase (SEI) and undesired lithium dendrite growth. To address these issues, a radio frequency sputtered graphite‐SiO2 ultrathin bilayer on a Li metal chips is demonstrated, for the first time, as an effective SEI layer. This leads to a dendrite free uniform Li deposition to achieve a stable voltage profile and outstanding long hours plating/stripping compared to the bare Li. Compared to a bare Li anode, the graphite‐SiO2 bilayer modified Li anode coupled with lithium nickel cobalt manganese oxide cathode (NMC111) and lithium titanate shows improved capacity retention, higher capacity at higher rates, longer cycling stability, and lower voltage hysteresis. Graphite acts as an electrical bridge between the plated Li and Li electrode, which lowers the impedance and buffers the volume expansion during Li plating/stripping. Adding an ultrathin SiO2 layer facilitates Li‐ion diffusion and lithiation/delithiation, provides higher electrolyte affinity, higher chemical stability, and higher Young's modulus to suppress the Li dendrite growth.  相似文献   

5.
Li metal, which has a high theoretical specific capacity and low redox potential, is considered to the most promising anode material for next‐generation Li ion‐based batteries. However, it also exhibits a disadvantageous solid electrolyte interphase (SEI) layer problem that needs to be resolved. Herein, an advanced separator composed of reduced graphene oxide fiber attached to aramid paper (rGOF‐A) is introduced. When rGOF‐A is applied, F? anions, generated from the decomposition of the LiPF6 electrolyte during the SEI layer formation process form semi‐ionic C? F bonds along the surface of rGOF. As Li+ ions are plated, the “F‐doped” rGO surface induces the formation of LiF, which is known as a component of a chemically stable SEI, therefore it helps the Li metal anode to operate stably at a high current of 20 mA cm?2 with a high capacity of 20 mAh cm?2. The proposed rGOF‐A separator successfully achieves a stable SEI layer that could resolve the interfacial issues of the Li metal anode.  相似文献   

6.
Due to high ionic conductivity and low cost, Li1.4Al0.4Ti1.6(PO4)3 (LATP) has emerged as a promising solid‐state electrolyte for next‐generation lithium (Li) metal solid‐state batterie with high safety performance and energy density. However, the extremely high impedance and surface instability of LATP with Li metal retard its practical application. Herein, a novel method is proposed to construct an ultrathin ZnO layer that is tightly coated on the LATP pellets, surface (ZnO@LATP) via magnetron sputtering, which in situ reacts with Li to form a low electronic conductivity and multifunctional solid electrolyte interphase (SEI). The formed SEI can not only effectively lower the interfacial resistance, but also overcome the side reactions of LATP with the Li metal anode and suppress the Li dendrite growth. Specifically, the interface resistance decreases from 80 554 to 353 Ω and the overpotential reduces from 1 V to 20 mV. As a result, the Li/ZnO@LATP@ZnO/Li symmetric batteries can stably cycle for more than 2000 h without short circuit at 0.05 mA cm?2 and Li/ZnO@LATP/LiFePO4 batteries show excellent cycle stability for 200 cycles at 0.1 C. This work highlights the significance of multifunctional interphase between LATP and Li metal for improvement of interfacial impedance and instability.  相似文献   

7.
Improving the performance of Li metal anodes is a critical bottleneck to enable next‐generation battery systems beyond Li‐ion. However, stability issues originating from undesirable electrode/electrolyte interactions and Li dendrite formation have impaired long‐term cycling of Li metal anodes. Herein, a bottom‐up fabrication process is demonstrated for a current collector for Li metal electrodeposition and dissolution composed of highly uniform vertically aligned Cu pillars. By rationally controlling geometric parameters of the 3D current collector architecture, including pillar diameter, spacing, and length, the morphology of Li plating/stripping upon cycling can be controlled and optimal cycling performance can be achieved. In addition, it is demonstrated that deposition of an ultrathin layer of ZnO by atomic layer deposition on the current collector surface can facilitate the initial Li nucleation, which dictates the morphology and reversibility of subsequent cycling. This core–shell pillar architecture allows for the effects of geometry and surface chemistry to be decoupled and individually controlled to optimize the electrode performance in a synergistic manner. Using this platform, Li metal anodes are demonstrated with Coulombic efficiency up to 99.5%, providing a pathway toward high‐efficiency and long‐cycle life Li metal batteries with reduced excess Li loading.  相似文献   

8.
Secondary batteries based on earth‐abundant potassium metal anodes are attractive for stationary energy storage. However, suppressing the formation of potassium metal dendrites during cycling is pivotal in the development of future potassium metal‐based battery technology. Herein, a promising artificial solid‐electrolyte interphase (ASEI) design, simply covering a carbon nanotube (CNT) film on the surface of a potassium metal anode, is demonstrated. The results show that the spontaneously potassiated CNT framework with a stable self‐formed solid‐electrolyte interphase layer integrates a quasi‐hosting feature with fast interfacial ion transport, which enables dendrite‐free deposition of potassium at an ultrahigh capacity (20 mAh cm?2). Remarkably, the potassium metal anode exhibits an unprecedented cycle life (over 1000 cycles, over 2000 h) at a high current density of 5 mA cm?2 and a desirable areal capacity of 4 mAh cm?2. Dendrite‐free morphology in carbon‐fiber and carbon‐black‐based ASEI for potassium metal anodes, which indicates a broader promise of this approach, is also observed.  相似文献   

9.
Although the “water‐in‐salt” electrolyte has significantly expanded the electrochemical stability window of aqueous electrolytes from 1.23 to 3 V, its inevitable hydrogen evolution under 1.9 V versus Li+/Li prevents the practical use of many energy‐dense anodes. Meanwhile, its liquidus temperature at 17 °C restricts its application below ambient temperatures. An advanced hybrid electrolyte is proposed in this work by introducing acetonitrile (AN) as co‐solvent, which minimizes the presence of interfacial water at the negatively charged electrode surface, and generates a thin and uniform interphase consisting of an organic outer layer based on nitrile (C?N) and sulfamide (R‐S‐N‐S) species and an inner layer rich in LiF. Such an interphase significantly suppresses water reduction and expands the electrochemical stability window to an unprecedented width of 4.5 V. Thanks to the low freezing point (?48 °C) and low viscosity of AN, the hybrid electrolyte is highly conductive in a wide temperature range, and enables a LiMn2O4/Li4Ti5O12 full cell at both ambient and sub‐ambient temperatures with excellent cycling stability and rate capability. Meanwhile, such a hybrid electrolyte also inherits the nonflammable nature of aqueous electrolyte. The well‐balanced merits of the developed electrolyte make it suitable for high energy density aqueous batteries.  相似文献   

10.
Solid polymer electrolytes (SPEs) are considered to be the key to solve the safety hazards and cycling performance of liquid high‐voltage lithium metal batteries (HVLMBs), but still suffer from low conductivity and poor interfacial compatibility. Here, polyvinylidene fluoride–polyvinyl acetate‐based (PVDF–PVAC) rigid–flexible coupling SPE selectively wetted by a tetramethylene sulfone (TMS) is prepared for high‐performance and superior‐safety HVLMBs. The intermolecular interactions in such SPE significantly facilitate lithium‐ion conductivity and electrolyte/electrode interface wettability. Moreover, PVAC selectively wetted with the TMS enhances interface compatibility with Li anodes and high‐voltage LiCoO2 cathodes. As a result, the as‐assembled LiCoO2/lithium‐metal solid‐state batteries present excellent cyclability with 85% capacity retention after 200 cycles between 3.0 and 4.5 V at room temperature. Furthermore, pouch cells with the as‐prepared SPE exhibit brilliant safety and superior interfacial compatibility. This study offers a promising and general selectively wetted design strategy to handle the compatibility and safety issues in HVLMBs.  相似文献   

11.
Lithium (Li) metal is a key anode material for constructing next generation high energy density batteries. However, dendritic Li deposition and unstable solid electrolyte interphase (SEI) layers still prevent practical application of Li metal anodes. In this work, it is demonstrated that an uniform Li coating can be achieved in a lithium fluoride (LiF) decorated layered structure of stacked graphene (SG), leading to the formation of an SEI‐functionalized membrane that retards electron transfer by three orders of magnitude to avoid undesirable Li deposition on the top surface, and ameliorates Li+ ion migration to enable uniform and dendrite‐free Li deposition beneath such an interlayer. Surface chemistry analysis and density functional theory calculations demonstrate that these beneficial features arise from the formation of C–Fx surface components on the SG sheets during the Li coating process. Based on such an SEI‐functionalized membrane, stable cycling at high current densities up to 3 mA cm?2 and Li plating capacities up to 4 mAh cm?2 can be realized in LiPF6/carbonate electrolytes. This work elucidates the promising strategy of modifying Li plating behavior through the SEI‐functionalized carbon structure, with significantly improved cycling stability of rechargeable Li metal anodes.  相似文献   

12.
Uncontrolled dendrites resulting from nonuniform lithium (Li) nucleation/growth and Li volume expansion during charging cause serious safety problems for Li anode‐based batteries. Here the coating of nickel foam with graphitic carbon nitride (g‐C3N4) to have a 3D current collector (g‐C3N4@Ni foam) for dendrite‐free Li metal anodes is reported. The lithiophilic g‐C3N4 coupled with the 3D framework is demonstrated to be highly effective for promoting the uniform deposition of Li and suppressing the formation of dendrites. Both density functional theory calculations and experimental studies indicate the formation of a micro‐electric field resulting from the tri‐s‐triazine units of g‐C3N4, which induces numerous Li nuclei during the initial nucleation stage, effectively guiding the following Li growth on the 3D Ni foam to be well distributed. Furthermore, the 3D porous framework is favorable for absorbing any volume change and stabilizing the solid–electrolyte interphase layer during repeated Li plating/stripping. As such, a Li metal anode based on the g‐C3N4@Ni foam has a remarkable electrochemical performance with a high Coulombic efficiency (98% retention after 300 cycles), an ultralong lifespan up to 900 h, as well as a low overpotential (<15 mV at 1.0 mA cm?2) at a Li deposition of 9.0 mA h cm?2.  相似文献   

13.
The integration of highly conductive solid‐state electrolytes (SSEs) into solid‐state cells is still a challenge mainly due to the high impedance existing at the electrolyte/electrode interface. Although solid‐state garnet‐based batteries have been successfully assembled with the assistance of an intermediate layer between the garnet and the Li metal anode, the slow discharging/charging rates of the batteries inhibits practical applications, which require much higher power densities. Here, a crystalline sulfonated‐covalent organic framework (COF) thin layer is grown on the garnet surface via a simple solution process. It not only significantly improves the lithiophilicity of garnet electrolytes via the lithiation of the COF layer with molten Li, but also creates effective Li+ diffusion “highways” between the garnet and the Li metal anode. As a result, the interfacial impedance of symmetric solid‐state Li cells is significantly decreased and the cells can be operated at high current densities up to 3 mA cm?2, which is difficult to achieve with current interfacial modification technologies for SSEs. The solid‐state Li‐ion batteries using LiFePO4 cathodes, Li anodes, and COF‐modified garnet electrolytes thus exhibit a significantly improved rate capability.  相似文献   

14.
Research activities related to the development of negative electrodes for construction of high‐performance Li‐ion batteries (LIBs) with conventional cathodes such as LiCoO2, LiFePO4, and LiMn2O4 are described. The anode materials are classified in to three main categories, insertion, conversion, and alloying type, based on their reactivity with Li. Although numerous materials have been proposed (i.e., for half‐cell assembly), few of them have reached commercial applications, apart from graphite, Li4Ti5O12, Si, and Sn‐Co‐C. This clearly demonstrates that full‐cell studies are desperately needed rather than just characterizing materials in half‐cell assemblies. Additionally, the performance of such anodes in practical Li‐ion configurations (full‐cell) is much more important than merely proposing materials for LIBs. Irreversible capacity loss, huge volume variation, unstable solid electrolyte interface layer formation, and poor cycleability are the main issues for conversion and alloy type anodes. This review addresses how best to circumvent the mentioned issues during the construction of Li‐ion cells and the future prospects of such anodes are described in detail.  相似文献   

15.
Various electrolyte additives are developed to construct a cathode electrolyte interphase (CEI) layer for high-voltage LiCoO2 since the cathode suffers severe interfacial degradation when increasing the cut-off voltage over 4.55 V. However, the CEI derived from the additive sacrificial reaction faces the risk of rupture due to the corrosion reaction and the volumetric variation of the cathode. Herein, a non-passivating cathode interface is realized for 4.6 V LiCoO2 with a non-sacrificial electrolyte additive (TBAClO4) by regulating the solvent environment at the interface rather than the preferential decomposition for CEI formation. Owing to the novel protection mechanism, the cell performance shows little dependence on the CEI-formation process. Therefore, an ultra-high initial coulombic efficiency (96.63%) and excellent cycling stability (81% capacity retention after 300 cycles) are achieved in Li||LiCoO2 batteries. Moreover, even with the electrolyte containing 1000 ppm H2O, the remarkable water capture ability of the additive together with its interfacial regulation enables the 4.6 V Li||LiCoO2 battery to retain 80% capacity after 200 cycles. This non-sacrificial strategy provides new insights into high-voltage electrolyte additive design for high-energy-density lithium metal batteries.  相似文献   

16.
Secondary batteries based on metal anodes (e.g., Li, Na, Mg, Zn, and Al) are among the most sought‐after candidates for next‐generation mobile and stationary storage systems because they are able to store a larger amount of energy per unit mass or volume. However, unstable electrodeposition and uncontrolled interfacial reactions occuring in liquid electrolytes cause unsatisfying cell performance and potential safety concerns for the commercial application of these metal anodes. Solid‐state electrolytes (SSEs) having a higher modulus are considered capable of inhibiting difficulties associated with the anodes and may enable building of safe all‐solid‐state metal batteries, yet several challenges, such as insufficient room‐temperature ionic conductivity and poor interfacial stability between the electrode and the electrolyte, hinder the large‐scale development of such batteries. Here, research and development of SSEs including inorganic ceramics, organic solid polymers, and organic–inorganic hybrid/composite materials for metal‐based batteries are reviewed. The comparison of different types of electrolytes is discussed in detail, in the context of electrochemical energy storage applications. Then, the focus of this study is on recent advances in a range of attractive and innovative battery chemistries and technologies that are enabled by SSEs. Finally, the challenges and future perspectives are outlined to foresee the development of SSEs.  相似文献   

17.
Since their commercialization by Sony in 1991, graphite anodes in combination with various cathodes have enabled the widespread success of lithium‐ion batteries (LIBs), providing over 10 billion rechargeable batteries to the global population. Next‐generation nonaqueous alkali metal‐ion batteries, namely sodium‐ion batteries (SIBs) and potassium‐ion batteries (PIBs), are projected to utilize intercalation‐based carbon anodes as well, due to their favorable electrochemical properties. While traditionally graphite anodes have dominated the market share of LIBs, other carbon materials have been investigated, including graphene, carbon nanotubes, and disordered carbons. The relationship between carbon material properties, electrochemical performance, and charge storage mechanisms is clarified for these alkali metal‐ion batteries, elucidating possible strategies for obtaining enhanced cycling stability, specific capacity, rate capability, and safety aspects. As a key component in determining cell performance, the solid electrolyte interphase layer is described in detail, particularly for its dependence on the carbon anode. Finally, battery safety at extreme temperatures is discussed, where carbon anodes are susceptible to dendrite formation, accelerated aging, and eventual thermal runaway. As society pushes toward higher energy density LIBs, this review aims to provide guidance toward the development of sustainable next‐generation SIBs and PIBs.  相似文献   

18.
Lithium metal batteries (LMBs) have attracted wide attention due to their high energy density. However, flammable organic carbonate electrolytes are associated with severe parasitic reactions and huge safety hazards for LMBs. Herein, a smart temperature‐responsive electrolyte is presented that demonstrates two distinct polymerization behaviors in LMBs. Through an anionic polymerization triggered by lithium metal, this electrolyte forms a favorable polymer protection layer on lithium anodes at ambient temperature, leading to a reversible Li plating/stripping behavior over 2000 h, and dendrite‐free morphology even under a current density of 10 mA cm?2. On suffering from thermal abuse, this electrolyte can be rapidly transformed from liquid into solid by a thermal free radical polymerization, thus realizing significant improvements in safety performance without internal short‐circuit failures thus achieving safe operation even at a temperature of 150 °C. It is noted that no thermal runway occurs even at an extremely high temperature of 280 °C. It is believed that this study not only offers new valuable insights in interfacial chemistry of electrolytes, but also opens up new avenue to develop safe LMBs.  相似文献   

19.
All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.  相似文献   

20.
Lithium (Li) metal anodes have long been counted on to meet the increasing demand for high energy, high‐power rechargeable battery systems but they have been plagued by uncontrollable plating, unstable solid electrolyte interphase (SEI) formation, and the resulting low Coulombic efficiency. These problems are even aggravated under commercial levels of current density and areal capacity testing conditions. In this work, the channel‐like structure of a carbonized eggplant (EP) as a stable “host” for Li metal melt infusion, is utilized. With further interphase modification of lithium fluoride (LiF), the as‐formed EP–LiF composite anode maintains ≈90% Li metal theoretical capacity and can successfully suppress dendrite growth and volume fluctuation during cycling. EP–LiF offers much improved symmetric cell and full‐cell cycling performance with lower and more stable overpotential under various areal capacity and elevated rate capability. Furthermore, carbonized EP serves as a light‐weight high‐performance current collector, achieving an average Coulombic efficiency ≈99.1% in ether‐based electrolytes with 2.2 mAh cm?2 cycling areal capacity. The natural structure of carbonized EP will inspire further artificial designs of electrode frameworks for both Li anode and sulfur cathodes, enabling promising candidates for next‐generation high‐energy density batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号