首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Catalysts are required for the oxygen evolution reaction, which are abundant, active, and stable in acid. MnO2 is a promising candidate material for this purpose. However, it dissolves at high overpotentials. Using first‐principles calculations, a strategy to mitigate this problem by decorating undercoordinated surface sites of MnO2 with a stable oxide is developed here. TiO2 stands out as the most promising of the different oxides in the simulations. This prediction is experimentally verified by testing sputter‐deposited thin films of MnO2 and Ti–MnO2. A combination of electrochemical measurements, quartz crystal microbalance, inductively coupled plasma mass spectrometry measurements, and X‐ray photoelectron spectroscopy is performed. Small amounts of TiO2 incorporated into MnO2 lead to a moderate improvement in stability, with only a small decrease in activity. This study opens up the possibility of engineering surface properties of catalysts so that active and abundant nonprecious metal oxides can be used in acid electrolytes.  相似文献   

3.
Development of highly active and stable bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts from earth‐abundant elements remains a grand challenge for highly demanded reversible fuel cells and metal–air batteries. Carbon catalysts have many advantages over others due to their low cost, excellent electrical conductivity, high surface area, and easy functionalization. However, they typically cannot withstand the highly oxidative OER environment. Here, a new class of bifunctional electrocatalyst is reported, consisting of ultralarge sized nitrogen doped graphene tubes (N‐GTs) (>500 nm) decorated with FeCoNi alloy particles. These tubes are prepared from an inexpensive precursor, dicyandiamide, via a template‐free graphitization process. The ORR/OER activity and the stability of these graphene tube catalysts depend strongly on the transition metal precursors. The best performing FeCoNi‐derived N‐GT catalyst exhibits excellent ORR and OER activity along with adequate electrochemical durability over a wide potential window (0–1.9 V) in alkaline media. The measured OER current is solely due to desirable O2 evolution, rather than carbon oxidation. Extensive electrochemical and physical characterization indicated that high graphitization degree, thicker tube walls, proper nitrogen doping, and presence of FeCoNi alloy particles are vital for high bifunctional activity and electrochemical durability of tubular carbon catalysts.  相似文献   

4.
Rational design and massive production of bifunctional catalysts with superior oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities are essential for developing metal–air batteries and fuel cells. Herein, controllable large‐scale synthesis of sulfur‐doped CaMnO3 nanotubes is demonstrated via an electrospinning technique followed by calcination and sulfurization treatment. The sulfur doping can not only replace oxygen atoms to increase intrinsic electrical conductivity but also introduce abundant oxygen vacancies to provide enough catalytically active sites, which is further demonstrated by density functional theory calculation. The resulting sulfur‐modified CaMnO3 (CMO/S) exhibits better electrocatalytic activity for ORR and OER in alkaline solution with higher stability performance than the pristine CMO. These results highlight the importance of sulfur treatment as a facile yet effective strategy to improve the ORR and OER catalytic activity of the pristine CaMnO3. As a proof‐of‐concept, a rechargeable Zn–air battery using the bifunctional catalyst exhibits a small charge–discharge voltage polarization, and long cycling life. Furthermore, a solid‐state flexible and rechargeable Zn–air battery gives superior discharge–charge performance and remarkable stability. Therefore, the CMO/S nanotubes might be a promising replacement to the Pt‐based electrocatalysts for metal–air batteries and fuel cells.  相似文献   

5.
Recently, defect engineering has been used to intruduce half‐metallicity into selected semiconductors, thereby significantly enhancing their electrical conductivity and catalytic/electrocatalytic performance. Taking inspiration from this, we developed a novel bifunctional electrode consisting of two monolayer thick manganese dioxide (δ‐MnO2) nanosheet arrays on a nickel foam, using a novel in‐situ method. The bifunctional electrode exposes numerous active sites for electrocatalytic rections and displays excellent electrical conductivity, resulting in strong performance for both HER and OER. Based on detailed structure analysis and density functional theory (DFT) calculations, the remarkably OER and HER activity of the bifunctional electrode can be attributed to the ultrathin δ‐MnO2 nanosheets containing abundant oxygen vacancies lead to the formation od Mn3+ active sites, which give rise to half‐metallicity properties and strong H2O adsorption. This synthetic strategy introduced here represents a new method for the development of non‐precious metal Mn‐based electrocatalysts for eddicient energy conversion.  相似文献   

6.
Earth‐abundant amorphous nanomaterials with rich structural defects are promising alternative catalysts to noble metals for an efficient electrochemical oxygen evolution reaction; however, their inferior electrical conductivity and poor morphological control during synthesis hamper the full realization of their potency in electrocatalysis. Herein, a rapid surface‐guided synthetic approach is proposed to introduce amorphous and mixed‐metal oxyhydroxide overlayers on ultrathin Ni‐doped MnO2 (Ni? MnO2) nanosheet arrays via a galvanic replacement mechanism. This method results in a monolithic 3D porous catalyst with a small overpotential of only 232 mV to achieve a current density of 10 mA cm?2 in 1 m KOH, which is much lower than the corresponding value of 307 mV for the Ni? MnO2 reference sample. Detailed structural and electrochemical characterization reveal that the unique Ni? MnO2 ultrathin nanosheet arrays do not only provide a large surface area to guide the formation of active amorphous catalyst layers but also ensure the effective charge transport owing to their high electron conductivity, collectively contributing to the greatly improved catalyst activity. It is envisioned that this highly operable surface‐guide synthetic strategy may open up new avenues for the design and fabrication of novel 3D nanoarchitectures integrated with functional amorphous materials for broadened ranges of applications.  相似文献   

7.
The ability to deposit conformal catalytic thin films enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin films over complex substrates. Here, ALD‐MnOx on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The films are characterized by X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as‐deposited films consist of Mn(II)O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn2O3 catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn2O3 catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnOx catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin films from earth‐abundant materials for the ORR and the OER.  相似文献   

8.
Currently, it is still a significant challenge to simultaneously boost various reactions by one electrocatalyst with high activity, excellent durability, as well as low cost. Herein, hybrid trifunctional electrocatalysts are explored via a facile one‐pot strategy toward an efficient oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The catalysts are rationally designed to be composed by FeCo nanoparticles encapsuled in graphitic carbon films, Co2P nanoparticles, and N,P‐codoped carbon nanofiber networks. The FeCo nanoparticles and the synergistic effect from Co2P and FeCo nanoparticles make the dominant contributions to the ORR, OER, and HER activities, respectively. Their bifunctional activity parameter (?E) for ORR and OER is low to 0.77 V, which is much smaller than those of most nonprecious metal catalysts ever reported, and comparable with state‐of‐the‐art Pt/C and RuO2 (0.78 V). Accordingly, the as‐assembled Zn–air battery exhibits a high power density of 154 mW cm?2 with a low charge–discharge voltage gap of 0.83 V (at 10 mA cm?2) and excellent stability. The as‐constructed overall water‐splitting cell achieves a current density of 10 mA cm?2 (at 1.68 V), which is comparable to the best reported trifunctional catalysts.  相似文献   

9.
Extensive efforts have been devoted to unraveling the true cause of voltage decay in Li, Mn‐rich layered oxides. An initial consensus was reached on structural rearrangement, then leaned toward the newly discovered lattice oxygen activity. It is challenging to differentiate their explicit roles because these events typically coexist during the electrochemical reaction of most Li‐rich layered oxides. Here, the voltage decay behavior is probed in Li1.2Ni0.2Ru0.6O2, a structurally and electrochemically relevant compound to Li, Mn‐rich layered oxide, but of no oxygen activity. Such intriguing characteristics allow the explicit decoupling of the contribution of transition metal migration and lattice oxygen activity to voltage decay in Li‐rich layered oxides. The results demonstrate that the microstructural evolution, mainly originating from transition metal migration, is a direct cause of voltage decay, and lattice oxygen activity likely accelerates the decay.  相似文献   

10.
The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PGM ORR catalyst with atomically dispersed Fe‐Nx/C sites through pyrolyzing the metal‐organic polymer coordinative hydrogel formed between Fe3+ and α‐L‐guluronate blocks of sodium alginate (SA). High‐angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic‐level dispersion on the obtained SA‐Fe‐N nanosheets and a possible fourfold coordination with N atoms. The best‐performing SA‐Fe‐N catalyst exhibits excellent ORR activity with half‐wave potential (E1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 m H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non‐PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high‐performance non‐PGM ORR electrocatalysts with atomically dispersed and stable M‐Nx coordination sites in both acidic and alkaline media.  相似文献   

11.
Nonprecious metal catalysts (NPMCs) Fe? N? C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe? N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1? O2? Fe1? N4. The modulated Fe? N? C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1? O2? Fe1? N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1? O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

12.
Nonprecious metal catalysts (NPMCs) Fe?N?C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe?N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1?O2?Fe1?N4. The modulated Fe?N?C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1?O2?Fe1?N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1?O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

13.
Bifunctional oxygen catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with high activities and low‐cost are of prime importance and challenging in the development of fuel cells and rechargeable metal–air batteries. This study reports a porous carbon nanomaterial loaded with cobalt nanoparticles (Co@NC‐x/y) derived from pyrolysis of a Co/Zn bimetallic zeolitic imidazolite framework, which exhibits incredibly high activity as bifunctional oxygen catalysts. For instance, the optimal catalyst of Co@NC‐3/1 has the interconnected framework structure between porous carbon and embedded carbon nanotubes, which shows the superb ORR activity with onset potential of ≈1.15 V and half‐wave potential of ≈0.93 V. Moreover, it presents high OER activity that can be further enhanced to over commercial RuO2 by P‐doped with overpotentials of 1.57 V versus reversible hydrogen electrode at 10 mA cm?2 and long‐term stability for 2000 circles and a Tafel slope of 85 mV dec?1. Significantly, the nanomaterial demonstrates better catalytic performance and durability than Pt/C for ORR and commercial RuO2 and IrO2 for OER. These findings suggest the importance of a synergistic effect of graphitic carbon, nanotubes, exposed Co–Nx active sites, and interconnected framework structure of various carbons for bifunctional oxygen electrocatalysts.  相似文献   

14.
Lithium‐oxygen batteries represent a significant scientific challenge for high‐rate and long‐term cycling using oxygen electrodes that contain efficient electrocatalysts. The mixed transition metal oxide catalysts provide the most efficient catalytic activity for partial heterogeneous surface cations with oxygen vacancies as the active phase. They include multiple oxidation states and oxygen vacancies. Here, using a combination of transmission electron microscopy, differential electrochemical mass spectrometry, X‐ray photoelectron spectroscopy, and electrochemical properties to probe the surface of the MnMoO4 nanowires, it is shown that the intrinsic MnMoO4 oxygen vacancies on the oxygen electrode are an effective strategy to achieve a high reversibility and high efficiency for lithium‐oxygen (Li‐O2) batteries. The modified MnMoO4 nanowires exhibit a highly stable capacity at a fixed capacity of 5000 mA h gsp?1 (calculated weight of Super P carbon black) during 50 cycles, a high‐rate capability at a current rate of 3000 mA gsp?1 during 70 cycles, and a long‐term reversible capacity during 188 cycles at a fixed capacity of 1000 mA h gsp?1. It is demonstrated that this strategy for creating mixed transition metal oxides (e.g., MnMoO4) may pave the way for the new structural design of electrocatalysts for Li‐O2 batteries.  相似文献   

15.
The future large‐scale deployment of rechargeable zinc–air batteries requires the development of cheap, stable, and efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, a highly efficient bifunctional electrocatalyst is prepared by depositing 3–5 nm NiFe layered double hydroxide (NiFe‐LDH) nanoparticles on Co,N‐codoped carbon nanoframes (Co,N‐CNF). The NiFe‐LDH/Co,N‐CNF electrocatalyst displayed an OER overpotential of 0.312 V at 10 mA cm?2 and an ORR half‐wave potential of 0.790 V. The outstanding performance of the electrocatalyst is attributable to the high electrical conductivity and excellent ORR activity of Co,N‐CNF, together with the strong anchoring of 3–5 nm NiFe‐LDH nanoparticles, which preserves active sites. Inspired by the excellent OER and ORR performance of NiFe‐LDH/Co,N‐CNF, a prototype rechargeable zinc–air battery is developed. The battery exhibited a low discharge–charge voltage gap (1.0 V at 25 mA cm?2) and long‐term cycling durability (over 80 h), and superior overall performance to a counterpart battery constructed using a mixture of IrO2 and Pt/C as the cathode. The strategy developed here can easily be adapted to synthesize other bifunctional CNF‐based hybrid electrodes for ORR and OER, providing a practical route to more efficient rechargeable zinc–air batteries.  相似文献   

16.
Ce‐rich mixed metal oxides comprise a recently discovered class of ­electrocatalysts for the oxygen evolution reaction (OER). In particular, at current densities below 10 mA cm?2, Ni0.3Fe0.07Co0.2Ce0.43Ox exhibits ­superior activity compared to the corresponding transition metal oxides, despite the relative inactivity of ceria. To elucidate the enhanced activity and underlying catalytic mechanism, detailed structural characterization of this quinary oxide electrocatalyst is reported. Transmission electron microscopy imaging of cross‐section films as‐prepared and after electrochemical testing reveals a stable two‐phase nanostructure composed of 3–5 nm diameter crystallites of fluorite CeO2 intimately mixed with 3–5 nm crystallites of transition metal oxides alloyed in the rock salt NiO structure. Dosing experiments demonstrate that an electron flux greater than ≈1000 e Å?2 s?1 causes the inherently crystalline material to become amorphous. A very low dose rate of 130 e Å?2 s?1 is employed for atomic resolution imaging using inline holography techniques to reveal a nanostructure in which the transition metal oxide nanocrystals form atomically sharp boundaries with the ceria nanocrystals, and these results are corroborated with extensive synchrotron X‐ray absorption spectroscopy measurements. Ceria is a well‐studied cocatalyst for other heterogeneous and electrochemical reactions, and our discovery introduces biphasic cocatalysis as a design concept for improved OER electrocatalysts.  相似文献   

17.
18.
Unveiling the intrinsic effects of Ruddlesden‐Popper (RP) series An+1BnO3n+1 (A = La, B = Ni, Co, Mn, Cu, n = 1, 2 and 3) catalysts is essential in order to optimize the activity of oxygen reduction reaction (ORR) and evolution reaction (OER). Here, it is demonstrated that the oxygen vacancy is not the key point for RP to realize high ORR and OER activity at high temperature. Instead, interstitial O2? with high concentration and fast migration, and lattice oxygen with high activity are favorable for the high‐temperature catalytic activity. Aliovalent cation doping is an effective strategy to modify the catalytic activity. For the RP catalysts, low‐valence ion doping does not introduce oxygen vacancies, which suppresses the activity of lattice oxygen and decreases the interstitial O2? concentration; whereas high‐valence ion doping enhances the interstitial O2– concentration and the lattice oxygen activity. The evaluations of six RP series (La2NiO4, La2CoO4, La3Co2O7, La4Ni3O10, La2MnO4, and La2CuO4 based) and twenty samples as oxygen electrodes for solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) demonstrate that this finding is applicable to all the selected RP series.  相似文献   

19.
Transition metal atoms with corresponding nitrogen coordination are widely proposed as catalytic centers for the oxygen reduction reaction (ORR) in metal–nitrogen–carbon (M–N–C) catalysts. Here, an effective strategy that can tailor Fe–N–C catalysts to simultaneously enrich the number of active sites while boosting their intrinsic activity and utilization is reported. This is achieved by edge engineering of FeN4 sites via a simple ammonium chloride salt‐assisted approach, where a high fraction of FeN4 sites are preferentially generated and hosted in a graphene‐like porous scaffold. Theoretical calculations reveal that the FeN4 moieties with adjacent pore defects are likely to be more active than the nondefective configuration. Coupled with the facilitated accessibility of active sites, this prepared catalyst, when applied in a practical H2–air proton exchange membrane fuel cell, delivers a remarkable peak power density of 0.43 W cm?2, ranking it as one of the most active M–N–C catalysts reported to date. This work provides a new avenue for boosting ORR activity by edge manipulation of FeN4 sites.  相似文献   

20.
The safe and efficient storage and release of hydrogen are widely recognized as the main challenges for the establishment of a fuel‐cell‐based hydrogen economy. Formic acid (FA) has great potential as a safe and convenient source of hydrogen for fuel cells. Despite tremendous efforts, the development of heterogeneous catalysts with high activity and relatively low cost remains a major challenge. The synthesis of AuPd–MnOx nanocomposite immobilized on ZIF‐8–reduced‐graphene‐oxide (ZIF‐8–rGO) bi‐support by a wet‐chemical method is reported here. Interestingly, the resultant AuPd–MnOx/ZIF‐8–rGO shows excellent catalytic activity for the generation of hydrogen from FA, and the initial turnover frequency (TOF) reaches a highest value of 382.1 mol H2 mol catalyst?1 h?1 without any additive at 298 K. This good performance of AuPd–MnOx/ZIF‐8–rGO results from the modified electronic structure of Pd in the AuPd–MnOx/ZIF‐8–rGO composite, the small size and high dispersion of the AuPd–MnOx nanocomposite, and also the strong metal‐support interaction between the AuPd–MnOx and ZIF‐8–rGO bi‐support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号