首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Fibroblast growth factor-2 (FGF2) and vascular endothelial growth factor (VEGF) are two key regulators of placental angiogenesis. The potent vasodilator nitric oxide (NO) could also act as a key mediator of FGF2- and VEGF-induced angiogenesis. However, the postreceptor signaling pathways governing these FGF2- and VEGF-induced placental angiogenic responses are poorly understood. In this study, we assessed the role of endogenous NO, mitogen-activated protein kinase 3/1 (MAPK3/1), and v-akt murine thymoma viral oncogene homolog 1 (AKT1) in FGF2- and VEGF-stimulated proliferation of ovine fetoplacental endothelial (OFPAE) cells. Both FGF2 and VEGF time-dependently stimulated (P < 0.05) NO production and activated AKT1. Both FGF2- and VEGF-stimulated cell proliferation was dose-dependently inhibited (P < 0.05) by N(G)-monomethyl-L-arginine (L-NMMA; an NO synthase inhibitor), PD98059 (a selective MAPK3/1 kinase 1 and 2 [MAP2K1/2] inhibitor), or LY294002 (a selective phosphatidylinositol 3 kinase [PI3K] inhibitor) but not by phenyl-4,4,5,5 tetramethylimidazoline-1-oxyl 3-oxide (PTIO, a potent extracellular NO scavenger). At the maximal inhibitory dose without cytotoxicity, PD98059 and LY294002 completely inhibited VEGF-induced cell proliferation but only partially attenuated (P < 0.05) FGF2-induced cell proliferation. PD98059 and LY294002 also inhibited (P < 0.05) FGF2- and VEGF-induced phosphorylation of MAPK3/1 and AKT1, respectively. L-NMMA did not significantly affect FGF2- and VEGF-induced phosphorylation of either MAPK3/1 or AKT1. Thus, in OFPAE cells, both FGF2- and VEGF-stimulated cell proliferation is partly mediated via NO as an intracellular and downstream signal of MAPK3/1 and AKT1 activation. Moreover, activation of both MAP2K1/2/MAPK3/1 and PI3K/AKT1 pathways is critical for FGF2-stimulated cell proliferation, whereas activation of either one pathway is sufficient for mediating the VEGF-induced maximal cell proliferation, indicating that these two kinase pathways differentially mediate the FGF2- and VEGF-stimulated OFPAE cell proliferation.  相似文献   

2.
Sodium nitroprusside (SNP), a nitric oxide (NO) donor and a nitrovasodilator drug used for patients with hypertensive crisis, has been shown to promote angiogenesis. However, direct evidence showing the involvement of NO in the SNP-induced angiogenesis is not available. Accordingly, we assessed whether NO generated from SNP-stimulated ovine fetoplacental artery endothelial (OFPAE) cell proliferation via activation of mitogen-activated protein kinase 3/1 (MAPK3/1, also termed ERK1/2). We observed that SNP dose dependently stimulated (P < 0.05) cell proliferation with a maximal effect at 1 microM and that SNP rapidly (相似文献   

3.
Fibroblast growth factor (FGF) receptor 1 (FGFR1) protein was expressed as the long and short as well as some truncated forms in ovine fetoplacental artery ex vivo and in vitro. Upon FGF2 stimulation, both the long and short FGFR1s were tyrosine phosphorylated and the PI3K/AKT1 and ERK1/2 pathways were activated in a concentration- and time- dependent manner in ovine fetoplacental artery endothelial (oFPAE) cells. Blockade of the PI3K/AKT1 pathway attenuated FGF2-stimulated cell proliferation and migration as well as tube formation; blockade of the ERK1/2 pathway abolished FGF2-stimulated tube formation and partially inhibited cell proliferation and did not alter cell migration. Both AKT1 and ERK1/2 were co-fractionated with caveolin-1 and activated by FGF2 in the caveolae. Disruption of caveolae by methyl-β-cyclodextrin inhibited FGF2 activation of AKT1 and ERK1/2. FGFR1 was found in the caveolae where it physically binds to caveolin-1. FGF2 stimulated dissociation of FGFR1 from caveolin-1. Downregulation of caveolin-1 significantly attenuated the FGF2-induced activation of AKT1 and ERK1/2 and inhibited FGF2-induced cell proliferation, migration and tube formation in oFPAE cells. Pretreatment with a caveolin-1 scaffolding domain peptide to mimic caveolin-1 overexpression also inhibited these FGF2-induced angiogenic responses. These data demonstrate that caveolae function as a platform for regulating FGF2-induced angiogenesis through spatiotemporally compartmentalizing FGFR1 and the AKT1 and ERK1/2 signaling modules; the major caveolar structural protein caveolin-1 interacts with FGFR1 and paradoxically regulates FGF2-induced activation of PI3K/AKT1 and ERK1/2 pathways that coordinately regulate placental angiogenesis.  相似文献   

4.
The trophoblast-like choriocarcinoma cell line BeWo expresses a receptor for vascular endothelial growth factor (VEGF) and proliferates in response to VEGF. Nitric oxide (NO) seems to play a key role in the VEGF-induced proliferation of endothelial cells but the NO mechanistic regulation of VEGF-stimulated trophoblast proliferation is presently unclear. We assessed the effect of exogenous VEGF on BeWo cell proliferation by [3H]thymidine incorporation. The VEGF-induced proliferation of BeWo cells was significantly increased by the NO synthase (NOS) inhibitor, N(omega)-nitro-l-arginine methyl ester (L-NAME), but was inhibited by the NO donor, sodium nitroprusside. Treatment of the cells with 10 ng/ml of VEGF increased not only eNOS expression but also NO production. The extracellular signal-regulated kinase (Erk) of the mitogen-activated protein kinase (MAPK) family was activated by VEGF as demonstrated by the phosphorylation of Erk in Western blots. The effects of VEGF on NO production and the expression of endothelial NOS (eNOS) were attenuated by treating BeWo cells with the selective inhibitor of MAPK kinase, PD98059. VEGF-stimulated proliferation of BeWo cells was inhibited by the tyrosine kinase inhibitor genistein but increased by PD98059. Other kinase inhibitors, including LY294002 (phosphoinositide 3-kinase inhibitor) and SB203580 (P38 MAPK inhibitor), had no effect on the proliferation of the cells and NO production. These results indicate that endogenous NO production down-regulates the VEGF-stimulated proliferation of BeWo cells and that the activation of Erk plays an important role in this mechanism.  相似文献   

5.
We have previously reported that MAPK phosphatase-1 (MKP-1/CL100) is a thrombin-responsive gene in endothelial cells (ECs). We now show that VEGF is another efficacious activator of MKP-1 expression in human umbilical vein ECs. VEGF-A and VEGF-E maximally induced MKP-1 expression in ECs; however, the other VEGF subtypes had no effect. Using specific neutralizing antibodies, we determined that VEGF induced MKP-1 specifically through VEGF receptor 2 (VEGFR-2), leading to the downstream activation of JNK. The VEGF-A(165) isoform stimulated MKP-1 expression, whereas the VEGF-A(162) isoform induced the gene to a lesser extent, and the VEGF-A(121) isoform had no effect. Furthermore, specific blocking antibodies against neuropilins, VEGFR-2 coreceptors, blocked MKP-1 induction. A Src kinase inhibitor (PP1) completely blocked both VEGF- and thrombin-induced MKP-1 expression. A dominant negative approach revealed that Src kinase was required for VEGF-induced MKP-1 expression, whereas Fyn kinase was critical for thrombin-induced MKP-1 expression. Moreover, VEGF-induced MKP-1 expression required JNK, whereas ERK was critical for thrombin-induced MKP-1 expression. In ECs treated with short interfering (si)RNA targeting MKP-1, JNK, ERK, and p38 phosphorylation were prolonged following VEGF stimulation. An ex vivo aortic angiogenesis assay revealed a reduction in VEGF- and thrombin-induced sprout outgrowth in segments from MKP-1-null mice versus wild-type controls. MKP-1 siRNA also significantly reduced VEGF-induced EC migration using a transwell assay system. Overall, these results demonstrate distinct MAPK signaling pathways for thrombin versus VEGF induction of MKP-1 in ECs and point to the importance of MKP-1 induction in VEGF-stimulated EC migration.  相似文献   

6.
7.
Matrix metalloproteinase-mediated degradation of extracellular matrix is a crucial event for invasion and metastasis of malignant cells. The expressions of matrix metalloproteinases (MMPs) are regulated by different cytokines and growth factors. VEGF, a potent angiogenic cytokine, induces invasion of ovarian cancer cells through activation of MMPs. Here, we demonstrate that invasion and scattering in SKOV-3 cells were induced by VEGF through the activation of p38 MAPK and PI3K/AKT pathways. VEGF induced the expression of MMP-2, MMP-9, and MMP-13 and hence regulated the metastasis of SKOV-3 ovarian cancer cells, and the activities of these MMPs were reduced after inhibition of PI3K/AKT and p38 MAPK pathways. Interestingly, VEGF induced expression of ETS-1 factor, an important trans-regulator of different MMP genes. ETS-1 bound to both MMP-9 and MMP-13 promoters. Furthermore, VEGF acted through its receptor to perform the said functions. In addition, VEGF-induced MMP-9 and MMP-13 expression and in vitro cell invasion were significantly reduced after knockdown of ETS-1 gene. Again, VEGF-induced MMP-9 and MMP-13 promoter activities were down-regulated in ETS-1 siRNA-transfected cells. VEGF enriched ETS-1 in the nuclear fraction in a dose-dependent manner. VEGF-induced expression of ETS-1 and its nuclear localization were blocked by specific inhibitors of the PI3K and p38 MAPK pathways. Therefore, based on these observations, it is hypothesized that the activation of PI3K/AKT and p38 MAPK by VEGF results in ETS-1 gene expression, which activates MMP-9 and MMP-13, leading to the invasion and scattering of SKOV-3 cells. The study provides a mechanistic insight into the prometastatic functions of VEGF-induced expression of relevant MMPs.  相似文献   

8.
To study mechanisms governing fetoplacental vascular function, we have established a primary ovine fetoplacental artery endothelial (OFPAE) cell line. These OFPAE cells produce nitric oxide (NO), proliferate, and migrate in response to fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF). To overcome the senescence crisis that this primary OFPAE cell line will eventually enter, we attempted to establish a functional OFPAE cell line with a prolonged life span by transfecting cells with plasmids containing a neomycin resistance gene and a simian virus 40 gene (SV40) expressing large T (T) and small t (t) antigens. The OFPAE cells at passage 8 were transfected. After neomycin selection, the surviving OFPAE (designated SV40 OFPAE) cells were expanded up to passage 80. Up to passage 30, these SV40 OFPAE cells maintained a morphology similar to untransfected OFPAE cells. Expression of T and t antigens in SV40 OFPAE cells was confirmed by immunocytochemistry. These SV40 OFPAE cells exhibited positive uptake of acetylated low-density lipoprotein (Ac-LDL) and positive staining for NO synthase 3 (NOS3) and formed capillary-like tube structures on Matrigel. Up to passages 20-23, these SV40 OFPAE cells proliferated (P < 0.05) and produced (P < 0.05) NO in response to both FGF2 and VEGF. Moreover, this cell proliferation stimulated by FGF2 and VEGF was dose-dependently inhibited (P < 0.05) by PD98059 (a selective mitogen-activated protein kinase 1 and 2 [MAP2K1/2, also termed MEK1/2] inhibitor) or by LY294002 (a selective phosphoinositide 3-kinase [PI3K] inhibitor). These data indicate that SV40 OFPAE cells, at least at passage 23, retain endothelial phenotypes and functions similar to their parental, untransfected OFPAE cells. Thus, a functional OFPAE cell line with an extended life span has been successfully established, potentially providing a valuable cell model for studying fetoplacental endothelial function.  相似文献   

9.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) exerts its multiple functions by activating two receptor tyrosine kinases, Flt-1 (VEGFR-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. To dissect the respective signaling pathways and biological functions mediated by these receptors in primary endothelial cells with two receptors intact, we, recently developed chimeric receptors (EGDR and EGLT) in which the extracellular domain of the epidermal growth factor receptor was fused to the transmembrane domain and intracellular domain of KDR and Flt-1, respectively. With these fusion receptors, we have shown that KDR is solely responsible for VPF/VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration, whereas Flt-1 showed an inhibitory effect on KDR-mediated proliferation but not migration. To further characterize the VPF/VEGF-stimulated HUVEC proliferation and migration here, we have created several EGDR mutants by site-directed mutagenesis. We show that tyrosine residues 1059 and 951 of KDR are essential for VPF/VEGF-induced HUVEC proliferation and migration, respectively. Furthermore, the mutation of tyrosine 1059 to phenylanaline results in the complete loss of KDR/EGDR-mediated intracellular Ca(2+) mobilization and MAPK phosphorylation, but the mutation of tyrosine 951 to phenylanaline did not affect these events. Our results suggest that KDR mediates different signaling pathways for HUVEC proliferation and migration and, moreover, intracellular Ca(2+) mobilization and MAPK phosphorylation are not essential for VPF/VEGF-induced HUVEC migration.  相似文献   

10.
Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in endothelial cells.  相似文献   

11.
PPAR activators inhibit endothelial cell migration by targeting Akt   总被引:12,自引:0,他引:12  
Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose metabolism and exert several vascular effects that may provide a dual benefit of these receptors on metabolic disorders and atherosclerotic vascular disease. Endothelial cell migration is a key event in the pathogenesis of atherosclerosis. We therefore investigated the effects of lipid-lowering PPARalpha-activators (fenofibrate, WY14643) and antidiabetic PPARgamma-activators (troglitazone, ciglitazone) on this endothelial cell function. Both PPARalpha- and PPARgamma-activators significantly inhibited VEGF-induced migration of human umbilical vein endothelial cells (EC) in a concentration-dependent manner. Chemotactic signaling in EC is known to require activation of two signaling pathways: the phosphatidylinositol-3-kinase (PI3K)-->Akt- and the ERK1/2 mitogen-activated protein kinase (ERK MAPK) pathway. Using the pharmacological PI3K-inhibitor wortmannin and the ERK MAPK-pathway inhibitor PD98059, we observed a complete inhibition of VEGF-induced EC migration. VEGF-induced Akt phosphorylation was significantly inhibited by both PPARalpha- and gamma-activators. In contrast, VEGF-stimulated ERK MAPK-activation was not affected by any of the PPAR-activators, indicating that they inhibit migration either downstream of ERK MAPK or independent from this pathway. These results provide first evidence for the antimigratory effects of PPAR-activators in EC. By inhibiting EC migration PPAR-activators may protect the vasculature from pathological alterations associated with metabolic disorders.  相似文献   

12.
This study was initiated to identify signaling proteins used by the receptors for vascular endothelial cell growth factor KDR/Flk1, and Flt1. Two-hybrid cloning and immunoprecipitation from human umbilical vein endothelial cells (HUVEC) showed that KDR binds to and promotes the tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Neither placental growth factor, which activates Flt1, epidermal growth factor (EGF), or fibroblast growth factor (FGF) induced tyrosine phosphorylation of PLCgamma, indicating that KDR is uniquely important to PLCgamma activation in HUVEC. By signaling through KDR, VEGF promoted the tyrosine phosphorylation of focal adhesion kinase, induced activation of Akt, protein kinase Cepsilon (PKCepsilon), mitogen-activated protein kinase (MAPK), and promoted thymidine incorporation into DNA. VEGF activates PLCgamma, PKCepsilon, and phosphatidylinositol 3-kinase independently of one another. MEK, PLCgamma, and to a lesser extent PKC, are in the pathway through which KDR activates MAPK. PLCgamma or PKC inhibitors did not affect FGF- or EGF-mediated MAPK activation. MAPK/ERK kinase inhibition diminished VEGF-, FGF-, and EGF-promoted thymidine incorporation into DNA. However, blockade of PKC diminished thymidine incorporation into DNA induced by VEGF but not FGF or EGF. Signaling through KDR/Flk1 activates signaling pathways not utilized by other mitogens to induce proliferation of HUVEC.  相似文献   

13.
The migration of endothelial cells in response to various stimulating factors plays an essential role in angiogenesis. The p38 MAPK pathway has been implicated to play an important role in endothelial cell migration because inhibiting p38 MAPK activity down-regulates vascular endothelial growth factor (VEGF)-stimulated migration. Currently, the signaling components in the p38 MAPK activation pathway and especially the mechanisms responsible for p38 MAPK-regulated endothelial cell migration are not well understood. In the present study, we found that p38 MAPK activity is required for endothelial cell migration stimulated by both VEGF and nongrowth factor stimulants, sphingosine 1-phosphate and soluble vascular cell adhesion molecule. By using dominant negative forms of signaling components in the p38 MAPK pathway, we identified that a regulatory pathway consisting of MKK3-p38alpha/gamma-MAPK-activated protein kinase 2 participated in VEGF-stimulated migration. In further studies, we showed that a minimum of a 10-h treatment with SB203580 (specific p38 MAPK inhibitor) was needed to block VEGF-stimulated migration, suggesting an indirect role of p38 MAPK in this cellular event. Most interestingly, the occurrence of SB203580-induced migratory inhibition coincided with a reduction of urokinase plasminogen activator (uPA) expression. Furthermore, agents disrupting uPA and uPA receptor interaction abrogated VEGF-stimulated cell migration. These results suggest a possible association between cell migration and uPA expression. Indeed, VEGF-stimulated migration was not compromised by SB203580 in endothelial cells expressing the uPA transgene; however, VEGF-stimulated migration was inhibited by agents disrupting uPA-uPA receptor interaction. These results thus suggest that the p38 MAPK pathway participates in endothelial cell migration by regulating uPA expression.  相似文献   

14.
Normal pregnancy is associated with high angiotensin II (ANG II) concentrations in the maternal and fetal circulation. These high levels of ANG II may promote production vasodilators such as nitric oxide (NO). ANG II receptors are expressed in ovine fetoplacental artery endothelial (OFPAE) cells and mediate ANG II-stimulated OFPAE cell proliferation. Herein, we tested whether ANG II stimulated NO synthase 3 (NOS3, also known as eNOS) expression and total NO (NO(x)) production via activation of mitogen-activated protein kinase 3/1 (MAPK3/1, also known as ERK1/2) in OFPAE cells. ANG II elevated (P < 0.05) eNOS protein, but not mRNA levels with a maximum effect at 10 nM. ANG II also dose dependently increased (P < 0.05) NO(x) production with a maximal effect at doses of 1-100 nM. Activation of ERK1/2 by ANG II was determined by immunocytochemistry and Western blot analysis. ANG II rapidly induced positive staining for phosphorylated ERK1/2, appearing in cytosol after 1-5 min of ANG II treatment, accumulating in nuclei after 10 min, and disappearing at 15 min. ANG II increased (P < 0.05) phosphorylated ERK1/2 protein levels. Activation of ERK1/2 was confirmed by an immunocomplex kinase assay using ELK1 as a substrate. PD98059 significantly inhibited ANG II-induced ERK1/2 activation, and the ANG II-elevated eNOS protein levels but only partially reduced ANG II-increased NO(x) production. Thus, in OFPAE cells, the ANG II increased NO(x) production is associated with elevated eNOS protein expression, which is mediated at least in part via activation of the mitogen-activated protein kinase kinase1 and kinase2 (MAP2K1 and MAP2K2, known also as MEK1/2)/ERK1/2 cascade. Together with our previous observation that ANG II stimulates OFPAE cell proliferation, these data suggest that ANG II is a key regulator for both vasodilation and angiogenesis in the ovine fetoplacenta.  相似文献   

15.
An increase in the vasculature is one of most representative changes in the synovial tissue of joints in rheumatoid arthritis (RA) and is closely associated with disease progression. Although the vasculatures are believed to be a result of VE-cadherin-dependent angiogenesis and a possible therapeutic target of the disease, synovial fibroblastic cells express VE-cadherin and form tube-like structures, suggesting that vasculatures in RA synovium may not simply result from angiogenesis. This paper analyzes a mechanism of VE-cadherin expression by rheumatoid arthritic synovial fibroblast-like cells (RSFLs) and their involvement in the tube-like formation. A representative angiogenic factor, vascular endothelial growth factor (VEGF), and its binding to a predominant receptor (VEGFR2) activated VE-cadherin expression and the signaling pathways of ERK/MAPK and PI3K/AKT/mTOR. Treatment of RSFLs with signaling pathway inhibitors, VEGFR2 siRNA and a VEGF-antagonizing mimicking peptide inhibited VE-cadherin expression dose-dependently. VEGF-stimulated tube-like formation by RSFLs on Matrigel was hindered by the mimicking peptide and inhibitor treatment. This data demonstrates that RSFLs activated by VEGF binding of VEGFR2 express VE-cadherin and formed tube-like structure under the control of ERK/MAPK and PI3K/AKT/mTOR pathways suggesting that the inhibition suppresses vascular development in RA synovium.  相似文献   

16.
Placental blood flow, nitric-oxide (NO) levels, and endothelial NO synthase (eNOS) expression increase during human and ovine pregnancy. Shear stress stimulates NO production and eNOS expression in ovine fetoplacental artery endothelial (OFPAE) cells. Because eNOS is the rate-limiting enzyme essential for NO synthesis, its activity and expression are both closely regulated. We investigated signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by OFPAE cells. The OFPAE cells were cultured at 3 dynes/cm2 shear stress, then exposed to 15 dynes/cm2 shear stress. Western blot analysis for phosphorylated ERK1/2, Akt, p38 mitogen activated protein kinase (MAPK), and eNOS showed that shear stress rapidly increased phosphorylation of ERK1/2 and Akt but not of p38 MAPK. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by the phosphatidyl inositol-3-kinase (PI-3K)-inhibitors wortmannin and LY294002 but not by the mitogen activated protein kinase kinase (MEK)-inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels otherwise induced by the 15 dynes/cm2 shear stress. Blockade of either signaling pathway changed the shear stress-induced increase in eNOS protein levels. In conclusion, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibition of MEK. Prolonged shear stress-stimulated increases in eNOS protein were not affected by inhibition of MEK- or PI-3K-mediated pathways.  相似文献   

17.
Vascular endothelial growth factor (VEGF) is essential for many angiogenic processes both in normal conditions and in pathological conditions. However, the signaling pathways involved in VEGF-induced angiogenesis are not well defined. Protein kinase D (PKD), a newly described serine/threonine protein kinase, has been implicated in many signal transduction pathways and in cell proliferation. We hypothesized that PKD would mediate VEGF signaling and function in endothelial cells. Here we found that VEGF rapidly and strongly stimulated PKD phosphorylation and activation in endothelial cells via VEGF receptor 2 (VEGFR2). The pharmacological inhibitors for phospholipase Cgamma (PLCgamma) and protein kinase C (PKC) significantly inhibited VEGF-induced PKD activation, suggesting the involvement of the PLCgamma/PKC pathway. In particular, PKCalpha was critical for VEGF-induced PKD activation since both overexpression of adenovirus PKCalpha dominant negative mutant and reduction of PKCalpha expression by small interfering RNA markedly inhibited VEGF-induced PKD activation. Importantly, we found that small interfering RNA knockdown of PKD and PKCalpha expression significantly attenuated ERK activation and DNA synthesis in endothelial cells by VEGF. Taken together, our results demonstrated for the first time that VEGF activates PKD via the VEGFR2/PLCgamma/PKCalpha pathway and revealed a critical role of PKD in VEGF-induced ERK signaling and endothelial cell proliferation.  相似文献   

18.
Non-small-cell lung cancer (NSCLC) is the most common malignancy along with high mortality rate worldwide. Recently, nucleolar and spindle-associated protein 1 (NUSAP1) has been reported to be involved in the malignant progression of several cancers. However, in NSCLC, the biological function of NUSAP1 and its molecular mechanism have not been reported. Here, our findings indicated that the NUSAP1 messenger RNA expression level was remarkably upregulated in NSCLC tissues compared with that of adjacent normal tissues. We also found that NUSAP1 gene expression was notably upregulated in NSCLC cell lines (A549, 95-D, H358, and H1299) compared with that of normal human bronchial epithelial cell line (16HBE). Subsequently, the biological function of NUSAP1 was investigated in A549 and H358 cells transfected with NUSAP1 small interfering RNA (siRNA), respectively. Results showed that NUSAP1 knockdown inhibited NSCLC cell proliferation, and promoted cell apoptosis. Furthermore, the number of cell migration and invasion was significantly suppressed by NUSAP1 knockdown. In addition, our results indicated that NUSAP1 knockdown increased the gene expression of B-cell translocation gene 2 (BTG2), but decreased the expression levels of phosphoinositide 3-kinase (PI3K) and phosphorylated serine/threonine kinase (p-AKT). BTG2 siRNA partly abrogates the effect of NUSAP1 knockdown on BTG2 gene expression. Fumonisin B1 (FB1), a AKT activator, reversed the effect of NUSAP1 knockdown on the biological function in NSCLC. Taken together, NUSAP1 knockdown promotes NSCLC cell apoptosis, and inhibits cell proliferation, cell migration, and invasion, which is associated with regulating BTG2/PI3K/Akt signal pathway. Our findings suggest that NUSAP1 is a promising molecular target for NSCLC treatment.  相似文献   

19.
Vascular endothelial growth factor (VEGF) induces adhesion molecules on endothelial cells during inflammation. Here we examined the mechanisms underlying VEGF-stimulated expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in human umbilical vein endothelial cells. VEGF (20 ng/ml) increased expression of ICAM-1, VCAM-1, and E-selectin mRNAs in a time-dependent manner. These effects were significantly suppressed by Flk-1/kinase-insert domain containing receptor (KDR) antagonist and by inhibitors of phospholipase C, nuclear factor (NF)-kappaB, sphingosine kinase, and protein kinase C, but they were not affected by inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 or nitric-oxide synthase. Unexpectedly, the phosphatidylinositol (PI) 3'-kinase inhibitor wortmannin enhanced both basal and VEGF-stimulated adhesion molecule expression, whereas insulin, a PI 3'-kinase activator, suppressed both basal and VEGF-stimulated expression. Gel shift analysis revealed that VEGF stimulated NF-kappaB activity. This effect was inhibited by phospholipase C, NF-kappaB, or protein kinase C inhibitor. VEGF increased VCAM-1 and ICAM-1 protein levels and increased leukocyte adhesiveness in a NF-kappaB-dependent manner. These results suggest that VEGF-stimulated expression of ICAM-1, VCAM-1, and E-selectin mRNAs was mainly through NF-kappaB activation with PI 3'-kinase-mediated suppression, but was independent of nitric oxide and MEK. Thus, VEGF simultaneously activates two signal transduction pathways that have opposite functions in the induction of adhesion molecule expression. The existence of parallel inverse signaling implies that the induction of adhesion molecule expression by VEGF is very finely regulated.  相似文献   

20.
In vivo, ischemia is known to damage the blood-brain barrier (BBB) leading to the development of vasogenic brain edema. Hypoxia-induced vascular endothelial growth factor (VEGF) has been shown to be a key regulator of these permeability changes. However, the signaling pathways that underlie VEGF-induced hyperpermeability are incompletely understood. In this study, we demonstrate that hypoxia- and VEGF-induced permeability changes depend on activation of phospholipase Cgamma (PLCgamma), phosphatidylinositol 3-kinase/Akt (PI3-K/Akt), and protein kinase G (PKG). Inhibition of mitogen-activated protein kinases (MAPK) and of the protein kinase C (PKC) did not affect permeability at all. Paralleling hypoxia- and VEGF-induced permeability changes, localization of the tight junction proteins occludin, zonula occludens-1 (ZO-1), and ZO-2 along the cell membrane changed from a continuous to a more discontinuous expression pattern during hypoxia. In particular, localization of ZO-1 and ZO-2 expression moved from the cell membrane to the cytoplasm and nucleus whereas occludin expression remained at the cell membrane. Inhibition of PLCgamma, PI3-kinase, and PKG abolished these hypoxia-induced changes. These findings demonstrate that hypoxia and VEGF induce permeability through rearrangement of endothelial junctional proteins which involves activation of the PLCgamma and PI3-K/AKT pathway leading to the activation of PKG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号