首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, athletes have transitioned from traditional static stretching during warm-ups to incorporating dynamic stretching routines. However, the optimal volume of dynamic drills is yet to be identified. The aim of this repeated-measures study was to examine varying volumes (1, 2, and 3 sets) of active dynamic stretching (ADS) in a warm-up on 10- and 20-m sprint performance. With a within-subject design, 16 highly trained male participants (age: 20.9 ± 1.3 years; height: 179.7 ± 5.7 cm; body mass: 72.7 ± 7.9 kg; % body fat: 10.9 ± 2.4) completed a 5-minute general running warm-up before performing 3 preintervention measures of 10- to 20-m sprint. The interventions included 1, 2, and 3 sets of active dynamic stretches of the lower-body musculature (gastrocnemius, gluteals, hamstrings, quadriceps, and hip flexors) performed approximately 14 times for each exercise while walking (ADS1, ADS2, and ADS3). The active dynamic warm-ups were randomly allocated before performing a sprint-specific warm-up. Five minutes separated the end of the warm-up and the 3 postintervention measures of 10- to 20-m sprints. There were no significant time, condition, and interaction effects over the 10-m sprint time. For the 0- to 20-m sprint time, a significant main effect for the pre-post measurement (F = 10.81; p < 0.002), the dynamic stretching condition (F = 6.23; p = 0.004) and an interaction effect (F = 41.19; p = 0.0001) were observed. A significant decrease in sprint time (improvement in sprint performance) post-ADS1 (2.56%, p = 0.001) and post-ADS2 (2.61%, p = 0.001) was observed. Conversely, the results indicated a significant increase in sprint time (sprint performance impairment) post-ADS3 condition (2.58%, p = 0.001). Data indicate that performing 1-2 sets of 20 m of active dynamic stretches in a warm-up can enhance 20-m sprint performance. The results delineated that 3 sets of ADS repetitions could induce acute fatigue and impair sprint performance within 5 minutes of the warm-up.  相似文献   

2.
The purpose of the present investigation was to observe the ergogenic potential of 0.3 g·kg-1 of sodium bicarbonate (NaHCO3) in competitive, nonelite swimmers using a repeated swim sprint design that eliminated the technical component of turning. Six male (181.2 ± 7.2 cm; 80.3 ± 11.9 kg; 50.8 ± 5.5 ml·kg-1·min-1 VO2max) and 8 female (168.8 ± 5.6 cm; 75.3 ± 10.1 kg; 38.8 ± 2.6 ml·kg-1·min-1 VO2max) swimmers completed 2 trial conditions (NaHCO3 [BICARB] and NaCl placebo [PLAC]) implemented in a randomized (counterbalanced), single blind manner, each separated by 1 week. Swimmers were paired according to ability and completed 8, 25-m front crawl maximal effort sprints each separated by 5 seconds. Blood acid-base status was assessed preingestion, pre, and postswim via capillary finger sticks, and total swim time was calculated as a performance measure. Total swim time was significantly decreased in the BICARB compared to PLAC condition (p = 0.04), with the BICARB condition resulting in a 2% decrease in total swim time compared to the PLAC condition (159.4 ± 25.4 vs. 163.2 ± 25.6 seconds; mean difference = 4.4 seconds; 95% confidence interval = 8.7-0.1). Blood analysis revealed significantly elevated blood buffering potential preswim (pH: BICARB = 7.48 ± 0.01, PLAC = 7.41 ± 0.01) along with a significant decrease in extracellular K+ (BICARB = 4.0 ± 0.1 mmol·L-1, PLAC = 4.6 ± 0.1 mmol·L-1). The findings suggest that 0.3 g·kg-1 NaHCO3 ingested 2.5 hours before exercise enhances the blood buffering potential and may positively influence swim performance.  相似文献   

3.
This study aimed to verify whether basketball players are able to maintain strength (handgrip), jump (countermovement jump [CMJ]), sprint (10 m and 10 m bouncing the ball [10 mBB]), and interlimb coordination (i.e., synchronized hand and foot flexions and extensions at 80, 120, and 180 bpm) performances at the end of their game. Ten young (age 15.7 ± 0.2 years) male basketball players volunteered for this study. During the friendly game, heart rate (HR), rate of perceived exertion (RPE), and rate of muscle pain (RMP) were assessed to evaluate the exercise intensity. Overall, players spent 80% of the time playing at intensities higher than 85% HRmax. Main effects (p < 0.05) for game periods emerged for HR and the number of players involved in a single action, with lower occurrence of maximal efforts and higher involvement of teammates after the first 2 periods. At the end of the game, players reported high (p < 0.05) RPE (15.7 ± 2.4) and RMP (5.2 ± 2.3) values; decreased (p < 0.05) sprint capabilities (10 m: pre = 1.79 ± 0.09 seconds, post = 1.84 ± 0.08 seconds; 10 mBB: pre = 1.81 ± 0.11 seconds, post = 1.96 ± 0.08 seconds); increased (p < 0.05) interlimb coordination at 180 bpm (pre = 33.3 ± 20.2 seconds, post = 43.9 ± 19.8 seconds); and maintained jump (pre = 35.2 ± 5.2 cm, post = 35.7 ± 5.2 cm), handgrip (pre = 437 ± 73 N, post = 427 ± 55 N), and coordinative performances at lower frequencies of executions (80 bpm: pre = 59.7 ± 1.3 seconds, post = 60.0 ± 0.0 seconds; 120 bpm: pre = 54.7 ± 12.3 seconds, post = 57.3 ± 6.7 seconds). These findings indicate that the heavy load of the game exerts beneficial effects on the efficiency of executive and attentive control functions involved in complex motor behaviors. Coaches should structure training sessions that couple intense physical exercises with complex coordination tasks to improve the attentional capabilities of the players.  相似文献   

4.
The purpose of this study was to examine the effect of 10 weeks' 40-m repeated sprint training program that does not involve strength training on sprinting speed and repeated sprint speed on young elite soccer players. Twenty young well-trained elite male soccer players of age (±SD) 16.4 (±0.9) years, body mass 67.2 (±9.1) kg, and stature 176.3 (±7.4) cm volunteered to participate in this study. All participants were tested on 40-m running speed, 10 × 40-m repeated sprint speed, 20-m acceleration speed, 20-m top speed, countermovement jump (CMJ), and aerobic endurance (beep test). Participants were divided into training group (TG) (n = 10) and control group (CG) (n = 10). The study was conducted in the precompetition phase of the training program for the participants and ended 13 weeks before the start of the season; the duration of the precompetition period was 26 weeks. The TG followed a Periodized repeated sprint training program once a week. The training program consisted of running 40 m with different intensities and duration from week to week. Within-group results indicate that TG had a statistically marked improvement in their performance from pre to posttest in 40-m maximum sprint (-0.06 seconds), 10 × 40-m repeated sprint speed (-0.12 seconds), 20- to 40-m top speed (-0.05 seconds), and CMJ (2.7 cm). The CG showed only a statistically notable improvement from pre to posttest in 10 × 40-m repeated sprint speed (-0.06 seconds). Between-group differences showed a statistically marked improvement for the TG over the CG in 10 × 40-m repeated sprint speed (-0.07 seconds) and 20- to 40-m top speed (-0.05 seconds), but the effect of the improvement was moderate. The results further indicate that a weekly training with repeated sprint gave a moderate but not statistically marked improvement in 40-m sprinting, CMJ, and beep test. The results of this study indicate that the repeated sprint program had a positive effect on several of the parameters tested. However, because the sample size in this study is 20 participants, the results are valid only for those who took part in this study. Therefore, we advice to use repeated sprint training similar to the one in this study only in periods where the players have no speed training included in their program. Furthermore, the participants in this study should probably trained strength, however, benefits were observed even without strength training is most likely to be caused by the training specificity.  相似文献   

5.
Massage is a commonly utilized therapy within sports, frequently intended as an ergogenic aid prior to performance. However, evidence as to the efficacy of massage in this respect is lacking, and massage may in some instances reduce force production. The aim of this study was to investigate the effect of massage on subsequent 30-m sprint running performance. Male university level repeat sprint sports players volunteered for the study (n = 37). After each of 3 treatment conditions, subjects completed a standardized warm-up followed by three 30-m sprint trials in a counterbalanced crossover design. Treatment conditions were 15 minutes of lower-limb massage (M), 15 minutes of placebo ultrasound (PU), and rest (R). Thirty-meter sprint times were recorded (including 10-m split times) for the 3 trials under each condition. Best times at 10 m (M: 1.85 +/- 0.09 seconds, PU: 1.84 +/- 0.11 seconds, R: 1.83 +/- 0.10 seconds) and 30 m (M: 4.41 +/- 0.27 seconds, PU: 4.39 +/- 0.28 seconds, R: 4.39 +/- 0.28 seconds) were not significantly different (p > 0.05). There was no significant treatment, trial, or interaction effect for 10- or 30-m sprint times (p > 0.05). No difference was seen in the location of subjects' best times across the 3 trials (p > 0.05). Relative to placebo or control, the results of this study showed that a controlled 15-minute lower-limb massage administered prior to warm-up had no significant effect on subsequent 30-m sprint performance. Massage remains indicated prior to performance where other benefits, such as reduced muscle spasm and psychological stress, might be served to the athlete.  相似文献   

6.
It is unclear if a constant sprint-to-rest ratio allows full performance recovery between repeated sprints over different distances. This is important for the development of sprint-training programs. Additionally, there is conflicting evidence on whether active recovery enhances sprint performance. Three repeated sprint protocols were used (22 × 15, 13 × 30, and 8 × 50 m), with each having an active and passive recovery. Each trial was conducted with an initial sprint-to-rest ratio of 1:10. Repeated sprints were analyzed by comparing the first sprint to the last sprint. For the 15-m trials, there were no significant main effects for recovery or time and no significant interaction. For the 30-m trials, there was no main effect for recovery, but a main effect for time (F[1,10] = 15.995, p = 0.003; mean difference = 0.20 seconds, 95% confidence interval [CI] = 0.09-0.31 seconds, d = 1.4 [large effect]). There was no interaction of recovery and time in the 30-m trials. For the 50-m trials, there was no main effect for recovery, but a main effect for time (F[1,10] = 34.225, p = 0.0002; mean difference = 0.39 seconds, 95% CI = 0.24-0.55 seconds, d = 1.3 [large effect]). There was no interaction of recovery and time in the 50-m trials. The results demonstrate that a 1:10 sprint-to-rest ratio allows full performance recovery between 15-m sprints, but not between sprints of 30 or 50 m, and that recovery mode did not influence repeated sprint performance.  相似文献   

7.
The aim of this study was to examine the effect of recovery mode on repeated sprint ability in young basketball players. Sixteen basketball players (age, 16.8 +/- 1.2 years; height, 181.3 +/- 5.7 cm; body mass, 73 +/- 10 kg; VO2max, 59.5 +/- 7.9 mL x kg(-1) x min(-1)) performed in random order over 2 separate occasions 2 repeated sprint ability protocols consisting of 10 x 30-m shuttle run sprints with 30 seconds of passive or active (running at 50% of maximal aerobic speed) recovery. Results showed that fatigue index (FI) during the active protocol was significantly greater than in the passive condition (5.05 +/- 2.4, and 3.39 +/- 2.3, respectively, p < 0.001). No significant association was found between VO2peak and FI and sprint total time (TT) in either repeated sprint protocols. Blood lactate concentration at 3 minutes post exercise was not significantly different between the 2 recovery conditions. The results of this study show that during repeated sprinting, passive recovery enabled better performance, reducing fatigue. Consequently, the use of passive recovery is advisable during competition in order to limit fatigue as a consequence of repeated high intensity exercise.  相似文献   

8.
The aim of this study was to describe and compare the blood metabolic responses obtained after a single maximal exercise in elite and less-successful athletes and to investigate whether these responses are related to sprint performance. Eleven elite (ELI) and 14 regional (REG) long sprint runners performed a 300-m running test as fast as possible. Blood samples were taken at rest and at 4 minutes after exercise for measurements of blood lactate concentration [La] and acid-base status. The blood metabolic responses of ELI subjects compared to those of REG subjects for pH (7.07 ± 0.05 vs. 7.14 ± 1.5), sodium bicarbonate concentration ([HCO(3)(-)], 8.1 ± 1.5 vs. 9.8 ± 1.8 mmol·L(-1)), hemoglobin O(2) saturation (SaO(2)) (94.7 ± 1.8 vs. 96.2 ± 1.6%) were significantly lower (p < 0.05), and [La] was significantly higher in ELI (21.1 ± 2.9 vs. 19.1 ± 1.2 mmol·L(-1), p < 0.05). The 300-m performance (in % world record) was negatively correlated with pH (r = -0.55, p < 0.01), SaO2 (r = -0.64, p < 0.001), [HCO(3)(-)] (r = -0.40, p < 0.05), and positively correlated with [La] (r = 0.44, p < 0.05). In conclusion, for the same quantity of work, the best athletes are able to strongly alter their blood acid-base balance compared to underperforming runners, with larger acidosis and lactate accumulation. To obtain the pH limits with acute maximal exercise, coaches must have their athletes perform a distance run with duration of exercise superior to 35 seconds. The blood lactate accumulation values (mmol·L(-1)·s(-1)) recorded in this study indicate that the maximal glycolysis rate obtained in the literature from short sprint distances is maintained, but not increased, until 35 seconds of exercise.  相似文献   

9.
The purpose of this study was to determine which phase of a 30-m sprint (acceleration and/or maximal velocity) was affected by preperformance static stretching. Data were collected from 20 elite female soccer players. On two nonconsecutive days, participants were randomly assigned to either the stretch or no-stretch condition. On the first day, the athletes in the no-stretch condition completed a standard warm-up protocol and then performed three 30-m sprints, with a 2-minute rest between each sprint. The athletes in the stretch condition performed the standard warm-up protocol, completed a stretching routine of the hamstrings, quadriceps, and calf muscles, and then immediately performed three 30-m sprints, also with a 2-minute rest between each sprint. On the second day, the groups were reversed, and identical procedures were followed. One-way repeated-measures analyses of variance revealed a statistically significant difference in acceleration (p < 0.0167), maximal-velocity sprint time (p < 0.0167), and overall sprint time (p < 0.0167) between the stretch and no-stretch conditions. Static stretching before sprinting resulted in slower times in all three performance variables. These findings provide evidence that static stretching exerts a negative effect on sprint performance and should not be included as part of the preparation routine for physical activity that requires sprinting.  相似文献   

10.
Repeated sprint testing is gaining popularity in team sports, but the methods of data analysis and relationships to speed and endurance qualities are not well described. We compared three different methods for analyzing repeated sprint test results, and we quantified relationships between repeated sprints, short sprints, and endurance test scores. Well-trained male junior Australian Football players (n = 60, age 18.1 +/- 0.4 years, height 1.88 +/- 0.07 m, mass 82.0 +/- 8.1 kg; mean +/- SD) completed a 6 x 30-m repeated sprint running test on a 20-second cycle, a 20-m sprint test (short sprint), and the 20-m multistage shuttle run for endurance. Repeated sprint results were evaluated in three ways: total time for all six sprints (TOTAL), percent change from predicted times (PRED) from the fastest 30-m sprint time, and percent change from first to last sprint (CHANGE). We observed a very large decrement (CHANGE 6.3 +/- 0.7%, mean +/- 90% confidence limits) in 30-m performance from the first to last sprint (4.16 +/- 0.10 to 4.42 +/- 0.11 seconds, mean +/- SD). Results from TOTAL were highly correlated with 20-m sprint and 20-m multistage shuttle run tests. Performance decrements calculated by PRED were highly correlated with TOTAL (r = 0.91), but neither method was directly comparable with CHANGE (r = -0.23 and r = 0.12 respectively). TOTAL was moderately correlated with fastest 20-m sprint time (r = 0.66) but not the 20-m multistage shuttle run (r = -0.20). Evaluation of repeated sprint testing is sensitive to the method of data analysis employed. The total sprint time and indices of the relative decrement in performance are not directly interchangeable. Repeated sprint ability seems more related to short sprint qualities than endurance fitness.  相似文献   

11.
The purpose of this study was to identify whether there was a relationship between relative strength during a 1 repetition maximum (1RM) back squat and 5-, 10-, and 20-m sprint performances in both trained athletes and recreationally trained individuals. Professional rugby league players (n = 24) and recreationally trained individuals (n = 20) participated in this investigation. Twenty-meter sprint time and 1RM back squat strength, using free weights, were assessed on different days. There were no significant (p ≥ 0.05) differences between the well-trained and recreationally trained groups for 5-m sprint times. In contrast, the well-trained group's 10- and 20-m sprint times were significantly quicker (p = 0.004; p = 0.002) (1.78 + 0.06 seconds; 3.03 + 0.09 seconds) compared with the recreationally trained group (1.84 + 0.07 seconds; 3.13 + 0.11 seconds). The athletes were significantly stronger (170.63 + 21.43 kg) than the recreationally trained individuals (135.45 + 30.07 kg) (p = 0.01); however, there were no significant differences (p > 0.05) in relative strength between groups (1.78 + 0.27 kg/kg; 1.78 + 0.33 kg/kg, respectively). Significant negative correlations were found between 5-m sprint time and relative squat strength (r = -0.613, power = 0.96, p = 0.004) and between relative squat strength and 10- and 20-m sprint times in the recreationally trained group (r = -0.621, power = 0.51, p = 0.003; r = -0.604, power = 0.53, p = 0.005, respectively). These results, indicating that relative strength, are important for initial sprint acceleration in all athletes but more strongly related to sprint performance over greater distances in recreationally trained individuals.  相似文献   

12.
R?nnestad, BR and Ellefsen, S. The effects of adding different whole-body vibration frequencies to preconditioning exercise on subsequent sprint performance. J Strength Cond Res 25(12): 3306-3310, 2011-The phenomenon postactivation potentiation can possibly be used to acutely improve sprint performance. The purpose of this study was to investigate the effect of adding whole-body vibration (WBV) to body-loaded half-squats, performed as preconditioning activity to the 40-m sprint test. Nine male amateur soccer players performed 1 familiarization session and 6 separate test sessions. Each session included a standardized warm-up followed by 1 of the after preconditioning exercises: 30-seconds of half-squats with WBV at either 50 or 30 Hz or half-squats without WBV. The 40-m sprint was performed 1 minute after the preconditioning exercise. For each subject, each of the 3 protocols was repeated twice on separate days in a randomized order. Mean values were used in the statistical analysis. Performing the preconditioning exercise with WBV at a frequency of 50 Hz resulted in a superior 40-m sprint performance compared to preconditioning exercise without WBV (5.48 ± 0.19 vs. 5.52 ± 0.21 seconds, respectively, p < 0.05). There was no difference between preconditioning exercise with WBV at a frequency of 30 Hz and the no-WBV condition. In conclusion, preconditioning exercise performed with WBV at 50 Hz seems to enhance 40-m sprint performance in recreationally trained soccer players. The present findings suggest that coaches can incorporate such exercise into the warm-up to improve sprint performance or the quality of the sprint training.  相似文献   

13.
The purpose of this study was to determine the relationship between measures of unilateral and bilateral jumping performance and 10- and 25-m sprint performance. Fifteen division I women soccer players (height 165 ± 2.44 cm, mass 61.65 ± 7.7 kg, age 20.19 ± 0.91 years) volunteered to participate in this study. The subjects completed a 10- and 25-m sprint test. The following jump kinematic variables were measured using accelerometry: sprint time, step length, step frequency, jump height and distance, contact time, concentric contact time, and flight time (Inform Sport Training Systems, Victoria, BC, Canada). The following jumps were completed in random order: bilateral countermovement vertical jump, bilateral countermovement horizontal jump, bilateral 40-cm drop vertical jump, bilateral 40-cm drop horizontal jump, unilateral countermovement vertical jump (UCV), unilateral countermovement horizontal jump, unilateral 20-cm drop vertical jump (UDV), and unilateral 20-cm drop horizontal jump (UDH). The trial with the best jump height or distance, reactive strength (jump height or distance/total contact time), and flight time to concentric contact time ratio (FT/CCT) was recorded to analyze the relationship between jump kinematics and sprint performance. None of the bilateral jump kinematics significantly correlated with 10- and 25-m sprint time, step length, or step frequency. Right-leg jump height (r = -0.71, p = 0.006, SEE = 0.152 seconds), FT/CCT (r = -0.58, p = 0.04, SEE = 0.176 seconds), and combined right and left-leg jump height (r = -0.61) were significantly correlated with the 25-m sprint time during the UCV. Right-leg FT/CCT was also significantly related to 25-m step length (r = 0.68, p = 0.03, SEE = 0.06 m) during the UDV. The combined right and left leg jump distance to standing height ratio during the UDH significantly correlated (r = -0.58) with 10-m sprint time. In comparison to bilateral jumps, unilateral jumps produced a stronger relationship with sprint performance.  相似文献   

14.
ABSTRACT: Thatcher, R, Gifford, R, and Howatson, G. The influence of recovery duration after heavy resistance exercise on sprint cycling performance. J Strength Cond Res 26(11): 3089-3094, 2012-The aim of this study was to determine the optimal recovery duration after prior heavy resistance exercise (PHRE) when performing sprint cycling. On 5 occasions, separated by a minimum of 48 hours, 10 healthy male subjects (mean ± SD), age 25.5 ± 7.7 years, body mass 82.1 ± 9.0 kg, stature 182.6 ± 87 cm, deadlift 1-repetition maximum (1RM) 142 ± 19 kg performed a 30-second sprint cycling test. Each trial had either a 5-, 10-, 20-, or 30-minute recovery after a heavy resistance activity (5 deadlift repetitions at 85% 1RM) or a control trial with no PHRE in random order. Sprint cycling performance was assessed by peak power (PP), fatigue index, and mean power output over the first 5 seconds (MPO5), 10 seconds (MPO10), and 30 seconds (MPO30). One-way analysis of variance with repeated measures followed by paired t-tests with a Bonferroni adjustment was used to analyze data. Peak power, MPO5, and MPO10 were all significantly different during the 10-minute recovery trial to that of the control condition with values of 109, 112, and 109% of control, respectively; no difference was found for the MPO30 between trials. This study supports the use of PHRE as a strategy to improve short duration, up to, or around 10-second, sprint activity but not longer duration sprints, and a 10-minute recovery appears to be optimal to maximize performance.  相似文献   

15.
The purpose of this study was to examine the physiological effects of different sprint repetition protocols on professional footballers. Of particular interest were the abilities of repeated sprint protocols to induce fatigue to an extent observed during competitive soccer. Six professional soccer players were assessed for fatigue rate and physiological responses of heart rate (HR), blood lactate (BLa), and rating of perceived exertion (RPE) during the performance of 4 repeated sprint drills, each totaling a sprint distance of 600 m. The 4 drills used 15- or 40-m sprints with 1:4 or 1:6 exercise: rest ratios. The 15-m sprint drill with 1:4 exercise:rest ratio induced the greatest fatigue (final sprint time 15% greater than initial sprint time) and greatest physiological responses. The 40-m sprint drill using a 1:4 exercise:rest ratio produced similar BLa and HR responses to the 15-m drill (13-14 mmol.L(-1) and 89% HRmax, respectively) but significantly lower RPE (mean +/- SD: 17.1 +/- 0.4 vs. 18.8 +/- 0.4, p < 0.05) and fatigue rates (11.1 vs. 15.0%, p < 0.01). Both sprint distance and exercise:rest ratio independently influenced fatigue rate, with the 15-m sprint distance and the 1:4 exercise:rest ratio inducing significantly (p < 0.01) greater fatigue than the 40-m sprint distance and the 1:6 exercise:rest ratio. The magnitude of fatigue during the 40- x 15-m sprint drill using a 1:6 exercise:rest ratio was 7.5%, which is close to the fatigue rate previously reported during actual soccer play. The present study is the first to examine both variations in sprint distances and rest ratios simultaneously, and the findings may aid the design of repeated sprint training for soccer.  相似文献   

16.
Because previous research has shown a relationship between maximal squat strength and sprint performance, this study aimed to determine if changes in maximal squat strength were reflected in sprint performance. Nineteen professional rugby league players (height = 1.84 ± 0.06 m, body mass [BM] = 96.2 ± 11.11 kg, 1 repetition maximum [1RM] = 170.6 ± 21.4 kg, 1RM/BM = 1.78 ± 0.27) conducted 1RM squat and sprint tests (5, 10, and 20 m) before and immediately after 8 weeks of preseason strength (4-week Mesocycle) and power (4-week Mesocycle) training. Both absolute and relative squat strength values showed significant increases after the training period (pre: 170.6 ± 21.4 kg, post: 200.8 ± 19.0 kg, p < 0.001; 1RM/BM pre: 1.78 ± 0.27 kg·kg(-1), post: 2.05 ± 0.21 kg·kg(-1), p < 0.001; respectively), which was reflected in the significantly faster sprint performances over 5 m (pre: 1.05 ± 0.06 seconds, post: 0.97 ± 0.05 seconds, p < 0.001), 10 m (pre: 1.78 ± 0.07 seconds, post: 1.65 ± 0.08 seconds, p < 0.001), and 20 m (pre: 3.03 ± 0.09 seconds, post: 2.85 ± 0.11 seconds, p < 0.001) posttraining. Whether the improvements in sprint performance came as a direct consequence of increased strength or whether both are a function of the strength and power mesocycles incorporated into the players' preseason training is unclear. It is likely that the increased force production, noted via the increased squat performance, contributed to the improved sprint performances. To increase short sprint performance, athletes should, therefore, consider increasing maximal strength via the back squat.  相似文献   

17.
The difference is in the start: impact of timing and start procedure on sprint running performance. The purpose of this study was to compare different sprint start positions and to generate correction factors between popular timing triggering methods on 40-m/40-yd sprint time. Fourteen female athletes (17 ± 1 years), personal best 100 m: 13.26 (±0.68) seconds and 11 male athletes (20 ± 5 years), personal best 100 m: 11.58 (±0.74) seconds participated. They performed 2 series of 3 40-m sprints in randomized order: (a) start from the block, measured by means of Brower audio sensor (BAS) and Dartfish video timing (DVT), (b) 3-point start, measured by using hand release pod (HR) and DVT, and (c) standing start, triggered by both photocell across starting line (SFC), and foot release (FR) plus DVT. Video analysis was performed by 2 independent observers and averaged. Simultaneous measurements at national athletics competitions demonstrated that DVT and BAS were equivalent to Omega Timing within the limits of precision of video timing (±0.01 seconds). Hand and floor timer triggering showed small but significant biases compared with movement captured from video (0.02-0.04 seconds), presumably because of sensitivity of pressure thresholds. Coefficient of variation for test-retest timing using different starting positions ranged from 0.7 to 1.0%. Compared with block starts reacting to gunfire, HR, SFC, and FR starts yielded 0.17 ± 0.09, 0.27 ± 0.12, and 0.69 ± 0.11 second faster times, respectively, over 40 m (all p < 0.001) because of inclusion or exclusion of reaction time, plus momentum, and body position differences at trigger moment. Correction factors for the conversion of 40 m/40 yd and 40 yd/40 m were 0.92 and 1.08, respectively. The correction factors obtained from this study may facilitate more meaningful comparisons of published sprint performances.  相似文献   

18.
This investigation evaluated the effects of a 4-week, 12-session training program using resisted sprint training (RST), assisted sprint training (AST), and traditional sprint training (TST) on maximal velocity and acceleration in National Collegiate Athletic Association (NCAA) Division IA female soccer athletes (n = 27). The subjects, using their respective training modality, completed 10 maximal effort sprints of 20 yd (18.3 m) followed by a 20-yd (18.3 m) deceleration to jog. Repeated measures multivariate analyses of variance and analyses of variance demonstrated significant (p < 0.001) 3-way interactions (time × distance × group) and 2-way interactions (time × group), respectively, for both velocity and acceleration. Paired t-tests demonstrated that maximum 40-yd (36.6-m) velocity increased significantly in both the AST (p < 0.001) and RST (p < 0.05) groups, with no change in the TST group. Five-yard (4.6-m), 15-yd (13.7 m), 5- to 15-yd (4.6- to 13.7-m) acceleration increased significantly (p < 0.01) in the AST group and did not change in the RST and TST groups. Fifteen- to 25-yd (13.7- to 22.9-m) acceleration increased significantly (p < 0.01) in the RST group, decreased significantly (p < 0.01) in the AST group, and was unchanged in the TST group. Twenty-five to 40-yd (22.9- to 36.6-m) acceleration increased significantly (p < 0.05) in the RST group and remained unchanged in the AST and TST groups. It is purposed that the increased 5-yd (4.6-m) and 15-yd (13.7-m) accelerations were the result of enhanced neuromuscular facilitation in response to the 12-session supramaximal training protocol. Accordingly, it is suggested that athletes participating in short distance acceleration events (i.e., ≤15 yd; ≤13.7 m) use AST protocols, whereas athletes participating in events that require greater maximum velocity (i.e., >15 yd; > 13.7 m) should use resisted sprint training protocols.  相似文献   

19.
The purpose of this investigation was to determine whether performing high force or explosive force movements prior to sprinting would improve running speed. Fifteen NCAA Division III football players performed a heavy-load squat (HS), loaded countermovement jump (LCMJ), or control (C) warm-up condition in a counterbalanced randomized order over the course of 3 weeks. The HS protocol consisted of 1 set of 3 repetitions at 90% of the subject's 1 repetition maximum (1RM). The LCMJ protocol was 1 set of 3 repetitions at 30% of the subject's 1RM. At 4 minutes post-warm-up, subjects completed a timed 40-m dash with time measured at 10, 30, and 40 m. The results of the study indicated that when preceded by a set of HS, subjects ran 0.87% faster (p < or = 0.05) in the 40-m dash (5.35 +/- 0.32 vs. 5.30 +/- 0.34 seconds) in comparison to C. No significant differences were observed in the 10-m or 30-m split times between the 3 conditions. The data from this study suggest that an acute bout of low-volume heavy lifting with the lower body may improve 40-m sprint times, but that loaded countermovement jumps appear to have no significant effect.  相似文献   

20.
The purpose of this study was to analyze 2 different long-sprint training programs (TPs) of equal total work load, completed either with short recovery (SR) or long recovery (LR) between sets and to compare the effects of 6 long-sprint training sessions (TSs) conducted over a 2-week period on a 300-m performance. Fourteen trained subjects performed 3 pretraining maximal sprints (50-, 100-, and 300-m), were paired according to their 300-m performance, and randomly allocated to an LR or SR group, which performed 6 TSs consisting of sets of 150, 200, or 250 m. The recovery in the LR group was double that of the SR group. During the third TS and the 300-m pretest and posttest, blood pH, bicarbonate concentration ([HCO??]), excess-base (EB), and lactate concentration were recorded. Compared with a similar TS performed with SR, the LR training tends to induce a greater alteration of the acid-base balance: pH: 7.09 ± 0.08 (LR) and 7.14 ± 0.05 (SR) (p = 0.10), [HCO??]: 7.8 ± 1.9 (LR) and 9.6 ± 2.7 (SR) (p = 0.04), and EB: -21.1 ± 3.8 (LR) and -17.7 ± 2.8 (SR) (p = 0.11). A significant improvement in the 300-m performance between pre-TP and post-TP (42.45 ± 2.64 vs. 41.52 ± 2.45, p = 0.01) and significant decreases in pH (p < 0.01), EB (p < 0.001) and increase in [La] (p < 0.001) have been observed post-TP compared with those pre-TP. Although sprint training with longer recovery induces higher metabolic disturbances, both sprint training regimens allow a similar 300-m performance improvement with no concomitant significant progress in the 50- and 100-m performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号