首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to describe and compare the blood metabolic responses obtained after a single maximal exercise in elite and less-successful athletes and to investigate whether these responses are related to sprint performance. Eleven elite (ELI) and 14 regional (REG) long sprint runners performed a 300-m running test as fast as possible. Blood samples were taken at rest and at 4 minutes after exercise for measurements of blood lactate concentration [La] and acid-base status. The blood metabolic responses of ELI subjects compared to those of REG subjects for pH (7.07 ± 0.05 vs. 7.14 ± 1.5), sodium bicarbonate concentration ([HCO(3)(-)], 8.1 ± 1.5 vs. 9.8 ± 1.8 mmol·L(-1)), hemoglobin O(2) saturation (SaO(2)) (94.7 ± 1.8 vs. 96.2 ± 1.6%) were significantly lower (p < 0.05), and [La] was significantly higher in ELI (21.1 ± 2.9 vs. 19.1 ± 1.2 mmol·L(-1), p < 0.05). The 300-m performance (in % world record) was negatively correlated with pH (r = -0.55, p < 0.01), SaO2 (r = -0.64, p < 0.001), [HCO(3)(-)] (r = -0.40, p < 0.05), and positively correlated with [La] (r = 0.44, p < 0.05). In conclusion, for the same quantity of work, the best athletes are able to strongly alter their blood acid-base balance compared to underperforming runners, with larger acidosis and lactate accumulation. To obtain the pH limits with acute maximal exercise, coaches must have their athletes perform a distance run with duration of exercise superior to 35 seconds. The blood lactate accumulation values (mmol·L(-1)·s(-1)) recorded in this study indicate that the maximal glycolysis rate obtained in the literature from short sprint distances is maintained, but not increased, until 35 seconds of exercise.  相似文献   

2.
The aim of this study was to compare the effect of short-sprint repetition and long-sprint repetition training (SST, LST), matched for total distance, on selected fitness components in young soccer players. Thirty young (14-15 years) soccer players were randomly assigned to either the short-sprint training group or long-sprint training group and completed 2 similar sets of fitness tests before and after 7 weeks of training. The 2 training programs consisted of SST (4-6 sets of 4 × 50-m all-out sprint) and LST (4-6 sets of 200-m run at 85% of maximum speed), each performed 3 times a week. Before training, there were no baseline between-group differences in predicted VO2max, standing long jump, 30-m sprint time, 4 × 10-m shuttle running time, and 250-m running time. Both training programs led to a significant improvement in VO2max (predicted from the 20-m shuttle run, p < 0.01), with no between-group difference (p = 0.14). Both training programs also led to a significant improvement in the anaerobic fitness variables of 30-m sprint time (p < 0.01), 4 × 10-m shuttle running time (p < 0.01), and 250-m running time (p < 0.01), with no between-group differences. Neither of the training programs had a significant effect on standing long jump (p = 0.21). The study showed that long, near-maximal sprints, and short, all-out sprint training, matched for total distance, are equally effective in enhancing both the aerobic and anaerobic fitness of young soccer players. Therefore, to maintain a player's training interest and enthusiasm, coaches may alternate between these methods during the busy soccer season.  相似文献   

3.
We studied the specificity of elastic-cord towing by measuring selected kinematics of the acceleration phase of sprinting. Nine collegiate sprinters ran two 20-m maximal sprints (MSs) and towed sprints (TSs) that were recorded on high-speed video (180 Hz). Sagittal plane kinematics of a 4-segment model of the right side of the body were digitized for a complete stride at the 15-m point for the fastest trial. Significant (p < 0.001) differences were observed for horizontal velocity of the center of mass (CoM), stride length (SL), and horizontal distance from the CoM of the foot to the CoM of the body. There was no significant difference in stride rate between the MS and TS conditions. Omega-squared analysis showed that elastic-cord towing accounted for most of the variance in acute changes in horizontal velocity (73%), SL (68%), and horizontal position of the CoM at foot contact (64%). Elastic-cord tow training resulted in significant acute changes in sprint kinematics in the acceleration phase of an MS that do not appear to be sprint specific. More research is needed on the specificity of TS training and long-term effects on sprinting performance.  相似文献   

4.
The purpose of this study was to determine the relationship between measures of unilateral and bilateral jumping performance and 10- and 25-m sprint performance. Fifteen division I women soccer players (height 165 ± 2.44 cm, mass 61.65 ± 7.7 kg, age 20.19 ± 0.91 years) volunteered to participate in this study. The subjects completed a 10- and 25-m sprint test. The following jump kinematic variables were measured using accelerometry: sprint time, step length, step frequency, jump height and distance, contact time, concentric contact time, and flight time (Inform Sport Training Systems, Victoria, BC, Canada). The following jumps were completed in random order: bilateral countermovement vertical jump, bilateral countermovement horizontal jump, bilateral 40-cm drop vertical jump, bilateral 40-cm drop horizontal jump, unilateral countermovement vertical jump (UCV), unilateral countermovement horizontal jump, unilateral 20-cm drop vertical jump (UDV), and unilateral 20-cm drop horizontal jump (UDH). The trial with the best jump height or distance, reactive strength (jump height or distance/total contact time), and flight time to concentric contact time ratio (FT/CCT) was recorded to analyze the relationship between jump kinematics and sprint performance. None of the bilateral jump kinematics significantly correlated with 10- and 25-m sprint time, step length, or step frequency. Right-leg jump height (r = -0.71, p = 0.006, SEE = 0.152 seconds), FT/CCT (r = -0.58, p = 0.04, SEE = 0.176 seconds), and combined right and left-leg jump height (r = -0.61) were significantly correlated with the 25-m sprint time during the UCV. Right-leg FT/CCT was also significantly related to 25-m step length (r = 0.68, p = 0.03, SEE = 0.06 m) during the UDV. The combined right and left leg jump distance to standing height ratio during the UDH significantly correlated (r = -0.58) with 10-m sprint time. In comparison to bilateral jumps, unilateral jumps produced a stronger relationship with sprint performance.  相似文献   

5.
The aim of this study was to compare the effect of 2 repeated sprint training interventions on an intermittent peak running speed (IPRS) test designed for Australian Rules football. The test required participants to perform 10 × 10-m maximal efforts on an 80-m course every 25 seconds, for each of which the mean peak speed (kilometers per hour) was recorded to determine IPRS. The training interventions were performed twice weekly for 4 weeks immediately before regular football training. In the constant volume intervention (CVol), sprint repetition number remained at 10 (n = 9), and in the linear increase in volume (LIVol) intervention, repetition number increased linearly each week by 2 repetitions (n = 12). Intermittent peak running speed, 300-m shuttle test performance, and peak running speed were assessed before and upon completion of training. All measures were compared to a control group (CON; n = 8) in which players completed regular football training exclusively. Intermittent peak running speed performance in CVol and LIVol improved significantly (p < 0.01) by 5.2 and 3.8%, respectively, with no change in IPRS for CON. There were no differences in IPRS changes between CVol and LIVol. Additionally, peak running speed improved significantly (p < 0.01) by 5.1% for CVol, whereas 300-m shuttle performance improved significantly (p < 0.01) by 2.6% for LIVol only. Intermittent peak running speed, 300-m shuttle performance and peak running speed were improved after 4 weeks of training; however, progressively increasing sprint repetition number had no greater advantage on IPRS adaptation. Additionally, exclusive regular football training over a 4-week period is unlikely to improve IPRS, peak running speed, or 300-m shuttle performance.  相似文献   

6.
The purpose of this study was to examine the effect of 10 weeks' 40-m repeated sprint training program that does not involve strength training on sprinting speed and repeated sprint speed on young elite soccer players. Twenty young well-trained elite male soccer players of age (±SD) 16.4 (±0.9) years, body mass 67.2 (±9.1) kg, and stature 176.3 (±7.4) cm volunteered to participate in this study. All participants were tested on 40-m running speed, 10 × 40-m repeated sprint speed, 20-m acceleration speed, 20-m top speed, countermovement jump (CMJ), and aerobic endurance (beep test). Participants were divided into training group (TG) (n = 10) and control group (CG) (n = 10). The study was conducted in the precompetition phase of the training program for the participants and ended 13 weeks before the start of the season; the duration of the precompetition period was 26 weeks. The TG followed a Periodized repeated sprint training program once a week. The training program consisted of running 40 m with different intensities and duration from week to week. Within-group results indicate that TG had a statistically marked improvement in their performance from pre to posttest in 40-m maximum sprint (-0.06 seconds), 10 × 40-m repeated sprint speed (-0.12 seconds), 20- to 40-m top speed (-0.05 seconds), and CMJ (2.7 cm). The CG showed only a statistically notable improvement from pre to posttest in 10 × 40-m repeated sprint speed (-0.06 seconds). Between-group differences showed a statistically marked improvement for the TG over the CG in 10 × 40-m repeated sprint speed (-0.07 seconds) and 20- to 40-m top speed (-0.05 seconds), but the effect of the improvement was moderate. The results further indicate that a weekly training with repeated sprint gave a moderate but not statistically marked improvement in 40-m sprinting, CMJ, and beep test. The results of this study indicate that the repeated sprint program had a positive effect on several of the parameters tested. However, because the sample size in this study is 20 participants, the results are valid only for those who took part in this study. Therefore, we advice to use repeated sprint training similar to the one in this study only in periods where the players have no speed training included in their program. Furthermore, the participants in this study should probably trained strength, however, benefits were observed even without strength training is most likely to be caused by the training specificity.  相似文献   

7.
ABSTRACT: Lockie, RG, Murphy, AJ, Scott, BR, and Janse de Jonge, XAK. Quantifying session ratings of perceived exertion for field-based speed training methods in team sport athletes. J Strength Cond Res 26(10): 2721-2728, 2012-Session ratings of perceived exertion (session RPE) are commonly used to assess global training intensity for team sports. However, there is little research quantifying the intensity of field-based training protocols for speed development. The study's aim was to determine the session RPE of popular training protocols (free sprint [FST], resisted sprint [RST], and plyometrics [PT]) designed to improve sprint acceleration over 10 m in team sport athletes. Twenty-seven men (age = 23.3 ± 4.7 years; mass = 84.5 ± 8.9 kg; height = 1.83 ± 0.07 m) were divided into 3 groups according to 10-m velocity. Training consisted of an incremental program featuring two 1-hour sessions per week for 6 weeks. Subjects recorded session RPE 30 minutes post training using the Borg category-ratio 10 scale. Repeated measures analysis of variance found significant (p < 0.05) changes in sprint velocity and session RPE over 6 weeks. All groups significantly increased 0- to 5-m velocity and 0- to 10-m velocity by 4-7%, with no differences between groups. There were no significant differences in session RPE between the groups, suggesting that protocols were matched for intensity. Session RPE significantly increased over the 6 weeks for all groups, ranging from 3.75 to 5.50. This equated to intensities of somewhat hard to hard. Post hoc testing revealed few significant weekly increases, suggesting that session RPE may not be sensitive to weekly load increases in sprint and plyometric training programs. Another explanation, however, could be that the weekly load increments used were not great enough to increase perceived exertion. Nonetheless, the progressive overload of each program was sufficient to improve 10-m sprint performance. The session RPE values from the present study could be used to assess workload for speed training periodization within a team sports conditioning program.  相似文献   

8.
The aim of the study was to investigate the acute effect of a heavy resisted sprint when used as a preload exercise to enhance subsequent 25-m on-ice sprint performance. Eleven competitive ice-hockey players (mean ± SD: Age = 22.09 ± 3.05 years; Body Mass = 83.47 ± 11.7 kg; Height = 1.794 ± 0.060 m) from the English National League participated in a same-subject repeated-measures design, involving 2 experimental conditions. During condition 1, participants performed a 10-second heavy resisted sprint on ice. Condition 2 was a control, where participants rested. An electronically timed 25-m sprint on ice was performed before and 4 minutes after each condition. The results indicated no significant difference (p = 0.176) between pre (3.940 + 0.258 seconds) and post (3.954 + 0.261 seconds) sprint times in the control condition. The intervention condition, however, demonstrated a significant 2.6% decrease in times (p = 0.02) between pre (3.950 + 0.251 seconds) and post (3.859 + 0.288 seconds) test sprints. There was also a significant change (p = 0.002) when compared to the times of the control condition. These findings appear to suggest that the intensity and duration of a single resisted sprint in this study are sufficient to induce an acute (after 4 minutes of rest) improvement in 25-m sprint performance on ice. For those athletes wishing to improve skating speed, heavy resisted sprints on ice may provide a biomechanically suitable exercise for inducing potentiation before speed training drills.  相似文献   

9.
Recently, athletes have transitioned from traditional static stretching during warm-ups to incorporating dynamic stretching routines. However, the optimal volume of dynamic drills is yet to be identified. The aim of this repeated-measures study was to examine varying volumes (1, 2, and 3 sets) of active dynamic stretching (ADS) in a warm-up on 10- and 20-m sprint performance. With a within-subject design, 16 highly trained male participants (age: 20.9 ± 1.3 years; height: 179.7 ± 5.7 cm; body mass: 72.7 ± 7.9 kg; % body fat: 10.9 ± 2.4) completed a 5-minute general running warm-up before performing 3 preintervention measures of 10- to 20-m sprint. The interventions included 1, 2, and 3 sets of active dynamic stretches of the lower-body musculature (gastrocnemius, gluteals, hamstrings, quadriceps, and hip flexors) performed approximately 14 times for each exercise while walking (ADS1, ADS2, and ADS3). The active dynamic warm-ups were randomly allocated before performing a sprint-specific warm-up. Five minutes separated the end of the warm-up and the 3 postintervention measures of 10- to 20-m sprints. There were no significant time, condition, and interaction effects over the 10-m sprint time. For the 0- to 20-m sprint time, a significant main effect for the pre-post measurement (F = 10.81; p < 0.002), the dynamic stretching condition (F = 6.23; p = 0.004) and an interaction effect (F = 41.19; p = 0.0001) were observed. A significant decrease in sprint time (improvement in sprint performance) post-ADS1 (2.56%, p = 0.001) and post-ADS2 (2.61%, p = 0.001) was observed. Conversely, the results indicated a significant increase in sprint time (sprint performance impairment) post-ADS3 condition (2.58%, p = 0.001). Data indicate that performing 1-2 sets of 20 m of active dynamic stretches in a warm-up can enhance 20-m sprint performance. The results delineated that 3 sets of ADS repetitions could induce acute fatigue and impair sprint performance within 5 minutes of the warm-up.  相似文献   

10.
Because previous research has shown a relationship between maximal squat strength and sprint performance, this study aimed to determine if changes in maximal squat strength were reflected in sprint performance. Nineteen professional rugby league players (height = 1.84 ± 0.06 m, body mass [BM] = 96.2 ± 11.11 kg, 1 repetition maximum [1RM] = 170.6 ± 21.4 kg, 1RM/BM = 1.78 ± 0.27) conducted 1RM squat and sprint tests (5, 10, and 20 m) before and immediately after 8 weeks of preseason strength (4-week Mesocycle) and power (4-week Mesocycle) training. Both absolute and relative squat strength values showed significant increases after the training period (pre: 170.6 ± 21.4 kg, post: 200.8 ± 19.0 kg, p < 0.001; 1RM/BM pre: 1.78 ± 0.27 kg·kg(-1), post: 2.05 ± 0.21 kg·kg(-1), p < 0.001; respectively), which was reflected in the significantly faster sprint performances over 5 m (pre: 1.05 ± 0.06 seconds, post: 0.97 ± 0.05 seconds, p < 0.001), 10 m (pre: 1.78 ± 0.07 seconds, post: 1.65 ± 0.08 seconds, p < 0.001), and 20 m (pre: 3.03 ± 0.09 seconds, post: 2.85 ± 0.11 seconds, p < 0.001) posttraining. Whether the improvements in sprint performance came as a direct consequence of increased strength or whether both are a function of the strength and power mesocycles incorporated into the players' preseason training is unclear. It is likely that the increased force production, noted via the increased squat performance, contributed to the improved sprint performances. To increase short sprint performance, athletes should, therefore, consider increasing maximal strength via the back squat.  相似文献   

11.
Crewther, BT, Kilduff, LP, Cook, CJ, Middleton, MK, Bunce, PJ, and Yang, G-Z. The acute potentiating effects of back squats on athlete performance. J Strength Cond Res 25(12): 3319-3325, 2011-This study examined the acute potentiating effects of back squats on athlete performance with a specific focus on movement specificity and the individual timing of potentiation. Nine subelite male rugby players performed 3 protocols on separate occasions using a randomized, crossover, and counterbalanced design. Each protocol consisted of performance testing before a single set of 3 repetition maximum (3RM) back squats, followed by retesting at ~15 seconds, 4, 8, 12, and 16 minutes. The 3 tests were countermovement jumps (CMJs), sprint performance (5 and 10 m), and 3-m horizontal sled pushes with a 100-kg load. Relationships between the individual changes in salivary testosterone and cortisol concentrations and performance were also examined. The 3RM squats significantly (p < 0.001) improved CMJ height at 4 (3.9 ± 1.9%), 8 (3.5 ± 1.5%), and 12 (3.0 ± 1.4%) minutes compared with baseline values, but no temporal changes in sprinting and sled times were identified. On an individual level, the peak relative changes in CMJ height (6.4 ± 2.1%, p < 0.001) were greater than the 3-m sled (1.4 ± 0.6%), 5-m (2.6 ± 1.0%), and 10-m sprint tests (1.8 ± 1.0%). In conclusion, a single set of 3RM squats was found effective in acutely enhancing CMJ height in the study population, especially when the recovery period was individualized for each athlete. The study results also suggest that the potentiating effects of squats may exhibit some degree of movement specificity, being greater for those exercises with similar movement patterns. The current findings have practical implications for prescribing warm-up exercises, individualizing training programs, and for interpreting postactivation potentiation research.  相似文献   

12.
The purpose of this study was to examine the relationship between vertical jump measures and sprint speed over 10, 20, and 40 m in professional basketball players. Thirty-three professional basketball players aged (±SD) (27.4 ± 3.3 years), body mass (89.8 ± 11.1 kg), and stature (192 ± 8.2 cm) volunteered to participate in this study. All participants were tested on squat jump, countermovement jump, and 40-m running speed. The results show that all jump measures in absolute terms were correlated significantly to running performance over 10-, 20-, and 40-m sprint times. None of the jumping performance peak powers and reactive strength were found to have a correlation to running speed times in absolute term. Furthermore, all jump height measures relative to body mass except reactive strength had a marked and significant relationship with all sprint performance times. The results of this study indicate that while there is a strong and marked relationship between 10-, 20-, and 40-m sprint, there is also a considerable variation within the factors that contribute to performance over these distances. This may indicate that, separate training strategies could be implemented to improve running speed over these distances.  相似文献   

13.
The purpose of this study was to gain an insight into the physical and physiological profile of elite Belgian soccer players with specific regard to the player's position on the field. The sample consisted of 289 adult players from 6 different first division teams. The players were divided into 5 subgroups (goalkeepers, center backs, full backs, midfielders, and strikers) according to their self-reported best position on the field. The subjects performed anaerobic (10-m sprint, 5 × 10-m shuttle run [SR], squat jump [SJ], and countermovement jump [CMJ]) and aerobic (incremental running protocol) laboratory tests. The strikers had significantly shorter sprinting times (5-, 5- to 10-m time, and SR) compared with the midfielders, center backs, and goalkeepers, whereas the full backs were also significantly faster compared with the goalkeepers and the center backs. The goalkeepers and the center backs displayed higher jumping heights (total mean SJ = 40.7 ± 4.6 cm and CMJ = 43.1 ± 4.9 cm) compared with the other 3 positions, whereas the strikers also jumped higher than the full backs and the midfielders did. Regarding the aerobic performance, both full backs and the midfielders (61.2 ± 2.7 and 60.4 ± 2.8 ml · min(-1) · kg(-1), respectively) had a higher VO2max compared with the strikers, center backs, and goalkeepers (56.8 ± 3.1, 55.6 ± 3.5, and 52.1 ± 5.0 ml · min(-1) · kg(-1), respectively). From this study, it could be concluded that players in different positions have different physiological characteristics. The results of this study might provide useful insights for individualized conditional training programs for soccer players. Aside from the predominant technical and tactical skills, a physical profile that is well adjusted to the position on the field might enhance game performance.  相似文献   

14.
There are limited data on how coordinative sprint drills and maximal short burst activities affects children's sprint and agility performance. The purpose of the present study was to investigate the effect of short burst activities on sprint and agility performance in 11- to 12-year-old boys. A training group (TG) of 14 boys followed a 6-week, 1-hour·week(-1), training program consisting of different short burst competitive sprinting activities. Eleven boys of similar age served as controls (control group [CG]). Pre- and posttests assessed 10-m sprint, 20-m sprint, and agility performance. Results revealed significant performance improvement in all tests within TG (p < 0.05), but not between TG and CG in the 10-m sprint test. Furthermore, the relationships between the performances in straight-line sprint and agility showed a significant transfer effect (r = 0.68-0.75, p < 0.001). Findings from the present study indicate that competitive short burst activities executed with maximal effort may produce improvement in sprint and agility performance in 11- to 12-year-old boys.  相似文献   

15.
The purpose of this study was to investigate the impact of 4 weeks of high-intensity vs. high-volume swim training on lactate threshold (LT) characteristics and performance. Thirteen untrained swimmers with a mean age of 19.0 ± 0.5 undertook an incremental swimming test before and after 4 weeks of training for the determination of LT. Performance was evaluated by a 50-m maximum freestyle test. The swimmers were assigned to 1 of each of 2 training groups. The high-intensity group (n = 6) focused on sprint training (SP) and swam a total of 1,808 ± 210 m. The high-volume group (n = 7) followed the same program as the SP group but swam an additional 1,100 m (38% more) of endurance swimming (SP + End). A training effect was evident in both groups as seen by the similar improvements in sprint performance of the 50-m maximum time (p < 0.01), peak velocity increases and the lower value of lactate at the individual LTs (p < 0.01). Lactate threshold velocity improved only in the SP + End group from 1.20 ± 0.12 m·s(-1) pretraining to 1.32 ± 0.12 m·s(-1) posttraining (p = 0.77, effect size = 1, p < 0.01), expressed by the rightward shifts of the individual lactate-velocity curves, indicating an improvement in the aerobic capacity. Peak lactate and lactate concentrations at LT did not significantly change. In conclusion, this study was able to demonstrate that 4 weeks of either high-intensity or high-volume training was able to demonstrate similar improvements in swimming performance. In the case of lack of significant changes in lactate profiling in response to high-intensity training, we could suggest a dissociation between the 2.  相似文献   

16.
Relationship between functional movement screen and athletic performance   总被引:1,自引:0,他引:1  
Parchmann, CJ and McBride, JM. Relationship between functional movement screen and athletic performance. J Strength Cond Res 25(12): 3378-3384, 2011-Tests such as the functional movement screen (FMS) and maximal strength (repetition maximum strength [1RM]) have been theorized to assist in predicting athletic performance capabilities. Some data exist concerning 1RM and athletic performance, but very limited data exist concerning the potential ability of FMS to assess athletic performance. The purpose of this investigation was to determine if FMS scores or 1RM is related to athletic performance, specifically in Division I golfers in terms of sprint times, vertical jump (VJ) height, agility T-test times, and club head velocity. Twenty-five National Collegiate Athletic Association Division I golfers (15 men, age = 20.0 ± 1.2 years, height = 176.8 ± 5.6 cm, body mass = 76.5 ± 13.4 kg, squat 1RM = 97.1 ± 21.0 kg) (10 women, age = 20.5 ± 0.8 years, height = 167.0 ± 5.6 cm, body mass = 70.7 ± 21.5 kg, squat 1RM = 50.3 ± 16.6) performed an FMS, 1RM testing, and field tests common in assessing athletic performance. Athletic performance tests included 10- and 20-m sprint time, VJ height, agility T-test time, and club head velocity. Strength testing included a 1RM back squat. Data for 1RM testing were normalized to body mass for comparisons. Correlations were determined between FMS, 1RMs, and athletic performance tests using Pearson product correlation coefficients (p ≤ 0.05). No significant correlations existed between FMS and 10-m sprint time (r = -0.136), 20-m sprint time (r = -0.107), VJ height (r = 0.249), agility T-test time (r = -0.146), and club head velocity (r = -0.064). The 1RM in the squat was significantly correlated to 10-m sprint time (r = -0.812), 20-m sprint time (r = -0.872), VJ height (r = 0.869), agility T-test time (r = -0.758), and club head velocity (r = 0.805). The lack of relationship suggests that FMS is not an adequate field test and does not relate to any aspect of athletic performance. Based on the data from this investigation, 1RM squat strength appears to be a good indicator of athletic performance.  相似文献   

17.
The purpose of this study was to evaluate the effects of the speed, agility, quickness (SAQ) training method on power performance in soccer players. Soccer players were assigned randomly to 2 groups: experimental group (EG; n = 50) and control group (n = 50). Power performance was assessed by a test of quickness--the 5-m sprint, a test of acceleration--the 10-m sprint, tests of maximal speed--the 20- and the 30-m sprint along with Bosco jump tests--squat jump, countermovement jump (CMJ), maximal CMJ, and continuous jumps performed with legs extended. The initial testing procedure took place at the beginning of the in-season period. The 8-week specific SAQ training program was implemented after which final testing took place. The results of the 2-way analysis of variance indicated that the EG improved significantly (p < 0.05) in 5-m (1.43 vs. 1.39 seconds) and in 10-m (2.15 vs. 2.07 seconds) sprints, and they also improved their jumping performance in countermovement (44.04 vs. 4.48 cm) and continuous jumps (41.08 vs. 41.39 cm) performed with legs extended (p < 0.05). The SAQ training program appears to be an effective way of improving some segments of power performance in young soccer players during the in-season period. Soccer coaches could use this information in the process of planning in-season training. Without proper planning of the SAQ training, soccer players will most likely be confronted with decrease in power performance during in-season period.  相似文献   

18.
The objectives of this study were to examine the effects of a moderate intensity strength training on changes in critical velocity (CV), anaerobic running distance (D''), sprint performance and Yo-Yo intermittent running test (Yo-Yo IR1) performances. Methods: two recreational soccer teams were divided in a soccer training only group (SO; n = 13) and a strength and soccer training group (ST; n = 13). Both groups were tested for values of CV, D'', Yo-Yo IR1 distance and 30-m sprint time on two separate occasions (pre and post intervention). The ST group performed a concurrent 6-week upper and lower body strength and soccer training, whilst the SO group performed a soccer only training. Results: after the re-test of all variables, the ST demonstrated significant improvements for both, YoYo IR1 distance (p = 0.002) and CV values (p<0.001) with no significant changes in the SO group. 30-m sprint performance were slightly improved in the ST group with significantly decreased performance times identified in the SO group (p<0.001). Values for D'' were slightly reduced in both groups (ST -44.5 m, 95% CI = -90.6 to 1.6; SO -42.6 m, 95% CI = -88.7 to 3.5). Conclusions: combining a 6-week moderate strength training with soccer training significantly improves CV, Yo-Yo IR1 whilst moderately improving 30-m sprint performances in non-previously resistance trained male soccer players. Critical Velocity can be recommended to coaches as an additional valid testing tool in soccer.  相似文献   

19.
For many sporting activities, initial speed rather than maximal speed would be considered of greater importance to successful performance. The purpose of this study was to identify the relationship between strength and power and measures of first-step quickness (5-m time), acceleration (10-m time), and maximal speed (30-m time). The maximal strength (3 repetition maximum [3RM]), power (30-kg jump squat, countermovement, and drop jumps), isokinetic strength measures (hamstring and quadriceps peak torques and ratios at 60 degrees .s(-1) and 300 degrees .s(-1)) and 5-m, 10-m, and 30-m sprint times of 26 part-time and full-time professional rugby league players (age 23.2 +/- 3.3 years) were measured. To examine the importance of the strength and power measures on sprint performance, a correlational approach and a comparison between means of the fastest and slowest players was used. The correlations between the 3RM, drop jump, isokinetic strength measures, and the 3 measures of sport speed were nonsignificant. Correlations between the jump squat (height and relative power output) and countermovement jump height and the 3 speed measures were significant (r = -0.43 to -0.66, p < 0.05). The squat and countermovement jump heights as well as squat jump relative power output were the only variables found to be significantly greater in the fast players. It was suggested that improving the power to weight ratio as well as plyometric training involving countermovement and loaded jump-squat training may be more effective for enhancing sport speed in elite players.  相似文献   

20.
ABSTRACT: Klusemann, MJ, Pyne, DB, Fay, T, and Drinkwater, EJ. Online Video-Based Resistance Training Improves the Physical Capacity of Junior Basketball Athletes. J Strength Cond Res 26(10): 2677-2684, 2012-Junior basketball athletes require a well-designed resistance training program to improve their physical development. Lack of expert supervision and resistance training in junior development pathways may be overcome by implementing an online video-based program. The aim of this study was to compare the magnitude of improvement (change) in physical performance and strength and functional movement patterns of junior basketball athletes using either a fully supervised or an online video-based resistance training program. Thirty-eight junior basketball athletes (males, n = 17; age, 14 ± 1 year; height, 1.79 ± 0.10 m; mass, 67 ± 12 kg; females, n = 21; age, 15 ± 1 year; height, 1.70 ± 0.07 m; mass, 62 ± 8 kg) were randomly assigned into a supervised resistance training group (SG, n = 13), video training group (VG, n = 13) or control group (CG, n = 12) and participated in a 6-week controlled experimental trial. Pre- and posttesting included measures of physical performance (20-m sprint, step-in vertical jump, agility, sit and reach, line drill, and Yo-Yo intermittent recovery level 1), strength (15 s push-up and pull-up), and functional movement screening (FMS). Both SG and VG achieved 3-5% ± 2-4% (mean ± 90% confidence limits) greater improvements in several physical performance measures (vertical jump height, 20-m sprint time, and Yo-Yo endurance performance) and a 28 ± 21% greater improvement in push-up strength compared with the CG. The SG attained substantially larger gains in FMS scores over both the VG (12 ± 10%) and CG (13 ± 8%). Video-based training appears to be a viable option to improve physical performance and strength in junior basketball athletes. Qualified supervision is recommended to improve functional movement patterns in junior athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号