首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this study, we investigated the involvement of Akt and members of the mitogen-activated protein kinase (MAPK) superfamily, including ERK, JNK, and p38 MAPK, in gemcitabine-induced cytotoxicity in human pancreatic cancer cells. We found that gemcitabine induces apoptosis in PK-1 and PCI-43 human pancreatic cancer cell lines. Gemcitabine specifically activated p38 MAPK in a dose- and time-dependent manner. A selective p38 MAPK inhibitor, SB203580, significantly inhibited gemcitabine-induced apoptosis in both cell lines, suggesting that phosphorylation of p38 MAPK may play a key role in gemcitabine-induced apoptosis in pancreatic cancer cells. A selective JNK inhibitor, SP600125, failed to inhibit gemcitabine-induced apoptosis in both cell lines. MKK3/6, an upstream activator of p38 MAPK, was phosphorylated by gemcitabine, indicating that the MKK3/6-p38 MAPK signaling pathway is indeed involved in gemcitabine-induced apoptosis. Furthermore, gemcitabine-induced cleavage of the caspase substrate poly(ADP-ribose) polymerase was inhibited by pretreatment with SB203580, suggesting that activation of p38 MAPK by gemcitabine induces apoptosis through caspase signaling. These results together suggest that gemcitabine-induced apoptosis in human pancreatic cancer cells is mediated by the MKK3/6-p38 MAPK-caspase signaling pathway. Further, these results lead us to suggest that p38 MAPK should be investigated as a novel molecular target for human pancreatic cancer therapies.  相似文献   

2.
Epidermal growth factor (EGF) stimulates the homodimerization of EGF receptor (EGFR) and the heterodimerization of EGFR and ErbB2. The EGFR homodimers are quickly endocytosed after EGF stimulation as a means of down-regulation. However, the results from experiments on the ability of ErbB2 to undergo ligand-induced endocytosis are very controversial. It is unclear how the EGFR-ErbB2 heterodimers might behave. In this research, we showed by subcellular fractionation, immunoprecipitation, Western blotting, indirect immunofluorescence, and microinjection that, in the four breast cancer cell lines MDA453, SKBR3, BT474, and BT20, the EGFR-ErbB2 heterodimerization levels were positively correlated with the ratio of ErbB2/EGFR expression levels. ErbB2 was not endocytosed in response to EGF stimulation. Moreover, in MDA453, SKBR3, and BT474 cells, which have very high levels of EGFR-ErbB2 heterodimerization, EGF-induced EGFR endocytosis was greatly inhibited compared with that in BT20 cells, which have a very low level of EGFR-ErbB2 heterodimerization. Microinjection of an ErbB2 expression plasmid into BT20 cells significantly inhibited EGF-stimulated EGFR endocytosis. Coexpression of ErbB2 with EGFR in 293T cells also significantly inhibited EGF-stimulated EGFR endocytosis. EGF did not stimulate the endocytosis of ectopically expressed ErbB2 in BT20 and 293T cells. These results indicate that ErbB2 and the EGFR-ErbB2 heterodimers are impaired in EGF-induced endocytosis. Moreover, when expressed in BT20 cells by microinjection, a chimeric receptor composed of the ErbB2 extracellular domain and the EGFR intracellular domain underwent normal endocytosis in response to EGF, and this chimera did not block EGF-induced EGFR endocytosis. Thus, the endocytosis deficiency of ErbB2 is due to the sequence of its intracellular domain.  相似文献   

3.
The four receptor tyrosine kinases of the ErbB family play essential roles in several physiological processes and have also been implicated in tumor generation and/or progression. Activation of ErbB1/EGFR is mainly triggered by epidermal growth factor (EGF) and other related ligands, while activation of ErbB2, ErbB3, and ErbB4 receptors occurs by binding to another set of EGF-like ligands termed neuregulins (NRGs). Here we show that the Erk5 mitogen-activated protein kinase (MAPK) pathway participates in NRG signal transduction. In MCF7 cells, NRG activated Erk5 in a time- and dose-dependent fashion. The action of NRG on Erk5 was dependent on the kinase activity of ErbB receptors but was independent of Ras. Expression in MCF7 cells of a dominant negative form of Erk5 resulted in a significant decrease in NRG-induced proliferation of MCF7 cells. Analysis of Erk5 in several human tumor cell lines indicated that a constitutively active form of this kinase was present in the BT474 and SKBR3 cell lines, which also expressed activated forms of ErbB2, ErbB3, and ErbB4. Treatments aimed at decreasing the activity of these receptors caused Erk5 inactivation, indicating that the active form of Erk5 present in BT474 and SKBR3 cells was due to a persistent positive stimulus originating at the ErbB receptors. In BT474 cells expression of the dominant negative form of Erk5 resulted in reduced proliferation, indicating that in these cells Erk5 was also involved in the control of proliferation. Taken together, these results suggest that Erk5 may play a role in the regulation of cell proliferation by NRG receptors and indicate that constitutively active NRG receptors may induce proliferative responses in cancer cells through this MAPK pathway.  相似文献   

4.
5.
Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231), which differed in hormone receptor. IC50 value (37μM) of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM) of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.  相似文献   

6.
Induction of apoptosis by ionizing radiation and CI-1033 in HuCCT-1 cells   总被引:1,自引:0,他引:1  
CI-1033 is a quinazoline-based HER family tyrosine kinase inhibitor that is currently being evaluated as a potential anticancer agent. The present study examines the molecular mechanism by which CI-1033 induces apoptosis either as a single agent or in combination with radiation. Although CI-1033 alone did not induce apoptosis, the simultaneous exposure of cells to CI-1033 and radiation induced significant levels of apoptosis. The sequential treatment of cells with CI-1033 followed by radiation induced an even greater effect with 62.6% of cells undergoing apoptosis but this enhanced effect was not seen if cells were treated first with radiation and then CI-1033. The combination treatment induces apoptosis of HuCCT-1 via upregulation of FasL and Bid cleavage. These data suggest that modulation of the Fas-FasL pathway and activation of Bid could be useful for increasing the anti-tumor effect of CI-1033 in this type of cancer.  相似文献   

7.
BackgroundThere is increasing evidence that opioid analgesics may interfere with tumour growth. It is currently thought that these effects are mediated by transactivation of receptor tyrosine kinase (RTK)-controlled ERK1/2 and Akt signalling. The growth of many breast cancer cells is dependent on hyperactive ErbB receptor networks and one of the most successful approaches in antineoplastic therapy during the last decade was the development of ErbB-targeted therapies. However, the response rates of single therapies are often poor and resistance mechanisms evolve rapidly. To date there is no information about the ability of opioid analgesics to interfere with the growth of ErbB-driven cancers.

Methods and Principal Findings

Here we demonstrate that ErbB2 overexpressing BT474 human breast cancer cells carry fully functional endogenous µ-opioid receptors. Most interestingly, the acute opioid effects on basal and Heregulin-stimulated ERK1/2 and Akt phosphorylation changed considerably during chronic Morphine treatment. Investigation of the underlying mechanism by the use of protein kinase inhibitors and co-immunoprecipitation studies revealed that chronic Morphine treatment results in rearrangement of the ErbB signalling network leading to dissociation of ERK1/2 from Akt signalling and a switch from ErbB1/ErbB3 to ErbB1/ErbB2-dependent cell growth. In chronically Morphine-treated cells Heregulin-stimulated ERK1/2 signalling is redirected via a newly established PI3K- and metalloproteinase-dependent feedback loop. Together, these alterations result in apoptosis of BT474 cells. A similar switch in Heregulin-stimulated ERK1/2 signalling from an ErbB2-independent to an ErbB2-, PI3K- and metalloproteinase-dependent mechanism was also observed in κ-opioid receptor expressing SKBR3 human mammary adenocarcinoma cells.

Conclusions and Significance

The present data demonstrate that the ErbB receptor network of human breast cancer cells represents a target for chronic Morphine treatment. Rearrangement of ErbB signalling by chronic Morphine may provide a promising strategy to enhance the sensitivity of breast cancer cells to ErbB-directed therapies and to prevent the development of escape mechanisms.  相似文献   

8.
Overexpression of ErbB2 has been found in approximately 25-30% of human breast cancers and has been shown to render the cancer cells more resistant to chemotherapy. However, it is not clear whether ErbB2 overexpression renders the cells more resistant to specific anti-cancer drugs or renders the cells more resistant to a broad range of anti-cancer drugs. It is not clear how the function of ErbB2 in drug resistance is related to expression and activation of the other ErbB receptors. In this communication, we showed that several breast cancer cell lines including BT20, BT474, MCF-7, MDA-MB-453, and SKBR-3 cells had a similar pattern of resistance to a broad range of anti-cancer drugs including 5-Fluorouracil, Cytoxan, Doxorubincin, Taxol, and Vinorelbin, suggesting a mechanism of multidrug resistance. High expression of P-glycoprotein and the ErbB receptors contribute to drug resistance of these breast cancer cells; however, overexpression of ErbB2 alone is not a major factor in determining drug resistance. To further determine the role of the ErbB receptors in drug resistance, we selected various NIH 3T3 cell lines that specifically expressed EGF receptor (EGFR), ErbB2, ErbB3, EGFR/ErbB2, EGFR/ErbB3, or ErbB2/ErbB3. A cytotoxicity assay showed that expression of ErbB2 alone did not significantly enhance drug resistance, whereas coexpression of either EGFR or ErbB3 with ErbB2 significantly enhanced drug resistance. Moreover, ErbB2 was highly phosphorylated in NIH 3T3 cells that coexpress ErbB2 with either EGFR or ErbB3, but not in NIH 3T3 cells that express ErbB2 alone. Together, our results suggest that coexpression of EGFR or ErbB3 with ErbB2 induces high phosphorylation of ErbB2 and renders the cells more resistant to various anti-cancer drugs.  相似文献   

9.
10.
Benzyl isothiocyanate (BITC), a dietary cancer chemopreventive agent, causes apoptosis in MDA-MB-231 and MCF-7 human breast cancer cells, but the mechanism of cell death is not fully understood. We now demonstrate that the BITC-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species (ROS) due to inhibition of complex III of the mitochondrial respiratory chain. The BITC-induced ROS production and apoptosis were significantly inhibited by overexpression of catalase and Cu,Zn-superoxide dismutase and pharmacological inhibition of the mitochondrial respiratory chain. The mitochondrial DNA-deficient Rho-0 variant of MDA-MB-231 cells was nearly completely resistant to BITC-mediated ROS generation and apoptosis. The Rho-0 MDA-MB-231 cells also resisted BITC-mediated mitochondrial translocation (activation) of Bax. Biochemical assays revealed inhibition of complex III activity in BITC-treated MDA-MB-231 cells as early as at 1 h of treatment. The BITC treatment caused activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which function upstream of Bax activation in apoptotic response to various stimuli. Pharmacological inhibition of both JNK and p38 MAPK conferred partial yet significant protection against BITC-induced apoptosis. Activation of JNK and p38 MAPK resulting from BITC exposure was abolished by overexpression of catalase. The BITC-mediated conformational change of Bax was markedly suppressed by ectopic expression of catalytically inactive mutant of JNK kinase 2 (JNKK2(AA)). Interestingly, a normal human mammary epithelial cell line was resistant to BITC-mediated ROS generation, JNK/p38 MAPK activation, and apoptosis. In conclusion, the present study indicates that the BITC-induced apoptosis in human breast cancer cells is initiated by mitochondria-derived ROS.  相似文献   

11.
Vascular endothelial growth factor (VEGF) utilizes a phosphoinositide 3-kinase (PI 3-kinase)/Akt signaling pathway to protect endothelial cells from apoptotic death. Here we show that PI 3-kinase/Akt signaling promotes endothelial cell survival by inhibiting p38 mitogen-activated protein kinase (MAPK)-dependent apoptosis. Blockade of the PI 3-kinase or Akt pathways in conjunction with serum withdrawal stimulates p38-dependent apoptosis. Blockade of PI 3-kinase/Akt also led to enhanced VEGF activation of p38 and apoptosis. In this context, the pro-apoptotic effect of VEGF is attenuated by the p38 MAPK inhibitor SB203580. VEGF stimulation of endothelial cells or infection with an adenovirus expressing constitutively active Akt causes MEKK3 phosphorylation, which is associated with decreased MEKK3 kinase activity and down-regulation of MKK3/6 and p38 MAPK activation. Conversely, activation-deficient Akt decreases VEGF-stimulated MEKK3 phosphorylation and increases MKK/p38 activation. Activation of MKK3/6 is not dependent on Rac activation since dominant negative Rac does not decrease p38 activation triggered by inhibition of PI 3-kinase. Thus, cross-talk between the Akt and p38 MAPK pathways may regulate the level of cytoprotection versus apoptosis and is a new mechanism to explain the cytoprotective actions of Akt.  相似文献   

12.
Apoptosis plays a key role in the maintenance of a constant cell number and a low incidence of cancer in the mucosa of the intestine. Although the small GTPase Rac1 has been established as an important regulator of migration of intestinal epithelial cells, whether Rac1 is also involved in apoptosis is unclear. The present study tested the hypothesis that Rac1 mediates TNF-alpha-induced apoptosis in IEC-6 cells. Rac1 is activated during TNF-alpha-induced apoptosis as judged by the level of GTP-Rac1, the level of microsomal membrane-associated Rac1, and lamellipodia formation. Although expression of constitutively active Rac1 does not increase apoptosis in the basal condition, inhibition of Rac1 either by NSC-23766 (Rac1 inhibitor) or expression of dominant negative Rac1 protects cells from TNF-alpha-induced apoptosis by inhibiting caspase-3, -8, and -9 activities. Inhibition of Rac1 before the administration of apoptotic stimuli significantly prevents TNF-alpha-induced activation of JNK1/2, the key proapoptotic regulator in IEC-6 cells. Inhibition of Rac1 does not modulate TNF-alpha-induced ERK1/2 and Akt activation. Inhibition of ERK1/2 and Akt activity by U-0126 and LY-294002, respectively, increased TNF-alpha-induced apoptosis. However, inhibition of Rac1 significantly decreased apoptosis in the presence of ERK1/2 and Akt inhibitors, similar to the effect observed with NSC-23766 alone in response to TNF-alpha. Thus, Rac1 inhibition protects cells independently of ERK1/2 and Akt activation during TNF-alpha-induced apoptosis. Although p38 MAPK is activated in response to TNF-alpha, inhibition of p38 MAPK did not decrease apoptosis. Rac1 inhibition did not alter p38 MAPK activity. Thus, these results indicate that Rac1 mediates apoptosis via JNK and plays a key role in proapoptotic pathways in intestinal epithelial cells.  相似文献   

13.
We report that Aplidin, a novel antitumor agent of marine origin presently undergoing Phase II clinical trials, induced growth arrest and apoptosis in human MDA-MB-231 breast cancer cells at nanomolar concentrations. Aplidin induced a specific cellular stress response program, including sustained activation of the epidermal growth factor receptor (EGFR), the non-receptor protein-tyrosine kinase Src, and the serine/threonine kinases JNK and p38 MAPK. Aplidin-induced apoptosis was only partially blocked by the general caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone and was also sensitive to AG1478 (an EGFR inhibitor), PP2 (an Src inhibitor), and SB203580 (an inhibitor of JNK and p38 MAPK) in MDA-MB-231 cells. Supporting a role for EGFR in Aplidin action, EGFR-deficient mouse embryo fibroblasts underwent apoptosis upon treatment more slowly than wild-type EGFR fibroblasts and also showed delayed JNK and reduced p38 MAPK activation. N-Acetylcysteine and ebselen (but not other antioxidants such as diphenyleneiodonium, Tiron, catalase, ascorbic acid, and vitamin E) reduced EGFR activation by Aplidin. N-Acetylcysteine and PP2 also partially inhibited JNK and p38 MAPK activation. The intracellular level of GSH affected Aplidin action; pretreatment of cells with GSH or N-acetylcysteine inhibited, whereas GSH depletion caused, hyperinduction of EGFR, Src, JNK, and p38 MAPK. Remarkably, Aplidin also induced apoptosis and activated EGFR, JNK, and p38 MAPK in two cell lines (A-498 and ACHN) derived from human renal cancer, a neoplasia that is highly refractory to chemotherapy. These data provide a molecular basis for the anticancer activity of Aplidin.  相似文献   

14.
Identifying the optimal treatment strategy for cancer is an important challenge, particularly for complex diseases like epithelial ovarian cancer (EOC) that are prone to recurrence. In this study we developed a quantitative, multivariate model to predict the extent of ovarian cancer cell death following treatment with an ErbB inhibitor (canertinib, CI-1033). A partial least squares regression model related the levels of ErbB receptors and ligands at the time of treatment to sensitivity to CI-1033. In this way, the model mimics the clinical problem by incorporating only information that would be available at the time of drug treatment. The full model was able to fit the training set data and was predictive. Model analysis demonstrated the importance of including both ligand and receptor levels in this approach, consistent with reports of the role of ErbB autocrine loops in EOC. A reduced multi-protein model was able to predict CI-1033 sensitivity of six distinct EOC cell lines derived from the three subtypes of EOC, suggesting that quantitatively characterizing the ErbB network could be used to broadly predict EOC response to CI-1033. Ultimately, this systems biology approach examining multiple proteins has the potential to uncover multivariate functions to identify subsets of tumors that are most likely to respond to a targeted therapy.  相似文献   

15.
The mechanisms of peroxynitrite-induced apoptosis are not fully understood. We report here that peroxynitrite-induced apoptosis of PC12 cells requires the simultaneous activation of p38 and JNK MAP kinase, which in turn activates the intrinsic apoptotic pathway, as evidenced by Bax translocation to the mitochondria, cytochrome c release to the cytoplasm and activation of caspases, leading to cell death. Peroxynitrite induces inactivation of the Akt pathway. Furthermore, overexpression of constitutively active Akt inhibits both peroxynitrite-induced Bax translocation and cell death. Peroxynitrite-induced death was prevented by overexpression of Bcl-2 and by cyclosporin A, implicating the involvement of the intrinsic apoptotic pathway. Selective inhibition of mixed lineage kinase (MLK), p38 or JNK does not attenuate the decrease in Akt phosphorylation showing that inactivation of the Akt pathway occurs independently of the MLK/MAPK pathway. Together, these results reveal that peroxynitrite-induced activation of the intrinsic apoptotic pathway involves interactions with the MLK/MAPK and Akt signaling pathways.  相似文献   

16.
17.
Recent clinical data indicates that the emergence of mutant drug-resistant kinase alleles may be particularly relevant for targeted kinase inhibitors. In order to explore how different classes of targeted therapies impact upon resistance mutations, we performed EGFR (epidermal-growth-factor receptor) resistance mutation screens with erlotinib, lapatinib and CI-1033. Distinct mutation spectra were generated with each inhibitor and were reflective of their respective mechanisms of action. Lapatinib yielded the widest variety of mutations, whereas mutational variability was lower in the erlotinib and CI-1033 screens. Lapatinib was uniquely sensitive to mutations of residues located deep within the selectivity pocket, whereas mutation of either Gly(796) or Cys(797) resulted in a dramatic loss of CI-1033 potency. The clinically observed T790M mutation was common to all inhibitors, but occurred with varying frequencies. Importantly, the presence of C797S with T790M in the same EGFR allele conferred complete resistance to erlotinib, lapatinib and CI-1033. The combination of erlotinib and CI-1033 effectively reduced the number of drug-resistant clones, suggesting a possible clinical strategy to overcome drug resistance. Interestingly, our results also indicate that co-expression of ErbB2 (v-erb-b2 erythroblastic leukaemia viral oncogene homologue 2) has an impact upon the EGFR resistance mutations obtained, suggesting that ErbB2 may play an active role in the acquisition of drug-resistant mutations.  相似文献   

18.
Overexpression of the ErbB2 receptor, a major component of the ErbB receptor signaling network, contributes to the development of a number of human cancers. ErbB2 presents itself, therefore, as a target for antibody-mediated therapies. In this respect, anti-ErbB2 monoclonal antibody 4D5 specifically inhibits the growth of tumor cells overexpressing ErbB2. We have analyzed the effect of 4D5-mediated ErbB2 inhibition on the cell cycle of the breast tumor cell line BT474. 4D5 treatment of BT474 cells resulted in a G(1) arrest, preceded by rapid dephosphorylation of ErbB2, inhibition of cytoplasmic signal transduction pathways, accumulation of the cyclin-dependent kinase inhibitor p27(Kip1), and inactivation of cyclin-Cdk2 complexes. Time courses demonstrated that 4D5 treatment redirects p27(Kip1) onto Cdk2 complexes, an event preceding increased p27(Kip1) expression; this correlates with the downregulation of c-Myc and D-type cyclins (proteins involved in p27(Kip1) sequestration) and the loss of p27(Kip1) from Cdk4 complexes. Similar events were observed in ErbB2-overexpressing SKBR3 cells, which exhibited reduced proliferation in response to 4D5 treatment. Here, p27(Kip1) redistribution resulted in partial Cdk2 inactivation, consistent with a G1 accumulation. Moreover, p27(Kip1) protein levels remained constant. Antisense-mediated inhibition of p27(Kip1) expression in 4D5-treated BT474 cells further demonstrated that in the absence of p27(Kip1) accumulation, p27(Kip1) redirection onto Cdk2 complexes is sufficient to inactivate Cdk2 and establish the G(1) block. These data suggest that ErbB2 overexpression leads to potentiation of cyclin E-Cdk2 activity through regulation of p27(Kip1) sequestration proteins, thus deregulating the G(1)/S transition. Moreover, through comparison with an ErbB2-overexpressing cell line insensitive to 4D5 treatment, we demonstrate the specificity of these cell cycle events and show that ErbB2 overexpression alone is insufficient to determine the cellular response to receptor inhibition.  相似文献   

19.
PGE2 plays a critical role in colorectal carcinogenesis. We have previously shown that COX-2 expression and PGE2 synthesis are mediated by IGF-II/IGF-I receptor signaling in the Caco-2 cell line and that the pathway of phosphatidylinositol 3-kinase (PI3K)/Akt protects the cell from apoptosis. In the present study, we demonstrate that PGE2 has the ability to increase Ras and PI3K association and decrease the level of apoptosis in the same experimental system. The effect of PGE2 on PI3K/Ras association is dependent on the activation of EP4 receptor, the increase of cAMP levels, and the activation of PKA. In fact, treatment of cells with the PKA inhibitor H89 decreases the association of Ras and PI3K and Ras-associated PI3K activity. PKA inhibitor H89 is able to decrease threonine phosphorylation of Akt and to increase serine phosphorylation of Akt by p38 MAPK and counteracts the cytoprotective effect induced by PGE2. In addition, PGE2 is able to activate p38 MAPK and the inhibition of p38 MAPK, with SB203580 specific inhibitor or with dominant negative MKK6 kinase, is able to revert the apoptotic effect of H89 and serine phosphorylation of Akt. The effect of PGE2 on Caco-2 cell survival through PKA activation is mediated and regulated by the balance of threonine/serine phosphorylation of Akt by p38 kinase and PI3K. In conclusion, our data elucidate a novel mechanism for regulation of colon cancer cell survival and provide evidences for new combinatory treatments of colon cancer.  相似文献   

20.
In order to elucidate the role of the mitogen-activated protein kinases, including JNK, p38 MAPK and ERK, as well as the survival-associated PI3K/Akt signaling pathway, in the response to chemotherapy, we have conducted a comparative study regarding the effects of doxorubicin on these pathways. Doxorubicin was determined to elicit the apoptosis of NIH3T3 cells in a dose-dependent manner. Prior to cell death, both Akt and p38 MAPK were transiently activated, and subsequently inactivated almost wholly, whereas ERK and JNK evidenced sustained activations in response to the drug treatment. The inhibition of PI3K/Akt and p38 MAPK both accelerated and enhanced doxorubicin-induced apoptosis and ERK inhibition apparently exerted negative effect on apoptosis. The modulation of PI3K/Akt activation by treatment of LY294002 or expression of Akt mutants such as Akt-DN or Myr-Akt exerted a significant effect on the activation of ERK1/2. We also observed that PI3K/Akt and sustained ERK activation were associated intimately with the etoposide-induced apoptosis. Taken together, our results clearly suggest that the differential regulation of the PI3K/Akt, ERK1/2, and p38 MAPK signaling pathways are crucial in the context of DNA-damaging drug-induced apoptosis, and this has compelled us to propose that the sustained activation of ERK1/2 pathway may be generally involved in the apoptosis induced by anticancer DNA-damaging drugs, including doxorubicin and etoposide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号