首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
By constructing stably transfected cells harboring the same amount of epidermal growth factor (EGF) receptor (EGFR), but with increasing overexpression of ErbB2, we have demonstrated that ErbB2 efficiently inhibits internalization of ligand-bound EGFR. Apparently, ErbB2 inhibits internalization of EGF-bound EGFR by constitutively driving EGFR-ErbB2 hetero/oligomerization. We have demonstrated that ErbB2 does not inhibit phosphorylation or ubiquitination of the EGFR. Our data further indicate that the endocytosis deficiency of ErbB2 and of EGFR-ErbB2 heterodimers/oligomers cannot be explained by anchoring of ErbB2 to PDZ-containing proteins such as Erbin. Instead, we demonstrate that in contrast to EGFR homodimers, which are capable of inducing new clathrin-coated pits in serum-starved cells upon incubation with EGF, clathrin-coated pits are not induced upon activation of EGFR-ErbB2 heterodimers/oligomers.  相似文献   

2.
Overexpression and poor downregulation of ErbB receptor tyrosine kinases are associated with enhanced signaling and tumorigenesis. Attenuation of EGF-receptor (EGFR) signaling is mediated by endocytosis and ubiquitination by the E3-ligase Cbl. En route to lysosomes, but before incorporation of the EGFR into internal vesicles of MVBs, the EGFR undergoes Usp8-mediated deubiquitination. ErbB2 displays enhanced recycling back to the cell surface, and therefore we hypothesized that Usp8 is not part of the ErbB2 trafficking pathway. Here, we demonstrate, in the context of a chimeric EGFR-ErbB2 receptor, that (i) EGF induces pY1091 Cbl binding site-dependent K63-polyubiquitination of EGFR-ErbB2, (ii) Cbl is tyrosine phosphorylated upon stimulation of EGFR-ErbB2 wt and Y1091F mutant receptor, (iii) EGF-induced activation of EGFR-ErbB2 induces Usp8 tyrosine phosphorylation, and (iv) ubiquitination of the EGFR-ErbB2 wt and Y1091F mutant is enhanced upon coexpression of catalytically inactive Usp8-C748A in the presence and absence of EGF. We further show that Usp8 tyrosine phosphorylation upon stimulation of EGFR-ErbB2 is (a) independent of Y1091, (b) dependent on Src- and EGFR-ErbB2-kinase activity, (c) enhanced upon coexpression of Usp8-C748A, and (d) partly dependent on the Microtubule Interacting and Transport (MIT) domain of Usp8. Our findings demonstrate that Usp8 is part of the ErbB2 endosomal trafficking pathway.  相似文献   

3.
4.
Overexpression of ErbB2 has been found in approximately 25-30% of human breast cancers and has been shown to render the cancer cells more resistant to chemotherapy. However, it is not clear whether ErbB2 overexpression renders the cells more resistant to specific anti-cancer drugs or renders the cells more resistant to a broad range of anti-cancer drugs. It is not clear how the function of ErbB2 in drug resistance is related to expression and activation of the other ErbB receptors. In this communication, we showed that several breast cancer cell lines including BT20, BT474, MCF-7, MDA-MB-453, and SKBR-3 cells had a similar pattern of resistance to a broad range of anti-cancer drugs including 5-Fluorouracil, Cytoxan, Doxorubincin, Taxol, and Vinorelbin, suggesting a mechanism of multidrug resistance. High expression of P-glycoprotein and the ErbB receptors contribute to drug resistance of these breast cancer cells; however, overexpression of ErbB2 alone is not a major factor in determining drug resistance. To further determine the role of the ErbB receptors in drug resistance, we selected various NIH 3T3 cell lines that specifically expressed EGF receptor (EGFR), ErbB2, ErbB3, EGFR/ErbB2, EGFR/ErbB3, or ErbB2/ErbB3. A cytotoxicity assay showed that expression of ErbB2 alone did not significantly enhance drug resistance, whereas coexpression of either EGFR or ErbB3 with ErbB2 significantly enhanced drug resistance. Moreover, ErbB2 was highly phosphorylated in NIH 3T3 cells that coexpress ErbB2 with either EGFR or ErbB3, but not in NIH 3T3 cells that express ErbB2 alone. Together, our results suggest that coexpression of EGFR or ErbB3 with ErbB2 induces high phosphorylation of ErbB2 and renders the cells more resistant to various anti-cancer drugs.  相似文献   

5.
The epidermal growth factor receptor (EGFR) mediates the actions of a family of bioactive peptides that include epidermal growth factor (EGF) and amphiregulin (AR). Here we have studied AR and EGF mitogenic signaling in EGFR-devoid NR6 fibroblasts that ectopically express either wild type EGFR (WT) or a truncated EGFR that lacks the three major sites of autophosphorylation (c'1000). COOH-terminal truncation of the EGFR significantly impairs the ability of AR to (i) stimulate DNA synthesis, (ii) elicit Elk-1 transactivation, and (iii) generate sustained enzymatic activation of mitogen-activated protein kinase. EGFR truncation had no significant effect on AR binding to receptor but did result in defective GRB2 adaptor function. In contrast, EGFR truncation did not impair EGF mitogenic signaling, and in c'1000 cells EGF was able to stimulate the association of ErbB2 with GRB2 and SHC. Elk-1 transactivation was monitored when either ErbB2 or a truncated dominant-negative ErbB2 mutant (ErbB2-(1-813)) was overexpressed in cells. Overexpression of full-length ErbB2 resulted in a strong constitutive transactivation of Elk-1 in c'1000 but only slightly stimulated Elk-1 in WT or parental NR6 cells. Conversely, overexpression of ErbB2-(1-813) inhibited EGF-stimulated Elk-1 transactivation in c'1000 but not in WT cells. Thus, the cytoplasmic tail of the EGFR plays a critical role in AR mitogenic signaling but is dispensable for EGF, since EGF-activated truncated EGFRs can signal through ErbB2.  相似文献   

6.
The four receptor tyrosine kinases of the ErbB family play essential roles in several physiological processes and have also been implicated in tumor generation and/or progression. Activation of ErbB1/EGFR is mainly triggered by epidermal growth factor (EGF) and other related ligands, while activation of ErbB2, ErbB3, and ErbB4 receptors occurs by binding to another set of EGF-like ligands termed neuregulins (NRGs). Here we show that the Erk5 mitogen-activated protein kinase (MAPK) pathway participates in NRG signal transduction. In MCF7 cells, NRG activated Erk5 in a time- and dose-dependent fashion. The action of NRG on Erk5 was dependent on the kinase activity of ErbB receptors but was independent of Ras. Expression in MCF7 cells of a dominant negative form of Erk5 resulted in a significant decrease in NRG-induced proliferation of MCF7 cells. Analysis of Erk5 in several human tumor cell lines indicated that a constitutively active form of this kinase was present in the BT474 and SKBR3 cell lines, which also expressed activated forms of ErbB2, ErbB3, and ErbB4. Treatments aimed at decreasing the activity of these receptors caused Erk5 inactivation, indicating that the active form of Erk5 present in BT474 and SKBR3 cells was due to a persistent positive stimulus originating at the ErbB receptors. In BT474 cells expression of the dominant negative form of Erk5 resulted in reduced proliferation, indicating that in these cells Erk5 was also involved in the control of proliferation. Taken together, these results suggest that Erk5 may play a role in the regulation of cell proliferation by NRG receptors and indicate that constitutively active NRG receptors may induce proliferative responses in cancer cells through this MAPK pathway.  相似文献   

7.
Wang Q  Zhu F  Wang Z 《Experimental cell research》2007,313(15):3349-3363
Most studies regarding the role of epidermal growth factor (EGF) receptor (EGFR) C-terminal domain in EGFR internalization are done in the context of EGFR kinase activation. We recently showed that EGF-induced EGFR internalization is directly controlled by receptor dimerization, rather than kinase activation. Here we studied the role of EGFR C-terminus in EGF-induced EGFR internalization with or without EGFR kinase activation. We showed that graduate truncation of EGFR from C-terminus to 1044 did not affect EGF-induced EGFR endocytosis with or without kinase activation. However, truncation to 991 or further completely inhibited EGFR endocytosis. Graduate truncation within 991-1044 progressively lower EGF-induced EGFR endocytosis with most significant effects observed for residues 1005-1017. The endocytosis patterns of mutant EGFRs are independent of EGFR kinase activation. The residues 1005-1017 were also required for EGFR internalization triggered by non-ligand-induced receptor dimerization. This indicates that residues 1005-1017 function as an internalization motif, rather than a dimerization motif, to mediate EGFR internalization. Furthermore, we showed that the di-leucine motif 1010LL1011 within this region is essential in mediating EGF-induced rapid EGFR internalization independent of kinase activation. We conclude that EGFR C-terminal sequences 1005-1017 and the 1010LL1011 motif are essential for EGF-induced EGFR endoytosis independent of EGFR kinase activation and autophosphorylation.  相似文献   

8.
ErbB receptors play an important role in normal cellular growth, differentiation and development, but overexpression or poor downregulation can result in enhanced signaling and cancerous growth. ErbB signaling is terminated by clathrin-dependent receptor-mediated endocytosis, followed by incorporation in multi-vesicular bodies and subsequent degradation in lysosomes. In contrast to EGFR, ErbB2 displays poor ligand-induced downregulation and enhanced recycling, but the molecular mechanisms underlying this difference are poorly understood. Given our previous observation that both EGFR and an EGFR-ErbB2 chimera undergo Cbl-mediated K63-polyubiquitination, we investigated in the present study whether activation of the EGFR and the EGFR-ErbB2 chimera is associated with tyrosine phosphorylation of the ESCRT-0 complex subunit Hrs and AMSH-mediated deubiquitination. EGF stimulation of the EGFR resulted in efficient Hrs tyrosine phosphorylation and deubiquitination by the K63-polyubiquitin chain-specific deubiquitinating enzyme AMSH. In contrast, EGF activation of EGFR-ErbB2 showed significantly decreased Hrs tyrosine phosphorylation and deubiquitination by AMSH. To test whether this phenotype is the result of endosomal recycling, we induced recycling of the EGFR by stimulation with TGFα. Indeed, even though TGFα-stimulation of EGFR is associated with efficient ligand-stimulated K63-polyubiquitination, we observed that Hrs tyrosine phosphorylation as well as AMSH-mediated deubiquitination is significantly reduced under these conditions. Using various EGFR-ErbB2 chimeras, we demonstrate that enhanced recycling, decreased Hrs tyrosine phosphorylation and decreased AMSH mediated deubiquitination of EGFR-ErbB2 chimeras is primarily due to the presence of ErbB2 sequences or the absence of EGFR sequences C-terminal to the Cbl binding site. We conclude that endosomal recycling of the EGFR and ErbB2 receptors is associated with significantly impaired tyrosine phosphorylation of the ESCRT-0 subunit Hrs as well as decreased deubiquitination by AMSH, which is consistent with the finding that recycling receptors are not efficiently incorporated in the MVB pathway.  相似文献   

9.
10.
Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.  相似文献   

11.
Tumor necrosis factor (TNF) and epidermal growth factor (EGF) are key regulators in the intricate balance maintaining intestinal homeostasis. Previous work from our laboratory shows that TNF attenuates ligand-driven EGF receptor (EGFR) phosphorylation in intestinal epithelial cells. To identify the mechanisms underlying this effect, we examined EGFR phosphorylation in cells lacking individual TNF receptors. TNF attenuated EGF-stimulated EGFR phosphorylation in wild-type and TNFR2(-/-), but not TNFR1(-/-), mouse colon epithelial (MCE) cells. Reexpression of wild-type TNFR1 in TNFR1(-/-) MCE cells rescued TNF-induced EGFR inhibition, but expression of TNFR1 deletion mutant constructs lacking the death domain (DD) of TNFR1 did not, implicating this domain in EGFR downregulation. Blockade of p38 MAPK, but not MEK, activation of ERK rescued EGF-stimulated phosphorylation in the presence of TNF, consistent with the ability of TNFR1 to stimulate p38 phosphorylation. TNF promoted p38-dependent EGFR internalization in MCE cells, suggesting that desensitization is achieved by reducing receptor accessible to ligand. Taken together, these data indicate that TNF activates TNFR1 by DD- and p38-dependent mechanisms to promote EGFR internalization, with potential impact on EGF-induced proliferation and migration key processes that promote healing in inflammatory intestinal diseases.  相似文献   

12.
CIN85 has been demonstrated to interact with a number of proteins involved in endocytosis and intracellular sorting. However, the exact functional role of CIN85 in endocytosis remains unclear. We have investigated whether CIN85 plays a role in EGF-induced EGF receptor (EGFR) internalization, as previously suggested, or whether CIN85 is rather involved in endosomal sorting of the EGFR. When over-expressing a dominant negative interfering CIN85 mutant consisting of three SH3 domains only, we found that internalization of EGF was inhibited. However, when knocking down CIN85 by RNAi, the EGF–EGFR uptake appeared similar to in control cells. Furthermore, in CIN85 depleted cells, EGF-induced ubiquitination of the EGFR was decreased, and degradation of EGF–EGFR complexes was delayed. Our data further demonstrated that depletion of CIN85 increased the recycling of EGF, suggesting that CIN85 plays a role in endosomal sorting of the ubiquitinated EGFR. Our data also demonstrated that CIN85 was constitutively associated with Hrs, and this strengthens the hypothesis of a functional role of CIN85 in endosomal EGFR sorting.  相似文献   

13.
In HeLa cells depleted of adaptor protein 2 complex (AP2) by small interfering RNA (siRNA) to the mu2 or alpha subunit or by transient overexpression of an AP2 sequestering mutant of Eps15, endocytosis of the transferrin receptor (TfR) was strongly inhibited. However, epidermal growth factor (EGF)-induced endocytosis of the EGF receptor (EGFR) was inhibited only in cells where the alpha subunit had been knocked down. By immunoelectron microscopy, we found that in AP2-depleted cells, the number of clathrin-coated pits was strongly reduced. When such cells were incubated with EGF, new coated pits were formed. These contained EGF, EGFR, clathrin, and Grb2 but not the TfR. The induced coated pits contained the alpha subunit, but labeling density was reduced compared to control cells. Induction of clathrin-coated pits required EGFR kinase activity. Overexpression of Grb2 with inactivating point mutations in N- or C-terminal SH3 domains or in both SH3 domains inhibited EGF-induced formation of coated pits efficiently, even though Grb2 SH3 mutations did not block activation of mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K). Our data demonstrate that EGFR-induced signaling and Grb2 are essential for formation of clathrin-coated pits accommodating the EGFR, while activation of MAPK and PI3K is not required.  相似文献   

14.
Ligand-induced dimerization of growth factor receptors is crucial for stimulation of their intrinsic protein tyrosine kinase activity promoting receptor autophosphorylation by an intermolecular mechanism. Moreover, the suppressive and negative dominant action of defective epidermal growth factor receptor (EGFR) was shown to be caused by formation of inactive heterodimers with normal EGFR leading to diminished biological signaling. In this report we explore the structural requirements and functional significance of heterodimerization between EGFR and HER2. HER2 (also called c-erbB-2 or neu) is a member of the EGFR family whose natural ligand is still unknown. We show that in response to EGF, wild type EGFR and various EGFR mutants were able to undergo heterodimerization with HER2. Addition of EGF to transfected cells co-expressing HER2 with a kinase negative point mutant of EGFR (K721A) stimulated heterodimer formation, tyrosine phosphorylation of K721A and HER2, and tyrosine phosphorylation of one of their known substrates, phospholipase C gamma. However, the binding of EGF to transfected cells co-expressing HER2 together with another EGFR mutant CD533 (a deletion mutant lacking most of the cytoplasmic domain of EGFR) caused heterodimerization and inhibition of tyrosine kinase activity. It appears therefore that EGF-induced heterodimerization of EGFR and HER2 can promote either stimulatory or inhibitory influences on kinase activity. We propose that the nature of receptor interactions on the cell surface can either activate or inhibit the initiation of growth factor-controlled cellular signaling.  相似文献   

15.
The number of epidermal growth factor receptors (EGFRs) and their ligands are highly expressed in malignant tumor cells. The EGF signaling pathway is also activated in up to one-third of patients with breast cancer. In this study, we investigated the novel function of the JAK3 inhibitor, WHI-P131, on EGF-induced MMP-9 expression and the regulatory mechanism of EGF-induced MMP-9 expression in SKBR3 cells. We observed that EGF increased MMP-9 mRNA and protein expression in a dose-dependent manner. EGF also induced the phosphorylation of EGFR, ERK, and STAT-3, and these effects were inhibited by the EGFR inhibitor, AG1478. To investigate the involvement of the STAT-3 pathway on EGF-induced MMP-9 expression, we pretreated SKBR3 cells with JAK1, JAK2, and JAK3 inhibitors prior to EGF treatment. The results showed that the JAK3 inhibitor, WHI-P131, as well as JAK3 siRNA transfection, but not the JAK1 and JAK2 inhibitors, significantly decreased EGF-induced MMP-9 expression. In addition, EGF-induced STAT-3 phosphorylation was only inhibited by WHI-P131. We then transfected cells with adenoviral STAT-3 (Ad-STAT-3), followed by treatment with EGF. Interestingly, EGF-induced MMP-9 expression was decreased by Ad-STAT-3 overexpression in a dose-dependent manner, while it was significantly increased by STAT-3 siRNA transfection. Our results also showed that basal levels of MMP-9 expression were significantly increased by constitutive active-MEK (CA-MEK) overexpression. EGF-induced ERK phosphorylation was prevented by WHI-P131, but not by JAK1 and JAK2 inhibitors. On the other hand, EGF-induced MMP-9 expression was decreased by the MEK1/2 inhibitor, UO126. Therefore, for the first time, we suggest that the JAK3 inhibitor, WHI-P131, inhibits EGF-induced STAT-3 phosphorylation as well as ERK phosphorylation. The JAK3/ERK pathway may play an important role in EGF-induced MMP-9 expression in SKBR3 cells.  相似文献   

16.
BACKGROUND: Growth factors and Herceptin specifically and differentially modulate cell proliferation of tumor cells. However, the mechanism of action on erbB-receptor level is incompletely understood. We evaluated Herceptin's capacity to modulate erbB-receptor activation and interaction on the cell surface level and thereby potentially impair cell proliferation of HER2/neu (c-erbB2) overexpressing breast cancer cells, both in the presence and absence of relevant growth factors. METHODS: BT474 and SK-BR-3 breast cancer cell lines were treated with Epidermal Growth Factor (EGF), Heregulin, and with Herceptin in different combinations. Kinetics of cell proliferation were evaluated flow cytometrically based on BrdU-labeling. Fluorescence Resonance Energy Transfer, ELISAs and phosphorylation site specific Western Blotting was performed to investigate erbB-receptor interaction and activation. RESULTS: EGF induced EGFR/EGFR and EGFR/c-erbB2 interactions correlate with stimulation of cell proliferation in BT474 cells. Both homo- and heterodimerization are considerably less pronounced in SK-BR-3 cells and heterointeraction is additionally reduced by EGF treatment, causing inhibition of cell proliferation. Heregulin stimulates cell proliferation extensively in both cell lines. Herceptin drives BT474 cells more efficiently into quiescence than it does with SK-BR-3 cells and thereby blocks cell cycle progress. In SK-BR-3 Herceptin treatment causes c-erbB2 phosphorylation of Y877 and Y1248, EGF induces Y877 and Y1112 phosphorylation. The Y1112 phosphorylation site, activated by EGF in SK-BR-3 cell, is bypassed in BT474. In addition the inhibitory capacity of Herceptin on BT474 and SK-BR-3 cell proliferation depends on the presence and absence of growth factors to a various extent. CONCLUSION: The growth inhibitory effect of Herceptin on c-erbB2 overexpressing breast cancer cells is considerably modulated by EGFR coexpression and consequently EGFR/c-erbB2 homo- and heterointeractions, as well as the presence or absence of growth factors. C-erbB2 overexpression alone is insufficient to predict the impact of growth factors and antibodies on cell proliferation. The optimization and specification of therapeutic approaches based on erbB-receptor targeting requires to account for EGFR coexpression as well as the potential presence of erbB-receptor relevant growth factors.  相似文献   

17.
Gangliosides are well-known regulators of cell differentiation through specific interactions with growth factor receptors. Previously, our group provided the first evidence about stable association of ganglioside GM3 to EGFR/ErbB2 heterodimers in mammary epithelial cells. Goals of the present study were to better define the role of gangliosides in EGFR/ErbB2 heterodimerization and receptor phosphorylation events and to analyze their involvement in mammary cell differentiation. Experiments have been conducted using the ceramide analogue (+/−)-treo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ceramide glucosyltransferase resulting in the endogenous ganglioside depletion, and the lactogenic hormone mix DIP (dexamethasone, insulin, prolactin), which induces cell differentiation and β-casein mRNA synthesis. In addition, treatments of ganglioside-depleted cells with exogenous GM3 have been carried out to ascertain the specific involvement of this ganglioside. Results from co-immunoprecipitation and Western blot experiments have shown that the endogenous ganglioside depletion resulted in the disappearance of SDS-stable EGFR/ErbB2 heterodimers and in the appearance of tyrosine-phosphorylated EGFR also in the absence of EGF stimulation; exogenous GM3 added in combination with [D]-PDMP reversed both these effects. In contrast, the tyrosine phosphorylation of ErbB2 in ganglioside-depleted cells occurred only after EGF stimulation. Moreover, when ganglioside-depleted cells were treated with DIP in absence of EGF, β-casein gene expression appeared strongly down-regulated, and β-casein mRNA levels were partially restored by exogenous GM3 treatment. Altogether, although the involvement of other ganglioside species cannot be excluded, these findings sustain the ganglioside GM3 as an essential molecule for EGFR/ErbB2 heterodimer stability and important regulator of EGFR tyrosine phosphorylation, but it is not crucial for tyrosine phosphorylation of the heterodimerization partner ErbB2. Moreover, modulation of EGFR phosphorylation may explain how gangliosides contribute to regulate the lactogenic hormone-induced mammary cell differentiation.  相似文献   

18.
19.
Activated epidermal growth factor receptors recruit various intracellular proteins leading to signal generation and endocytic trafficking. Although activated receptors are rapidly internalized into the endocytic compartment and subsequently degraded in lysosomes, the linkage between signaling and endocytosis is not well understood. Here we show that EGF stimulation of NR6 cells induces a specific, rapid and transient activation of Rab5a. EGF also enhanced translocation of the Rab5 effector, early endosomal autoantigen 1 (EEA1), from cytosol to membrane. The activation of endocytosis, fluid phase and receptor mediated, by EGF was enhanced by Rab5a expression, but not by Rab5b, Rab5c, or Rab5a truncated at the NH(2) and/or COOH terminus. Dominant negative Rab5a (Rab5:N34) blocked EGF-stimulated receptor-mediated and fluid-phase endocytosis. EGF activation of Rab5a function was dependent on tyrosine residues in the COOH-terminal domain of the EGF receptor (EGFR). Removal of the entire COOH terminus by truncation (c'973 and c'991) abrogated ligand-induced Rab5a activation of endocytosis. A "kinase-dead" EGFR failed to stimulate Rab5a function. However, another EGF receptor mutant (c'1000), with the kinase domain intact and a single autophosphorylation site effectively signaled Rab5 activation. These results indicate that EGFR and Rab5a are linked via a cascade that results in the activation of Rab5a and that appears essential for internalization. The results point to an interdependent relationship between receptor activation, signal generation and endocytosis.  相似文献   

20.
The epidermal growth factor (EGF) receptor tyrosine kinase activity is required for both the earliest EGF-stimulated post-binding events (enhancement of inositol phosphate formation and Ca2+ influx, activation of Na+/H+ exchange), and the ultimate EGF-induced mitogenic response. To assess the role of EGF receptor kinase in EGF-induced metabolic effects (2-deoxyglucose and 2-aminoisobutyric acid uptake), we used NIH3T3 cells (clone 2.2), which do not possess endogenous EGF receptors and which were transfected with cDNA constructs encoding either wild type or kinase-deficient human EGF receptor (HER). In addition, we tested the importance of three HER autophosphorylation sites (Tyr-1068, Tyr-1148, and Tyr-1173) in transduction of EGF-stimulated 2-deoxyglucose uptake. Taking our data together, we conclude the following: (i) HER tyrosine kinase activity is required to elicit EGF stimulation of both 2-deoxyglucose and 2-aminoisobutyric acid uptake; (ii) mutations on individual HER autophosphorylation sites, Tyr-1068, Tyr-1148, and Tyr-1173 do not impair EGF-stimulated 2-deoxyglucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号