首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The electric organ discharges (EODs) of pairs of weakly electric fish, Gnathonemus petersii, were simultaneously recorded to study the significance of the EODs as communication signals. In a 400-litre tank a larger fish (12 to 15 cm) was passively moved within a shelter tube toward a smaller specimen (6 to 9 cm), either in steps or a continuous move. The movement was stopped at that distance when at least one fish significantly lowered or ceased its EOD activity. From this ‘threshold interfish distance’ the spatial range of a ‘communication field’ was found to extend about 30 cm from the fish. At threshold distances an EOD frequency increase caused a temporary EOD activity cessation in the second fish. The spontaneous irregular EOD pattern of the fish displaying the increased EOD rate changed into a regular one with almost equal time intervals between fish pulses.  相似文献   

2.
Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic–electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.  相似文献   

3.
Communication signals serve crucial survival and reproductive functions. In Gabon, the widely distributed mormyrid fish Paramormyrops kingsleyae emits an electric organ discharge (EOD) signal with a dual role in communication and electrolocation that exhibits remarkable variation: populations of P. kingsleyae have either biphasic or triphasic EODs, a feature that characterizes interspecific signal diversity among the Paramormyrops genus. We quantified variation in EODs of 327 P. kingsleyae from nine populations and compared it to genetic variation estimated from microsatellite loci. We found no correlation between electric signal and genetic distances, suggesting that EOD divergence cannot be explained by drift alone. An alternative hypothesis is that EOD differences are used for mate discrimination, which would require P. kingsleyae be capable of differentiating between divergent EOD waveforms. Using a habituation-dishabituation assay, we found that P. kingsleyae can discriminate between biphasic and triphasic EOD types. Nonetheless, patterns of genetic and electric organ morphology divergence provide evidence for hybridization between these signal types. Although reproductive isolation with respect to signal type is incomplete, our results suggest that EOD variation in P. kingsleyae could be a cue for assortative mating.  相似文献   

4.
Weakly electric "wave" fish make highly regular electric organ discharges (EODs) for precise electrolocation. Yet, they modulate the ongoing rhythmicity of their EOD during social interactions. These modulations may last from a few milliseconds to tens of minutes. In this paper we describe the different types of EOD modulations, what they may signal to recipient fish, and how they are generated on a neural level. Our main conclusions, based on a species called the brown ghost (Apteronotus leptorhynchus) are that fish: (1) show sexual dimorphism in the signals that they generate; (2) make different signals depending on Whether they are interacting with a fish of the opposite sex or, within their own sex, to a fish of that which is dominant or subordinate to it; (3) are able to assess relative dominance from electrical cues; (4) have a type of plasticity in the pacemaker nucleus, the control center for the EOD, that occurs after stimulation of NMDA receptors that causes a long-lasting (tens of minutes to hours) change in EOD frequency; (5) that this NMDA receptor-dependent change may occur in reflexive responses, like the jamming avoidance response (JAR), as well as after certain long-lasting social signals. We propose that NMDA-receptor dependent increases in EOD frequency during the JAR adaptively shift the EOD frequency to a new value to avoid jamming by another fish and that such increases in EOD frequency during social encounters may be advantageous since social dominance seems to be positively correlated with EOD frequency in both sexes.  相似文献   

5.
Fish of the family Mormyridae emit weak, pulse-like electric organ discharges (EODs). The discharge rhythm is variable, but the waveform of the EOD is constant for each fish, with species- and individual characteristics. The ability of Pollimyrus isidori and Gnathonemus petersii (Mormyridae) to discriminate between different EOD waveforms was tested using a differential conditioning procedure. Fish were first trained to respond to a reference signal in swimming to a dish to receive a bloodworm (food reward). The reference signal consisted of a 10-Hz train of the digitally recorded EOD of a conspecific. Second, an alternative signal (10-Hz train of a different EOD, either from another species, or from a conspecific of the other sex) was associated with air bubbles as punishment. The two signals were played at successive trials in random order. On each trial the latency was measured between the onset of the signal and the response. 7 out of the 8 P. isidori tested and both of the two G. petersii tested associated the reference EOD with food. Among these, five P. isidori and two G. petersii responded differentially (p < 0.01) to EODs of different species. P. isidori similarly discriminated between conspecific EODs of different sexes. The quantity of different alternative EODs which could be tested was limited when fish eventually habituated to the punishment. Even when the amplitude of the EODs was randomly changed at each trial, two out of two G. petersii differentiated between EODs of the two species, and three out of three P. isidori tested differentiated between EODs within their own species. Response latencies to the rewarded signal during the basic training and during discrimination (when it had to be distinguished from the S-) were similar. G. petersii showed differential responses for S+ and S- also in the rhythm of discharge exhibited during playback, after five EOD pulses for one fish, and after a single pulse for the other. Mormyrids may therefore distinguish between conspecifics and members of other species, and even between individual conspecifics, by their EOD waveform.  相似文献   

6.
A hormone-sensitive communication system in an electric fish   总被引:1,自引:0,他引:1  
The electric communication system includes both special muscle-derived cells or electrocytes that produce species-typical electric signals, or electric organ discharges (EODs), and specialized sensory receptors, or electroreceptors, that encode the electric fields set up by EODs. Steroid hormones can influence the characteristic properties of both EODs and electroreceptors. Steroids appear to directly effect the anatomy and physiology of the electrocytes that generate an EOD. In contrast, the steroid effect on electroreceptors may be predominantly via an indirect mechanism whereby changes in the spectral characteristics of the EOD appear to induce changes in the spectral sensitivity of electroreceptors. Continued studies of electrosensory and electromotor systems will offer insights into the cellular bases for the development and evolution of steroid-sensitive pathways in the vertebrate nervous system.  相似文献   

7.
The sensory cues for a less known form of frequency shifting behavior, gradual frequency falls, of electric organ discharges (EODs) in a pulse-type gymnotiform electric fish, Rhamphichthys rostratus, were identified. We found that the gradual frequency fall occurs independently of more commonly observed momentary phase shifting behavior, and is due to perturbation of sensory feedback of the fish's own EODs by EODs of neighboring fish. The following components were identified as essential features in the signal mixture of the fish's own and the neighbor's EOD pulses: (1) the neighbor's pulses must be placed within a few millisecond of the fish's own pulses, (2) the neighbor's pulses, presented singly at low frequencies (0.2–4 Hz), were sufficient, (3) the frequency of individual pulse presentation must be below 4 Hz, (4) amplitude modulation of the sensory feedback of the fish's own pulses induced by such insertions of the neighbor's pulses must contain a high frequency component: sinusoidal amplitude modulation of the fish's own EOD feedback at these low frequencies does not induce gradual frequency falls. Differential stimulation across body surfaces, which is required for the jamming avoidance response (JAR) of wave-type gymnotiform electric fish, was not necessary for this behavior. We propose a cascade of high-pass and low-pass frequency filters within the amplitude processing pathway in the central nervous system as the mechanism of the gradual frequency fall response.Abbreviations EOD electric organ discharge - f frequency of EOD or pacemaker command signal - JAR jamming avoidance response - S 1 stimulus mimicking fish's own EOD - f 1 frequency of S1 - S 2 stimulus mimicking neighbor's EOD - f 2 frequency of S2  相似文献   

8.
This study explores the evolutionary origins of waveform complexity in electric organ discharges (EODs) of weakly electric fish. I attempt to answer the basic question of what selective forces led to the transition from the simplest signal to the second simplest signal in the gymnotiform electric fishes. The simplest electric signal is a monophasic pulse and the second simplest is a biphasic pulse. I consider five adaptive hypotheses for the evolutionary transition from a monophasic to a biphasic EOD: (i) electrolocation, (ii) sexual selection, (iii) species isolation, (iv) territory defense, (v) crypsis from electroreceptive predators. Evaluating these hypotheses with data drawn largely from the literature, I find best support for predation. Predation is typically viewed as a restraining force on evolution of communication signals, but among the electric fishes, predation appears to have served as a creative catalyst. In suppressing spectral energy in the sensitivity range of predators (a spectral simplification), the EOD waveforms have become more complex in their time domain structure. Complexity in the time domain is readily discernable by the high frequency electroreceptor systems of gymnotiform and mormyrid electric fish. The addition of phases to the EOD can cloak the EOD from predators, but also provides a substrate for subsequent modification by sexual selection. But, while juveniles and females remain protected from predators, breeding males modify their EODs in ways that enhance their conspicuousness to predators.  相似文献   

9.
We describe patterns of geographic variation in electric signal waveforms among populations of the mormyrid electric fish species Paramormyrops kingsleyae. This analysis includes study of electric organs and electric organ discharge (EOD) signals from 553 specimens collected from 12 localities in Gabon, West-Central Africa from 1998 to 2009. We measured time, slope, and voltage values from nine defined EOD “landmarks” and determined peak spectral frequencies from each waveform; these data were subjected to principal components analysis. The majority of variation in EODs is explained by two factors: the first related to EOD duration, the second related to the magnitude of the weak head-negative pre-potential, P0. Both factors varied clinally across Gabon. EODs are shorter in eastern Gabon and longer in western Gabon. Peak P0 is slightly larger in northern Gabon and smaller in southern Gabon. P0 in the EOD is due to the presence of penetrating-stalked (Pa) electrocytes in the electric organ while absence is due to the presence of non-penetrating stalked electrocytes (NPp). Across Gabon, the majority of P. kingsleyae populations surveyed have only individuals with P0-present EODs and Pa electrocytes. We discovered two geographically distinct populations, isolated from others by barriers to migration, where all individuals have P0-absent EODs with NPp electrocytes. At two sites along a boundary between P0-absent and P0-present populations, P0-absent and P0-present individuals were found in sympatry; specimens collected there had electric organs of intermediate morphology. This pattern of geographic variation in EODs is considered in the context of current phylogenetic work. Multiple independent paedomorphic losses of penetrating stalked electrocytes have occurred within five Paramormyrops species and seven genera of mormyrids. We suggest that this key anatomical feature in EOD signal evolution may be under a simple mechanism of genetic control, and may be easily influenced by selection or drift throughout the evolutionary history of mormyrids.  相似文献   

10.
Summary The electric organ of a fish represents an internal current source, and the largely isopotential nature of the body interior warrants that the current associated with the fish's electric organ discharges (EODs) recruits all electroreceptors on the fish's body surface evenly. Currents associated with the EODs of a neighbor, however, will not penetrate all portions of the fish's body surface equally and will barely affect regions where the neighbor's current flows tangentially to the skin surface. The computational mechanisms of the jamming avoidance response (JAR) in Eigenmannia exploit the uneven effects of a neighbor's EOD current to calculate the correct frequency difference between the two interfering EOD signals even if the amplitude of a neighbor's signal surpasses that of the fish's own signal by orders of magnitude. The particular geometry of the fish's own EOD current thus yields some immunity against the potentially confusing effects of unusually strong interfering EOD currents of neighbors.Abbreviations DF frequency difference - ELL electrosensory lateral line lobe - EOD electric organ discharge - JAR jamming avoidance response  相似文献   

11.
Food deprivation is known to affect physiology and behavior. Changes that occur could be the result of the organism's monitoring of internal and external nutrient availability. In C. elegans, male mating is dependent on food availability; food-deprived males mate with lower efficiency compared to their well-fed counterparts, suggesting that the mating circuit is repressed in low-food environments. This behavioral response could be mediated by sensory neurons exposed to the environment or by internal metabolic cues. We demonstrated that food-deprivation negatively regulates sex-muscle excitability through the activity of chemosensory neurons and insulin-like signaling. Specifically, we found that the repressive effects of food deprivation on the mating circuit can be partially blocked by placing males on inedible food, E. coli that can be sensed but not eaten. We determined that the olfactory AWC neurons actively suppress sex-muscle excitability in response to food deprivation. In addition, we demonstrated that loss of insulin-like receptor (DAF-2) signaling in the sex muscles blocks the ability of food deprivation to suppress the mating circuit. During low-food conditions, we propose that increased activity by specific olfactory neurons (AWCs) leads to the release of neuroendocrine signals, including insulin-like ligands. Insulin-like receptor signaling in the sex muscles then reduces cell excitability via activation of downstream molecules, including PLC-γ and CaMKII.  相似文献   

12.
The communication signals of electric fish can be dynamic, varying between the sexes on a circadian rhythm and in response to social and environmental cues. In the gymnotiform fish Brachyhypopomus gauderio waveform shape of the electric organ discharge (EOD) is regulated by steroid and peptide hormones. Furthermore, EOD amplitude and duration change on different timescales and in response to different social stimuli, suggesting that they are regulated by different mechanisms. Little is known about how androgen and peptide hormone systems interact to regulate signal waveform. We investigated the relationship between the androgens testosterone (T) and 11-ketotestosterone (11-KT), the melanocortin peptide hormone α-MSH, and their roles in regulating EOD waveform of male B. gauderio. Males were implanted with androgen (T, 11-KT, or blank), and injected with α-MSH before and at the peak of androgen effect. We compared the effects of androgen implants and social interactions by giving males a size-matched male stimulus with which they could interact electrically. Social stimuli and both androgens increased EOD duration, but only social stimuli and 11-KT elevated amplitude. However, no androgen enhanced EOD amplitude to the extent of a social stimulus, suggesting that a yet unidentified hormonal pathway regulates this signal parameter. Additionally, both androgens increased response of EOD duration to α-MSH, but only 11-KT increased response of EOD amplitude to α-MSH. Social stimuli had no effect on EOD response to α-MSH. The finding that EOD amplitude is preferentially regulated by 11-KT in B. gauderio may provide the basis for independent control of amplitude and duration.  相似文献   

13.
Weakly electric fish communicate with brief electrostatic field pulses called electric organ discharges (EODs). EOD waveforms are sexually dimorphic in most genera, a condition thought to result from mate choice acting to shape the electric signal's constituent action potentials. We have no direct behavioural evidence that sexual selection by either mate choice or intrasexual competition is responsible for sex differences in the EOD waveforms of electric fish. We explored sexual selection in electric fish by conducting two-choice unforced preference tests with live, unaltered gymnotiform electric fish,Brachyhypopomus pinnicaudatus , which are sexually dimorphic. In the initial test, gravid females selected males over females only when the males were larger than average. Gravid females in later tests preferred larger males to smaller males in a significant majority of those trials in which they showed a preference. In about one-third of those trials, females spawned with their preferred male, confirming their preference. We concluded that passage through the choice apparatus was related to mate choice. The signals of chosen males had larger EOD amplitudes and longer EOD durations. These findings show that femaleB. pinnicaudatus do have a preference for a certain male phenotype. The system requires additional study to dissociate correlated male phenotypic characters to identify which male traits the female prefers. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

14.
Summary Members of the family of African electric fish, Mormyridae, exhibit a novelty response, consisting of an acceleration in the rate of electric organ discharges (EODs), when faced with changes in feedback arising from their EODs. In this study, the novelty responses of three different species of mormyrids to shunts with different electrical characteristics were noted. The three species differed in the frequency contents of their EODs: two species had relatively high spectral frequencies in their EODs (>10 kHz), while the third species had only lower spectral frequencies (< 10 kHz). Primarily resistive shunts elicited novelty response accelerations in all three species, and the magnitudes of these responses, when normalized to the responses obtained for a shunt with no introduced resistance, were comparable for all three species. For primarily capacitive shunts, however, the magnitudes of the normalized responses were different for the three species: the two species with high spectral frequencies in their EODs showed larger normalized responses than the third species which had only low EOD spectral frequencies.The differences in species responses for capacitive shunts, and the similarities in species responses for resistive shunts, suggest that electric fish detect the complex impedance of objects in their near field environment: a circuit model consisting of a fish emitting discharges into the surrounding water, which can be shunted by a variable complex impedance, conforms well to the data. Thus, electrolocation is a frequency dependent sensory process, and this frequency dependency should be considered in any speculation about the adaptive value of different EOD waveforms.Abbreviation EOD electric organ discharge  相似文献   

15.
Electric organ discharge patterns during group hunting by a mormyrid fish   总被引:3,自引:0,他引:3  
Weakly electric fish emit and receive low-voltage electric organ discharges (EODs) for electrolocation and communication. Since the discovery of the electric sense, their behaviours in the wild have remained elusive owing to their nocturnal habits and the inaccessible environments in which they live. The transparency of Lake Malawi provided the first opportunity to simultaneously observe freely behaving mormyrid fish and record their EODs. We observed a piscivorous mormyrid, Mormyrops anguilloides, hunting in small groups in Lake Malawi while feeding on rock-frequenting cichlids of the largest known vertebrate species flock. Video recordings yielded the novel and unexpected finding that these groups resembled hunting packs by being largely composed of the same individuals across days. We show that EOD accelerations accompany prey probing and size estimation by M. anguilloides. In addition, group members occasionally synchronize bursts of EODs with an extraordinary degree of precision afforded by the mormyrid echo response. The characteristics and context of burst synchronization suggest that it may function as a pack cohesion signal. Our observations highlight the potential richness of social behaviours in a basal vertebrate lineage, and provide a framework for future investigations of the neural mechanisms, behavioural rules and ecological significance of social predation in M. anguilloides.  相似文献   

16.
Although group living can confer benefits to individuals in terms of reduced predation risk and enhanced foraging success, it may also be associated with costs, such as increased competition for food. The nutritional state of an individual could therefore affect its readiness to join or remain in groups. We investigated the shoaling behaviour of banded killifish by following marked individuals, whose nutritional state had been experimentally manipulated, and recording their shoaling behaviour in a field enclosure containing unmarked conspecifics. Overall, food-deprived fish spent more time alone, and therefore less time shoaling, than well-fed individuals. When shoaling, however, food-deprived fish were not found in smaller shoals than well-fed conspecifics. Furthermore, they did not show a greater latency to shoal initially. Having joined a shoal, however, food-deprived fish left shoals more frequently to be alone than fed fish. Rates of change in the membership size of shoals occupied by either well-fed or food-deprived fish did not differ. We conclude that nutritional state seems to affect an individual's decision to continue shoaling once an association has been made. This study is the first to investigate experimentally state-dependent changes in the size of social groups in fish under field conditions. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

17.
Weakly electric fish from the family Mormyridae produce pulsatile electric organ discharges (EODs) for use in communication. For many species, male EODs are seasonally longer in duration than those of females, and among males, there are also individual differences in EOD duration. While EOD elongation can be induced by the administration of exogenous androgens, androgen levels have never before been assessed under natural or seminatural conditions. By simulating the conditions occurring during the breeding season in the laboratory, we provide evidence of a sex difference in EOD duration as well as document levels of circulating androgens in males. In this study, we analyzed the nature of social influences on male EOD duration and plasma androgen levels in Brienomyrus brachyistius. Individual males, first housed with a single female and then placed into social groups consisting of three males and three females, showed status-dependent changes in EOD duration. Top-ranking males experienced a relatively large increase in EOD duration. Second-ranking males experienced a more modest increase, and low-ranking males experienced a decrease in EOD duration. These changes were paralleled by differences in circulating levels of plasma 11-ketotestosterone (11-KT), but not testosterone, suggesting that the changes in EOD duration may have been mediated by changes in plasma 11-KT levels. Thus, it appears that EOD duration is an accurate indicator of male status, which is under social and hormonal control.  相似文献   

18.
Weakly electric gymnotiform fish specialize in the regulation and modulation of the action potentials that make up their multi-purpose electric signals. To produce communication signals, gymnotiform fish modulate the waveforms of their electric organ discharges (EODs) over timescales spanning ten orders of magnitude within the animal’s life cycle: developmental, reproductive, circadian, and behavioral. Rapid changes lasting milliseconds to seconds are the result of direct neural control of action potential firing in the electric organ. Intermediate-term changes taking minutes to hours result from the action of melanocortin peptides, the pituitary hormones that induce skin darkening and cortisol release in many vertebrates. Long-term changes in the EOD waveform taking days to weeks result from the action of sex steroids on the electrocytes in the electric organ as well as changes in the neural control structures in the brain. These long-term changes in the electric organ seem to be associated with changes in the expression of voltage-gated ion channels in two gene families. Electric organs express multiple voltage-gated sodium channel genes, at least one of which seems to be regulated by androgens. Electric organs also express multiple subunits of the shaker (Kv1) family of voltage-gated potassium channels. Expression of the Kv1 subtype has been found to vary with the duration of the waveform in the electric signal. Our increasing understanding of the mechanisms underlying precise control of electric communication signals may yield significant insights into the diversity of natural mechanisms available for modifying the performance of ion channels in excitable membranes. These mechanisms may lead to better understanding of normal function in a wide range of physiological systems and future application in treatment of disease states involving pathology of excitable membranes.  相似文献   

19.
By mimicking tropical rainy season conditions in aquaria, we stimulated two species of gymnotoid electric fish, Eigenmannia virescens and Apteronotus leptorhynchus, to spawn in captivity. Their courtship activity, breeding behaviour and electric social communication were monitored in several groups over 2 years. Groups of both species established dominance hierarchies correlated with electric organ discharge frequency, aggressiveness and size. Spawning was preceded by several nights of courtship during which the male modulated its electric organ discharge to produce ‘chirps’. Continual bouts of chirping lasted for hours on evenings prior to spawning. These electrical signals play a significant role in courtship and spawning, as gravid E. virescens females could be stimulated to spawn by playing back into the tank a tape recording of male courtship chirps. In both species the chirp invovves a slight increase in frequency followed by a cessation of the dominant frequency. This suggests a common mode of signal production in these two different genera of fish. Chirps are short and abrupt during aggressive encounters, but assume a softer and more raspy quality during courtship.  相似文献   

20.
Electric fish generate and sense electric fields for navigation and communication. These signals can be energetically costly to produce and can attract electroreceptive predators. To minimize costs, some nocturnally active electric fish rapidly boost the power of their signals only at times of high social activity, either as night approaches or in response to social encounters. Here we show that the gymnotiform electric fish Sternopygus macrurus rapidly boosts signal amplitude by 40% at night and during social encounters. S. macrurus increases signal magnitude through the rapid and selective trafficking of voltage-gated sodium channels into the excitable membranes of its electrogenic cells, a process under the control of pituitary peptide hormones and intracellular second-messenger pathways. S. macrurus thus maintains a circadian rhythm in signal amplitude and adapts within minutes to environmental events by increasing signal amplitude through the rapid trafficking of ion channels, a process that directly modifies an ongoing behavior in real time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号