首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Behavior in electric fish includes modulations of a stereotyped electric organ discharge (EOD) in addition to locomotor displays. Gymnotiformes can modulate the EOD rate to produce signals that participate in different behaviors. We studied the reproductive behavior of Brachyhypopomus pinnicaudatus both in the wild and laboratory settings. During the breeding season, fish produce sexually dimorphic social electric signals (SES): males emit three types of chirps (distinguished by their duration and internal structure), and accelerations, whereas females interrupt their EOD. Since these SES imply EOD frequency modulations, the pacemaker nucleus (PN) is involved in their generation and constitutes the main target organ to explore seasonal and sexual plasticity of the CNS. The PN has two types of neurons, pacemakers and relays, which receive modulatory inputs from pre-pacemaker structures. These neurons show an anisotropic rostro-caudal and dorso-ventral distribution that is paralleled by different field potential waveforms in distinct portions of the PN. In vivo glutamate injections in different areas of the PN provoke different kinds of EOD rate modulations. Ventral injections produce chirp-like responses in breeding males and EOD interruptions in breeding females, whereas dorsal injections provoke EOD frequency rises in both sexes. In the non-breeding season, males and females respond with interruptions when stimulated ventrally and frequency rises when injected dorsally. Our results show that changes of glutamate effects in the PN could explain the seasonal and sexual differences in the generation of SES. By means of behavioral recordings both in the wild and in laboratory settings, and by electrophysiological and pharmacological experiments, we have identified sexual and seasonal plasticity of the CNS and explored its underlying mechanisms.  相似文献   

2.
Speciation by sexual selection is generally modeled as the coevolution of female preferences and elaborate male ornaments leading to behavioral (sexual) reproductive isolation. One prediction of these models is that female preference for conspecific males should evolve earlier than male preference for conspecific females in sexually dimorphic species with male ornaments. We tested that prediction in darters, a diverse group of freshwater fishes with sexually dimorphic ornamentation. Focusing on the earliest stages of divergence, we tested preference for conspecific mates in males and females of seven closely related species pairs. Contrary to expectation, male preference for conspecific females was significantly greater than female preference for conspecific males. Males in four of the 14 species significantly preferred conspecific females; whereas, females in no species significantly preferred conspecific males. Relationships between the strength of preference for conspecifics and genetic distance revealed no difference in slope between males and females, but a significant difference in intercept, also suggesting that male preference evolves earlier than females’. Our results are consistent with other recent studies in darters and suggest that the coevolution of female preferences and male ornaments may not best explain the earliest stages of behavioral isolation in this lineage.  相似文献   

3.
Although it is often assumed that males and females have mating preferences for larger individuals of the other sex, potential underlying differences between male and female preferences for body size are not commonly investigated. Here, sexual differences in body size preferences are examined in the poeciliid fish, Brachyrhaphis rhabdophora. Females preferred larger males to smaller males, but preference did not appear to be affected by female size. One population-level analysis for males did not indicate an overall preference for larger females. A closer examination, however, revealed an effect of male size on preference; larger males preferred larger females, while smaller males preferred smaller females. It appears then that females, regardless of size, share a preference for large males, but males differ in their behaviour, depending on their body size. In addition, while the degree of difference in size between paired females did not appear to affect male preference, the degree of difference in size between paired males strongly affected female preference; the greater the difference, the more strongly females preferred the larger male. Thus, intersexual selection is found to operate in both sexes, but how it operates appears to differ. Intrasexual and intersexual differences in mating behaviour may be missed when evaluating population-wide preferences. That is, there can be underlying differences in how the sexes respond and the consequences of such differences should be considered when investigating mate choice. The results are considered in terms of the evolution of mating preferences, alternative mating strategies, assortative mating, the maintenance of trait variation in a population, and current methods to evaluate mating preferences.  相似文献   

4.
Female preference for males successful in male-male competition is generally assumed to result in mating with high quality males. Here I report results from an experiment disentangling the effects of intra- and intersexual selection in the sand goby, Pomatoschistus minutus, a marine fish that exhibits paternal care. I show that large males are successful in male–male competition, but contrary to what one would expect, dominants are not preferred by females and are not better at taking care of the eggs. Female preference, however, correlated with the subsequent hatching success of the eggs. Thus, female choice selects for good parenting. Hence, direct benefits in the form of superior paternal care can explain female choice in this species, supporting a good parent process of sexual selection. However, choosing on the outcome of male–male competition does not enable females to mate with the ''best'' males.  相似文献   

5.
Female mate preferences for ecologically relevant traits may enhance natural selection, leading to rapid divergence. They may also forge a link between mate choice within species and sexual isolation between species. Here, we examine female mate preference for two ecologically important traits: body size and body shape. We measured female preferences within and between species of benthic, limnetic, and anadromous threespine sticklebacks (Gasterosteus aculeatus species complex). We found that mate preferences differed between species and between contexts (i.e., within vs. between species). Within species, anadromous females preferred males that were deep bodied for their size, benthic females preferred larger males (as measured by centroid size), and limnetic females preferred males that were more limnetic shaped. In heterospecific mating trials between benthics and limnetics, limnetic females continued to prefer males that were more limnetic like in shape when presented with benthic males. Benthic females showed no preferences for size when presented with limnetic males. These results show that females use ecologically relevant traits to select mates in all three species and that female preference has diverged between species. These results suggest that sexual selection may act in concert with natural selection on stickleback size and shape. Further, our results suggest that female preferences may track adaptation to local environments and contribute to sexual isolation between benthic and limnetic sticklebacks.  相似文献   

6.
While male mate choice behaviour has been reported in many taxa, little is known about its plasticity and evolutionary consequences. In the damselfly Ischnura senegalensis, females exhibit colour dimorphism (gynomorph and andromorph). The body colour of gynomorphs changed ontogenetically in accordance with sexual maturation, while little change occurred in andromorphs. To test the male mate choice between sexually immature and mature females of both morphs, binary choice experiments were conducted. Virgin males that were reared separately from females after emergence did not show significant preference between sexually immature and mature females for both morphs, indicating that virgin males were unable to discriminate female reproductive status. On the other hand, males that had experienced copulation with gynomorphs preferred sexually mature gynomorphs to sexually immature ones. However, males that had experienced copulation with andromorphs could not discriminate between sexually immature and mature andromorphs, probably due to the absence of significant ontogenetic change in their thoracic colour. Therefore, female body colour is an important cue for males in discriminating between sexual maturation stages. Learned mate discrimination depending on copulation experience might help males to detect potential mates effectively and avoid sexually unreceptive immature female. We finally discuss the adaptive significance of the ontogenetic colour change in females.  相似文献   

7.
Although females are traditionally thought of as the choosy sex, there is increasing evidence in many species that males will preferentially court or mate with certain females over others when given a choice. In the fruit fly, Drosophila melanogaster, males discriminate between potential mating partners based on a number of female traits, including species, mating history, age, and condition. Interestingly, many of these male preferences are affected by the male''s previous sexual experiences, such that males increase courtship toward types of females that they have previously mated with and decrease courtship toward types of females that have previously rejected them. Dmelanogaster males also show courtship and mating preferences for larger females over smaller females, likely because larger females have higher fecundity. It is unknown, however, whether this preference shows behavioral plasticity based on the male''s sexual history as we see for other male preferences. Here, we manipulate the sexual experience of Dmelanogaster males and test whether this manipulation has any effect on the strength of male mate choice for large females. We find that sexually inexperienced males have a robust courtship preference for large females that is unaffected by previous experience mating with, or being rejected by, females of differing sizes. Given that female body size is one of the most common targets of male mate choice across insect species, our experiments with Dmelanogaster may provide insight into how these preferences develop and evolve.  相似文献   

8.
Maintaining a stable social organization necessitates that animals recognize their own dominance status relative to the status of other group members. The weakly electric brown ghost knifefish emits a sexually dimorphic sinusoidal electric organ discharge (EOD) for electrolocation. Dominant males discharge at the highest and females at the lowest EOD frequencies (EODFs). Each individual is most sensitive to its own EODF, which can be modulated for communication. To examine how sensitivity and social status influence an individual's response to different cues, we recorded the electrical signals emitted by 10 males and seven females in response to playbacks of sine waves mimicking a wide range of con- and heterospecific EODFs. While all individuals emit small chirps (LoCs) mostly to stimuli around their own EODF, they are more likely to emit rises (gradual nonchirp signals) to frequencies to which they are less sensitive; males similarly emit larger chirps (HiCs) to frequencies more distant from their own, especially to female mimics. Males with ‘dominant’ EODFs are less likely to emit rises, stimuli in the female range elicit more rises from both sexes, and females emit rises to male EOD mimics. Although low-ranking male EOD mimics elicit more LoCs from all males, males with lower-ranking EODFs chirp less at high EOD mimics than males with high-ranking EODFs chirp at low EOD mimics. We conclude that (1) although much of the variation in an individual's response is attributable to its sensitivity, individuals recognize sexual and status cues and have some internal representation of their own social status, and (2) whereas LoCs appear to function in intrasexual aggression, HiCs and rises could be used in both courtship and submissive signalling. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

9.
Current theories of mate choice predict that the level of choosiness of males and females will depend on their relative investment in parental care. Males often invest less than females and are expected to be less choosy, especially in lekking species where males contribute only sperm. Our study of the haplochromine cichlid fish Astatotilapia flaviijosephi, a maternal mouthbrooder, provides the first experimental evidence for male mate choice in a lekking species. In this species the number of eggs spawned is positively correlated with female weight, thus making larger females potentially better mates. In the laboratory, we conducted a simultaneous choice experiment where males had the opportunity to associate with, and court, each of two females that differed in size. Males preferred to court the larger female and spent more time courting during experimental trials involving larger females. This selective allocation of courtship effort to more attractive (i.e. heavier) females suggests that there may be constraints on males in fertilizing multiple females, thus compelling them to be choosy.Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

10.
All too often, studies of sexual selection focus exclusively on the responses in one sex, on single traits, typically those that are exaggerated and strongly sexually dimorphic. They ignore a range of less obvious traits and behavior, in both sexes, involved in the interactions leading to mate choice. To remedy this imbalance, we analyze a textbook example of sexual selection in the stalk‐eyed fly (Diasemopsis meigenii). We studied several traits in a novel, insightful, and efficient experimental design, examining 2,400 male–female pairs in a “round‐robin” array, where each female was tested against multiple males and vice versa. In D. meigenii, females exhibit strong mate preference for males with highly exaggerated eyespan, and so we deliberately constrained variation in male eyespan to reveal the importance of other traits. Males performing more precopulatory behavior were more likely to attempt to mate with females and be accepted by them. However, behavior was not a necessary part of courtship, as it was absent from over almost half the interactions. Males with larger reproductive organs (testes and accessory glands) did not make more mating attempts, but there was a strong tendency for females to accept mating attempts from such males. How females detect differences in male reproductive organ size remains unclear. In addition, females with larger eyespan, an indicator of size and fecundity, attracted more mating attempts from males, but this trait did not alter female acceptance. Genetic variation among males had a strong influence on male mating attempts and female acceptance, both via the traits we studied and other unmeasured attributes. These findings demonstrate the importance of assaying multiple traits in males and females, rather than focusing solely on prominent and exaggerated sexually dimorphic traits. The approach allows a more complete understanding of the complex mating decisions made by both males and females.  相似文献   

11.
Brooding behaviour is a likely cue to a female's reproductive status and therefore a potentially important factor in male mate assessment. We induced brooding behaviour in adult female Japanese quail by exposure to foster chicks for five 20-min trials over 3 days. In two experiments, we assessed the influence of this brooding behaviour on male mate choice in Japanese quail using an established mate choice paradigm. In each experiment we gave males a choice between two females presented simultaneously and measured preference by the time spent in proximity to each. In the first experiment, a male's preference for the initially preferred female significantly decreased after he had seen her brooding three chicks. In the control condition, male preference for an initially preferred female remained relatively consistent over consecutive trials if he did not see her brood chicks. These results suggest that females who are brooding chicks are less attractive to male Japanese quail. Further evidence from the second experiment substantiates this finding, and strongly suggests that males are averse to behavioural cues from maternal females, rather than the mere presence of chicks. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

12.
Weakly electric fish such as Sternopygus macrurus utilize a unique signal production system, the electric organ (EO), to navigate within their environment and to communicate with conspecifics. The electric organ discharge (EOD) generated by the Sternopygus electric organ is quasi-sinusoidal and sexually dimorphic; sexually mature males produce long duration EOD pulses at low frequencies, whereas mature females produce short duration EOD pulses at high frequencies. EOD frequency is set by a medullary pacemaker nucleus, while EOD pulse duration is determined by the kinetics of Na+ and K+ currents in the electric organ. The inactivation of the Na+ current and the activation of the delayed rectifying K+ current of the electric organ covary with EOD frequency such that the kinetics of both currents are faster in fish with high (female) EOD frequency than those with low (male) EOD frequencies. Dihydrotestosterone (DHT) implants masculinize the EOD centrally by decreasing frequency at the pacemaker nucleus (PMN). DHT also acts at the electric organ, broadening the EO pulse, which is at least partly due to a slowing of the inactivation kinetics of the Na+ current. Here, we show that chronic DHT treatment also slows the activation and deactivation kinetics of the electric organ's delayed rectifying K+ current. Thus, androgens coregulate the time-varying kinetics of two distinct ion currents in the EO to shape a sexually dimorphic communication signal.  相似文献   

13.
Even though females are usually more selective in choosing their mates, males are also capable of exercising mate choice. Despite the large body of evidence on the individual features preferred in sexual selection, little attention has been devoted to the first stage of male–female interaction. As poeciliid fish are known to be social, in the wild, initially mate choice may concern a preliminary selection among shoals. Only after this primary choice, males may subsequently direct their attention to a specific mate. We observed spontaneous preference of male mosquitofish (Gambusia holbrooki) when choosing between groups differing in size and sex ratio. In partial agreement with our predictions, males preferred to join a group of females rather than an isolated one (expt 1) and the larger group when two female groups were presented (expt 2). An all‐female group was preferred to a mixed‐sex group (expt 3), whereas no preference was observed when the two mixed‐sex groups differed in the number of males (expt 4) or in the size of the males (expt 5). These results suggest that male mosquitofish are capable of discriminating among different quantities of individuals within a group and use such information to select among groups in order to optimize the likelihood of successful matings.  相似文献   

14.
In this study we examined electrocommunication behavior in Sternarchogiton nattereri (Apteronotidae), a weakly electric fish from South America. We focused on variation between females and males lacking external dentition and used playbacks of simulated conspecifics to elicit chirps (modulations of their electric organ discharge, EOD). Chirp responses were not affected by the frequency of the playback stimulus. EOD frequency, chirp rate, and chirp duration were not sexually dimorphic; however, the amount of chirp frequency modulation was significantly greater in toothless males than in females. These results reinforce that sex differences in chirp structure are highly diverse and widespread in the Apteronotidae.  相似文献   

15.
Intersexual copying by sneaker males of the peacock blenny   总被引:1,自引:0,他引:1  
In general, animals prefer to mate with individuals they have observed being courted or in close association with sexual partners. This phenomenon of mate copying has been demonstrated in several species, but so far no study has provided substantial evidence that it is adaptive. Furthermore, mate copying has been viewed only in the context of females copying other females or males copying other males. In the peacock blenny, Salaria pavo, parasitic males (sneakers) may gain an advantage by copying the association patterns of females with bourgeois males (large males that defend nests). We tested the sneaker's preference for one of two males and subsequently presented the nonpreferred male to the sneaker in the company of females, while the preferred male was presented alone. If the association of females with bourgeois males influences the sneaker's preference, we predicted the sneaker would spend more time close to the nonpreferred male, when females were no longer present. We found that (1) sneakers preferred to associate with the larger of the two males and (2) when the previously nonpreferred male was presented in the company of females the sneakers tended to approach that male sooner, although not significantly so, and to spend more time close to it. Thus, parasitic males seem to choose host males both by independent mechanisms (larger males were preferred) and by nonindependent mechanisms (males observed with females were preferred). We discuss the adaptive value of sneakers choosing males by each of these mechanisms. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

16.
In sexually dimorphic species characterized by exaggerated male ornamentation, behavioral isolation is often attributed to female preferences for conspecific male signals. Yet, in a number of sexually dimorphic species, male mate choice also results in behavioral isolation. In many of these cases, the female traits that mediate species boundaries are unclear. Females in sexually dimorphic species typically lack many of the elaborate traits that are present in males and that are often used for taxonomic classification of species. In a diverse and largely sexually dimorphic group of fishes called darters (Percidae: Etheostoma), male mate choice contributes to behavioral isolation between a number of species; however, studies addressing which female traits males prefer are lacking. In this study, we identified the dominant female pattern for two sympatric species, Etheostoma zonale and Etheostoma barrenense, using pattern energy analysis, and we used discriminate function analysis to identify which aspects of female patterning can reliably classify species. We then tested the role of female features in male mate choice for E. zonale, by measuring male preference for computer animations displaying the identified (species-specific) conspecific features. We found that the region above the lateral line is important in mediating male mate preferences, with males spending a significantly greater proportion of time with animations exhibiting conspecific female patterning in this region than with animations exhibiting heterospecific female patterning. Our results suggest that the aspects of female phenotypes that are the target of male mate choice are different from the conspicuous male phenotypes that traditionally characterize species.  相似文献   

17.
The weakly electric fish from the main channel of the Amazon river, Sternarchogiton nattereri, offers a striking case of morphological variation. Females and most males are toothless, or present only few minute teeth on the mandible, whereas some males exhibit exaggerated, spike-like teeth that project externally from the snout and chin. Androgens are known to influence the expression of sexually dimorphic traits, and might be involved in tooth emergence. In this study we assess the relationship in S. nattereri between morphological variation, 11 ketotestosterone (11-KT) and testosterone (T). We also examine relationships of morphology and androgen levels with electric organ discharge (EOD) frequency, reproductive condition, and seasonality. Our main finding is that male morph categories differed significantly in plasma concentrations of 11-KT, with toothed males showing higher levels of 11-KT than toothless males. By contrast, we did not detect statistical differences in T levels among male morph categories. Reproductive condition, as measured by gonadosomatic indexes (GSI), differed across two sample years, increased as the season progressed, and was higher in toothed males than in non-toothed males. EOD frequency was higher in toothed males than in either toothless males or females. Taken together, our findings suggest that S. nattereri male sexual characters are regulated by 11-KT levels, and that both morphology and androgens interact with reproductive condition and EOD frequency in ways that vary within and across reproductive seasons.  相似文献   

18.
Adaptive mate choice by females is an important component of sexual selection in many species. The evolutionary consequences of male mate preferences, however, have received relatively little study, especially in the context of sexual conflict, where males often harm their mates. Here, we describe a new and counterintuitive cost of sexual selection in species with both male mate preference and sexual conflict via antagonistic male persistence: male mate choice for high-fecundity females leads to a diminished rate of adaptive evolution by reducing the advantage to females of expressing beneficial genetic variation. We then use a Drosophila melanogaster model system to experimentally test the key prediction of this theoretical cost: that antagonistic male persistence is directed toward, and harms, intrinsically higher-fitness females more than it does intrinsically lower-fitness females. This asymmetry in male persistence causes the tails of the population''s fitness distribution to regress towards the mean, thereby reducing the efficacy of natural selection. We conclude that adaptive male mate choice can lead to an important, yet unappreciated, cost of sex and sexual selection.  相似文献   

19.
Darwin first identified female choice and male—male competitionas forms of sexual selection resulting in the evolution of conspicuoussexual dimorphism, but it has proven challenging to separatetheir effects. Their effects on sexual selection become evenmore complicated when sperm competition occurs because spermprecedence may be either a form of cryptic female choice ora form of male—male competition. We examined the effectsof tail height on male—male competition and female choiceusing the sexually dimorphic red-spotted newt (Notophthalmusviridescens viridescens). Experiment 1 examined whether maletail height influenced male mating success. Males with deeptails were more successful at mating with females than thosewith shallow tails. Successful, deep-tailed males also were bigger(snout-vent length; SVL) than unsuccessful, shallow-tailed males,but they did not vary in tail length or body condition. Of these,only tail height and tail length are sexually dimorphic traits.Experiment 2 tested the hypothesis that the differential successof males with deeper tails was due to female choice by examiningboth simultaneous female preference for association and sequentialfemale choice. We found no evidence of female choice. When maleswere not competing to mate with females, tail height did notinfluence male mating success. Successful males did not havedifferent SVL and tail lengths than unsuccessful males. Thus,tail height in male red-spotted newts appears to be an intrasexuallyselected secondary sexual characteristic. Experiment 3 usedpaternity exclusion analyses based on molecular genetic markersto examine the effect of sperm precedence on sperm competitionin doubly-mated females. Sperm precedence likely does not havea pervasive and consistent effect on fertilization success becausewe found evidence of first, last, and mixed sperm usage.  相似文献   

20.
Summary Hypopomus occidentalis is a weakly electric Gymnotiform fish with a pulse-type electric organ discharge (EOD).Hypopomus used in this study were taken from one of the northernmost boundaries of this species, the Atlantic drainage of Panama where the animals breed at the beginning of the dry season (December). In normal breeding populations,Hypopomus occidentalis exhibit a sexual dimorphism in EOD and morphology. Mature males are large with a broad tail and have an EOD characterized by a low peak power frequency. Females and immature males are smaller, having a slender tail and EODs with higher peak power frequencies (Fig. 1). This study describes differences in the EOD and electric organ morphology between breeding field populations of male and femaleHypopomus. Changes in physiology, morphology and EOD shape which may accompany this seasonal change were examined in steroid injected fish, using standard histological and physiological techniques.A group of females were injected with hormones (5-dihydrotestosterone (DHT), estrogen or saline) to assess changes in their morphology and EOD. Animals treated with DHT developed characteristics which mimicked the sexually dimorphic characteristics of a male, while the other groups did not (see Fig. 5). Tissue from the tails of breeding males and females, and females treated with DHT, were sampled to measure the size of the electrocytes in the tail. The broader tail of males and DHT-females is composed of large electrocytes, whereas the slender tail of normal females is composed of smaller electrocytes. Therefore, the increase in the tail width in the female DHT group is caused by an enlargement of the electrocytes in this area.Intracellular recordings from the electrocytes of saline and DHT injected females show a difference in the responses of the rostral faces of the electrocytes from the two groups, which reflect the differences in their EODs. Saline-treated animals had symmetrical EODs (the first and second phase of the EOD were equal in duration and amplitude), while the physiological responses from each face of the electrocytes yielded responses that were similarly equal in duration and amplitude. DHT-treated animals had asymmetrical EODs (the first phase of the EOD was similar to that of saline treated fish and larger in amplitude and shorter in duration than the second phase) and the physiological responses of the electrocytes reflected this asymmetry. The differential recordings across the caudal face were similar to those from saline treated fish, while the responses from the rostral face were longer in duration and smaller in amplitude.These data suggest that the effects of androgens underlie the changes in single electrocytes which produce the sexually dimorphic signals and morphology present in natural breeding populations ofHypopomus occidentalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号