首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
alpha 2-antiplasmin (alpha 2-AP) exerts its inhibitory effect on fibrinolysis by rapidly inhibiting the plasmin evolved; in addition, it has been suggested that interference with the binding of plasminogen to fibrin, a function shared with histidine-rich glycoprotein (HRGP), may also be significant in inhibition of fibrinolysis. To elucidate if plasminogen binding by these two alpha 2-globulins may decrease the generation of plasmin by tissue-type plasminogen activator (t-PA) at the surface of fibrin, a system mimicking the fibrin/plasma interface was used. Attempts were made to differentiate the plasminogen binding from the plasmin inhibitory function of alpha 2-AP. The activation of human Glu-plasminogen (native plasminogen with NH2-terminal glutamic acid) by fibrin-bound t-PA was performed in a plasma environment using either normal plasma, alpha 2-AP- or HRGP-depleted plasmas supplemented with increasing amounts of the lacking protein, or in a reconstituted system with purified plasminogen and various concentrations of alpha 2-AP and HRGP. The activation of Glu-plasminogen in alpha 2-AP-depleted plasma containing a normal concentration of HRGP produced a time-dependent increase in the generation of plasmin. The addition of 1 microM-alpha 2-AP to this plasma prevented the formation of Lys-derivatives and produced a marked decrease (42%) in the number of plasminogen-binding sites. In contrast, the addition of 1.5 microM-HRGP to HRGP-depleted plasma containing a normal amount of alpha 2-AP produced only a modest (17%) decrease in the amount of plasmin(ogen) bound. Moreover, in a purified system the amount of plasminogen-binding sites and thereby of plasmin generated at the surface of fibrin in the presence of both alpha-2 globulins was similar to the amount generated in the presence of alpha 2-AP alone. These results indicate clearly that the formation of reversible complexes between plasminogen and alpha 2-AP does not interfere with the binding and activation of plasminogen at the fibrin surface. In contrast, the inhibition of plasmin by alpha 2-AP decreases importantly the number of plasminogen-binding sites (carboxyl-terminal lysines) and inhibits thereby the accelerated phase of fibrinolysis. It can be concluded that interference of the binding of plasminogen to fibrin by alpha 2-AP during plasminogen activation, does not play a significant role in inhibition of fibrinolysis, and that the plasminogen-binding effect of HRGP, if any, is obscured by the important inhibitory effect of alpha 2-AP.  相似文献   

2.
The binding of recombinant tissue-type plasminogen activator (rt-PA) to fibrin increases upon digestion of fibrin with plasmin. Optimal binding is observed following a limited plasmin digestion of fibrin, coinciding with the generation of fibrin fragment X polymers. We studied the involvement of the separate domains of the amino-terminal "heavy" (H) chain of rt-PA in this augmentation of fibrin binding. The fibrin-binding characteristics of a set of rt-PA deletion mutants, lacking either one or more of the structural domains of the H chain, were determined on intact fibrin matrices and on fibrin matrices that were subjected to limited digestion with plasmin. The augmented fibrin binding of rt-PA is partially abolished when the plasmin-degraded fibrin matrices are subsequently treated with carboxypeptidase B, demonstrating that this increased binding is dependent on the generation of carboxyl-terminal lysine residues in the fibrin matrix. Evidence is provided that this increase of fibrin binding is mediated by the kringle 2 (K2) domain that contains a lysine-binding site. Further increase of the fibrin binding of rt-PA is independent of the presence of carboxyl-terminal lysines. It is shown that the latter increase is not mediated by the K2 domain. Based on our data, we propose that the increase in fibrin binding, unrelated to the presence of carboxyl-terminal lysine residues, is mediated by the finger (F) domain, provided that this domain is correctly exposed in the remainder of the protein.  相似文献   

3.
Lipoprotein(a) [Lp(a)], but not low-density lipoprotein (LDL), was previously shown to impair the generation of fibrin-bound plasmin [Rouy et al. (1991) Arterioscler. Thromb. 11, 629-638] by a mechanism involving binding of Lp(a) to fibrin. It was therefore suggested that the binding was mediated by apolipoprotein(a) [apo(a)], a glycoprotein absent from LDL which has a high degree of homology with plasminogen, the precursor of the fibrinolytic enzyme plasmin. Here we have evaluated this hypothesis by performing comparative fibrin binding studies using a recombinant form of apo(a) containing 17 copies of the apo(a) domain resembling kringle 4 of plasminogen, native Lp(a), and Glu-plasminogen (Glu1-Asn791). Attempts were also made to identify the kringle domains involved in such interactions using isolated elastase-derived plasminogen fragments. The binding experiments were performed using a well-characterized model of an intact and of a plasmin-digested fibrin surface as described by Fleury and Anglés-Cano [(1991) Biochemistry 30, 7630-7638]. Binding of r-apo(a) to the fibrin surfaces was of high affinity (Kd = 26 +/- 8.4 nM for intact fibrin and 7.7 +/- 4.6 nM for plasmin-degraded fibrin) and obeyed the Langmuir equation for adsorption at interfaces. The binding to both surfaces was inhibited by the lysine analogue AMCHA and was completely abolished upon treatment of the degraded surface with carboxypeptidase B, indicating that r-apo(a) binds to both the intrachain lysines of intact fibrin and the carboxy-terminal lysines of degraded fibrin. As expected from these results, both r-apo(a) and native Lp(a) inhibited the binding of Glu-plasminogen to the fibrin surfaces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Annexin A2 (p36) is a highly alpha-helical molecule that consists of two opposing sides, a convex side that contains the phospholipid-binding sites and a concave side, which faces the extracellular milieu and contains multiple ligand-binding sites. The amino-terminal region of annexin A2 extends along the concave side of the protein and contains the binding site for the S100A10 (p11) subunit. The interaction of these subunits results in the formation of the heterotetrameric form of the protein, annexin A2-S100A10 heterotetramer (AIIt). To simulate the orientation of AIIt on the plasma membrane we bound AIIt to a phospholipid bilayer that was immobilized on a BIAcore biosensor chip. Surface plasmon resonance was used to observe in real time the molecular interactions between phospholipid-associated AIIt or its annexin A2 subunit and the ligands, tissue-type plasminogen activator (t-PA), plasminogen, and plasmin. AIIt bound t-PA (Kd = 0.68 microm), plasminogen (Kd = 0.11 microm), and plasmin (Kd = 75 nm) with moderate affinity. Contrary to previous reports, the phospholipid-associated annexin A2 subunit failed to bind t-PA or plasminogen but bound plasmin (Kd = 0.78 microm). The S100A10 subunit bound t-PA (Kd = 0.45 microm), plasminogen (Kd = 1.81 microm), and plasmin (Kd = 0.36 microm). Removal of the carboxyl-terminal lysines from the S100A10 subunit attenuated t-PA and plasminogen binding to AIIt. These results show that the carboxyl-terminal lysines of S100A10 form t-PA and plasminogen-binding sites. In contrast, annexin A2 and S100A10 contain distinct binding sites for plasmin.  相似文献   

5.
The binding of human 125I-Glu-plasminogen to human plasmin-degraded fibrin was studied. Treatment of preformed and polymerized fibrin with 0.01 IU plasmin/ml resulted in an increased binding of 125I-Glu-plasminogen depending upon the length of time of preincubation of fibrin with plasmin. Binding reached a plateau of 30% of total added radioactivity after 60 min. At this time, less than 10% of fibrin had been digested. Polyacrylamide/urea/acetic acid gel electrophoresis revealed that the radioiodinated plasminogen bound to plasmin-degraded fibrin was of the Glu form. Computerized non-linear regression analysis of the binding experiments revealed that limited plasmic degradation of fibrin progressively generates high-affinity binding sites (Kd approximately equal to 0.3 microM) for Glu-plasminogen. At the time of maximal Glu-plasminogen binding approximately 5 high-affinity binding sites per 100 molecules of fibrin had been generated. The low-affinity type of binding sites were also identified. These observations describe a new mechanism which exquisitely modulates the plasmic breakdown of fibrin by a continuous renewal of high-affinity binding sites for Glu-plasminogen on the surface of the fibrin gel during the fibrinolytic process.  相似文献   

6.
R A Bok  W F Mangel 《Biochemistry》1985,24(13):3279-3286
The binding of human Glu- and Lys-plasminogens to intact fibrin clots, to lysine-Sepharose, and to fibrin cleaved by plasmin was quantitatively characterized. On intact fibrin clots, there was one strong binding site for Glu-plasminogen with a dissociation constant, Kd, of 25 microM and one strong binding site for Lys-plasminogen with a Kd of 7.9 microM. In both cases, the number of plasminogen binding sites per fibrin monomer was 1. Also, a much weaker binding site for Glu-plasminogen was observed with a Kd of about 350 microM. Limited digestion of fibrin by plasmin created additional binding sites for plasminogen with Kd values similar to the binding of plasminogen to lysine-Sepharose. This was predictable given the observations that plasminogen binds to lysine-Sepharose and can be eluted with epsilon-aminocaproic acid [Deutsch, D.G., & Mertz, E.T. (1970) Science (Washington, D.C.) 170, 1095-1096] and that plasmin preferentially cleaves fibrin at the carboxy side of lysyl residues [Weinstein, M.J., & Doolittle, R.F. (1972) Biochim. Biophys. Acta 258, 577-590], because the structures of the lysyl moiety in lysine-Sepharose and of epsilon-aminocaproic acid are identical with the structure of a COOH-terminal lysyl residue created by plasmin cleavage of fibrin. The Kd for the binding of Glu-plasminogen to lysine-Sepharose was 43 microM and for fibrin partially cleaved by plasmin 48 microM. The Kd for the binding of Lys-plasminogen to lysine-Sepharose was 30 microM. With fibrin partially cleaved by plasmin, there were two types of binding sites for Lys-plasminogen, one with a Kd of 7.6 microM and the other with a Kd of 44 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effect of tissue plasminogen activator (TPA) or urokinase on the specific binding of human Glu-plasminogen to fibrin I formed in plasma by clotting with Reptilase was studied using 125I-plasminogen and 131I-fibrinogen. In the absence of TPA, small amounts of plasminogen were bound to fibrin I. TPA induced binding of plasminogen to plasma fibrin I that was dependent upon the concentrations of TPA and plasminogen as well as upon the time of incubation. Plasminogen binding occurred in association with fibrin clot lysis and the formation in the clot supernatant of alpha 2-plasmin inhibitor-plasmin complexes. Urokinase also induced binding of plasminogen to plasma fibrin I that was concentration- and time-dependent. The molecular form of plasminogen bound to the fibrin I plasma clot was identified as Glu-plasminogen by dodecyl sulfate-polyacrylamide gel electrophoresis and by fast performance liquid chromatography. Further studies demonstrated that fibrin I formed from fibrinogen that had been progressively degraded by plasmin-bound Glu-plasminogen. The mole ratio of plasminogen bound increased with the time of plasmin digestion. Glu-plasminogen did not bind to fibrin I formed from fibrinogen progressively digested by human leukocyte elastase, thereby demonstrating the specificity of plasmin. These studies demonstrate that plasminogen activators regulate the binding of Glu-plasminogen to fibrin I by catalyzing plasmin-mediated modifications in the fibrin substrate.  相似文献   

8.
The alpha-2-antiplasmin influence on the Glu-plasminogen activation by tissue activator both on fibrin and fibrin(ogen) fragments was investigated. The kinetics of activation was studied and velocity of this process in the absence and presence of the inhibitor was calculated. It was established that alpha-2-antiplasmin decreased the velocity of Glu-plasminogen activation on desAABBfibrin, DDE-complex and DD-dimer and did no influence upon proenzyme activation on fibrinogen fragment--Ho1-DSK. In the presence of fibrin plasminogen activation linear related to the amount added tissue activator in limit concentration from 5 before 50 units/ml. It was shown that alpha-2-antiplasmin reduced the activation velocity with used concentration of tissue activator. Fibrin hydrolysis by plasmin, forming on its surface during the plasminogen activation by tissue activator, was also inhibited with alpha-2-antiplasmin. The obtained results are explained by the influence of the inhibitor on formation of the triple complex between plasminogen, tissue activator and fibrin, and competition of the alpha-2-antiplasmin for lysine-binding sites of tissue activator kringle 2 or for binding sites of the activator on fibrin.  相似文献   

9.
Fukao H  Ueshima S  Okada K  Matsuo O 《Life sciences》2000,66(25):2473-2487
We previously demonstrated that tissue-type plasminogen activator (t-PA) specifically bound to its receptor (t-PAR) on human umbilical vein endothelial cells (HUVEC). In addition to analyses of t-PA binding to plasminogen activator inhibitor-1 (PAI-1) in the extracellular matrix (ECM) and to the t-PAR, we further evaluated the binding of three t-PA mutants, deltaFE1X t-PA lacking finger (F), epidermal growth factor-like (E) domains and one sugar chain at Asn177 thus comprising two kringles (K1 and K2) and protease (P) domains, deltaFE3X t-PA with three glycosylation sites deleted at Asn117, 184, and 448, and deltaFEK1 t-PA comprising K2 and P domains without glycosylation. Wild-type t-PA bound to ECM with high affinity, which was completely blocked by anti-PAI-1 IgG. Wild-type t-PA, deltaFE1X t-PA and deltaFEK1 t-PA bound to two classes of binding sites with high and low affinities on monolayer HUVEC. However, all t-PAs bound to a single class of binding site in the presence of anti-PAI-1 IgG. DeltaFEK1 t-PA bound t-PAR maximally among these t-PAs. These results suggested that the high affinity binding of t-PA mainly occurred with PAI-1 on ECM while the low affinity binding was with t-PAR. The deletion of F, E domains and sugar chains had no effect on binding with t-PAR. However, since only K1-missing t-PA (deltaFEK1) exhibited significantly increased binding sites among these t-PAs, it was suggested that the binding to t-PAR was mediated mainly by K2 domain and that the increase of binding was due to direct exposure of K2 domain.  相似文献   

10.
Plasmin(ogen) kringles 1 and 4 are involved in anchorage of plasmin(ogen) to fibrin and cells, an essential step in fibrinolysis and pericellular proteolysis. Their contribution to these processes was investigated by selective neutralization of their lysine-binding function. Blocking the kringle 1 lysine-binding site with monoclonal antibody 34D3 fully abolished binding and activation of Glu-plasminogen and prevented both fibrinolysis and plasmin-induced cell detachment-induced apoptosis. In contrast, blocking the kringle 4 lysine-binding site with monoclonal antibody A10.2 did not impair its activation although it partially inhibited plasmin(ogen) binding, fibrinolysis and cell detachment. This remarkable, biologically relevant, distinctive response was not observed for plasmin or Lys-plasminogen; each antibody inhibited their binding and activation of Lys-plasminogen to a limited extent, and full inhibition of fibrinolysis required simultaneous neutralization of both kringles. Thus, in Lys-plasminogen and plasmin, kringles 1 and 4 act as independent and complementary domains, both able to support binding and activation. We conclude that Glu-/Lys-plasminogen and plasmin conformations are associated with transitions in the lysine-binding function of kringles 1 and 4 that modulate fibrinolysis and pericellular proteolysis and may be of biological relevance during athero-thrombosis and inflammatory states. These findings constitute the first biological link between plasmin(ogen) transitions and functions.  相似文献   

11.
Glu- and Lys-plasminogen interaction with native and desAABB-fibrin obtained from fibrinogen partially hydrolyzed by plasmin was studied. It was found that native fibrin adsorbs 6 times more Lys-plasminogen as compared to the native form of the proenzyme. The range of the Lys-plasminogen binding does not change, if part of the fibrinogen molecules hydrolyze down to X-fragments. At the same time, the appearance in the system of 1% Xi-fragments leads to a 6-fold increase in the Glu-plasminogen binding. The amount of adsorbed Glu-plasminogen reaches the level of Lys-plasminogen adsorption both in the native and partially hydrolyzed fibrin. It was found that kringle K 1-3 or 6-aminohexanoic acid at saturating for high-affinity lysine-binding sites concentrations do not influence the Glu-plasminogen binding to native fibrin but inhibit it when the partially purified form is used. It is assumed that the manyfold increase of the Glu-plasminogen binding to partially hydrolyzed fibrin is due to the alteration of the proenzyme conformation at the initial steps of fibrin hydrolysis during the formation of Xi fragments.  相似文献   

12.
Kringles K1-3, K4 and K5 are studied for their effect on tissue plasminogen activator-induced fibrin clot lysis in the presence of Glu- and Lys-plasminogen. It is established that kringles K4 and K5 inhibit fibrinolysis of Glu-plasminogen, and K1-3--that of Lys-plasminogen. The role of plasminogen molecule kringles in the plasminogen interaction with fibrin polymer is discussed.  相似文献   

13.
A novel triple-kringle plasminogen activator protein, PK1 delta FE1X, has been produced which is a genetic chimera between the fibrin binding kringle 1 domain of plasminogen and the two kringles and serine protease domains of naturally occurring wild-type tissue plasminogen activator (wt t-PA). This chimera also contains a modification to prevent high mannose type N-linked glycosylation on kringle 1 of t-PA. PK1 delta FE1X is biochemically and fibrinolytically similar to wt t-PA in vitro but retains the decreased plasma clearance rate characteristic of other t-PA variants which lack fibronectin finger-like and epidermal growth factor domains. The serine protease domain of PK1 delta FE1X exhibits the amidolytic activity characteristic of wt t-PA. In an indirect coupled plasminogen activator assay, the specific activity of PK1 delta FE1X is approximately 1.4 times greater than that of wt t-PA. In a fibrin film-binding assay, greater binding to untreated fibrin is observed with wt t-PA than with PK1 delta FE1X. However, following limited plasmin digestion of the fibrin film, PK1 delta FE1X binding increases to the level observed with wt t-PA. The incremental binding to plasmin-digested fibrin observed with PK1 delta FE1X is eliminated if plasmin digestion of the fibrin film is followed by carboxypeptidase B treatment. This result suggests that plasminogen kringle 1 binds plasmin-digested fibrin even after recombination with a heterologous protein. The fibrinolytic activity of PK1 delta FE1X in human plasma clot lysis assays was similar to that of wt t-PA at activator concentrations of approximately 1 microgram/ml. At substantially lower concentrations, approximately 0.1 microgram/ml, PK1 delta FE1X was only slightly less active than wt t-PA. Pharmacokinetic analysis showed that wt t-PA activity is cleared approximately 15 times as rapidly as PK1 delta FE1X following intravenous bolus injection. In a rabbit jugular vein clot lysis model, intravenous bolus injection of 0.06 mg/kg of PK1 delta FE1X showed greater thrombolytic potency than a similar administration of 0.5 mg/kg of wt t-PA. Thus it appears that in vitro exon shuffling techniques can be used to generate novel fibrinolytic agents which biochemically and pharmacologically represent the combination of individual domains of naturally occurring proteins.  相似文献   

14.
V Gurewich 《Enzyme》1988,40(2-3):97-108
Single chain urokinase (SC-UK) is a precursor of 55 kd two-chain UK (TC-UK). Treatment with catalytic proportions of plasmin or kallikrein converts SC-UK to TC-UK as a consequence of cleavage of its Lys158-Ile159 peptide bond. This plasmin-mediated activation of SC-UK induces a positive feedback secondary reaction and complicates measurement of its activity against its natural substrate, Glu-plasminogen. The fibrin-selective effect of pro-UK-induced clot lysis is not related to fibrin binding. Rather, a conformational change in Glu-plasminogen, conferred when it binds to certain carboxy-terminal lysine residues on fibrin, has been implicated in this mechanism. This is complementary to t-PA. Fibrin-bound t-PA was found to exclusively activate plasminogen bound to certain internal lysine residues. Their complementariness is believed to explain their synergism in fibrinolysis.  相似文献   

15.
The mechanism of activation of human Glu-plasminogen by fibrin-bound tissue-type plasminogen activator (t-PA) in a plasma environment or in a reconstituted system was characterized. A heterogeneous system was used, allowing the setting of experimental conditions as close as possible to the physiological fibrin/plasma interphase, and permitting the separate analysis of the products present in each of the phases as a function of time. The generation of plasmin was monitored both by spectrophotometric analysis and by radioisotopic analysis with a plasmin-selective chromogenic substrate and radiolabelled Glu-plasminogen respectively. Plasmin(ogen)-derived products were identified by SDS/PAGE followed by autoradiography and/or immunoblotting. When the activation was performed in a plasma environment, the products identified on the fibrin surface were Glu-plasmin (90%) and Glu-plasminogen (10%), whereas in the soluble phase only complexes between Glu-plasmin and its fast-acting inhibitor were detected. Identical results were obtained with a reconstituted system comprising solid-phase fibrin, t-PA, Glu-plasminogen and and alpha 2-antiplasmin. In contrast, when alpha 2-antiplasmin was omitted from the solution, Lys-plasmin was progressively generated on to the fibrin surface (30%) and released to the soluble phase. In the presence of alpha 2-antiplasmin or in plasma, the amount of active plasmin generated on the fibrin surface was lower than in the absence of the inhibitor: in a representative experiment the initial velocity of plasmin generation was 2.8 x 10(-3), 2.0 x 10(-3) and 1.8 x 10(-3) (delta A405/min) for 200 nM-plasminogen, 200 nM-plasminogen plus 100 nM-alpha 2-antiplasmin and native plasma respectively. Our results indicate that in plasma or in a reconstituted purified system containing plasminogen and alpha 2-antiplasmin at a ratio similar to that found in plasma (1) the activation pathway of native Glu-plasminogen proceeds directly to the formation of Glu-plasmin, (2) Lys-plasminogen is not an intermediate of the reaction and therefore (3) Lys-plasmin is not the final active product. However, in the absence of the inhibitor, Lys-plasmin and probably Lys-plasminogen, which is more readily activated to plasmin than is Glu-plasminogen, are generated as well.  相似文献   

16.
Plasminogen, the zymogen form of the fibrinolytic enzyme plasmin, is known to undergo plasmin-mediated modification in vitro. The modified form, Lys-plasminogen, is superior to the native Glu-plasminogen in fibrin binding and as a substrate for activation by tissue-type plasminogen activator (t-PA). The present study was undertaken to determine the existence and significance of the Glu- to Lys-plasminogen conversion during t-PA-mediated lysis of plasma clots in vitro. When human plasma was supplemented with exogenous Lys-plasminogen and clotted, a dose-dependent shortening of lysis time was observed. Formation of Lys-plasminogen in situ during fibrinolysis was determined using 131I-Glu-plasminogen-supplemented plasma. By the time of lysis, Lys-plasminogen had accumulated to about 20% of the initial concentration of Glu-plasminogen. Quantitation of activation of both Glu- and Lys-plasminogen as well as the conversion of Glu- to Lys-plasminogen in plasma supplemented with both 131I-Glu-plasminogen and 125I-Lys-plasminogen was accomplished by determining the flux of the isotopically labeled species along three pathways: Glu-plasminogen-->Glu-plasmin, Glu-plasminogen-->Lys-plasminogen, and Lys-plasminogen-->Lys-plasmin. After a brief lag, the Glu-plasminogen activation rate was constant until lysis was achieved, at which point activation ceased. The Lys-plasminogen activation rate also was essentially constant until lysis but was not characterized by a lag phase. The rate of conversion of Glu- to Lys-plasminogen was nonlinear and correlated directly with the rate of fibrinolysis. By the time lysis had occurred, Glu-plasminogen consumption had been distributed equally between direct activation to plasmin and conversion to Lys-plasminogen, and 45% of the plasmin which had been formed was derived from Lys-plasminogen. These results demonstrate both the formation and the subsequent activation of Lys-plasminogen during fibrinolysis. As a result of improved fibrin binding and activation of Lys-plasminogen compared to Glu-plasminogen, the formation of Lys-plasminogen within a clot constitutes a positive feedback mechanism that can further stimulate the activation of plasminogen by t-PA as fibrinolysis progresses.  相似文献   

17.
D L Higgins  G A Vehar 《Biochemistry》1987,26(24):7786-7791
Tissue-type plasminogen activator (t-PA) plays a central role in fibrinolysis in vivo. Although it is known to bind to fibrin, the dissociation constant (Kd) and number of moles bound per mole of fibrin monomer (n) have never been measured directly. In this study, the binding of both the one-chain form and the two-chain form of recombinant, human t-PA to fibrin was measured. Although more one-chain t-PA than two-chain t-PA is bound to fibrin, the Kd's and n's were within experimental error of each other. Significantly more t-PA is bound to clots made from fibrinogen which has been digested with plasmin than to clots made from intact fibrinogen. The additional binding was shown to be due to the formation of new set(s) of binding site(s) with dissociation constants that are 2-4 orders of magnitude tighter than the binding site present on clots made from intact fibrinogen. epsilon-Aminocaproic acid was capable of competing for the loose binding site present on both intact and degraded fibrin but had little effect on the binding of t-PA to the new site(s) formed by plasmin digestion. This increase in binding caused by plasmin-mediated proteolysis of fibrin suggests a possible mechanism for a positive regulation capable of accelerating fibrinolysis.  相似文献   

18.
This study deals with the effect of fibrin on the transformation of Glu-plasminogen to Glu-plasmin during fibrinolysis. It focuses particularly on changes in fibrin effector function caused by plasmin-catalysed fibrin degradation. Conversion of 125I-labelled Glu-plasminogen to Glu-plasmin was catalysed by urokinase or tissue plasminogen activator, in the presence of different preparations of progressively degraded fibrin. Plasmin catalysis of Glu-plasminogen and the fibrin (derivative) effector was inhibited by aprotinin. The presence of intact fibrin enhanced the rate of Glu-plasmin formation catalysed by tissue plasminogen activator, but not by urokinase. The presence of initially plasmin-cleaved fibrin, however, increased the rates of Glu-plasmin formation with both activators, as compared to those found with intact fibrin. The rate enhancements induced by initial plasmin degradation of the fibrin effector were associated with an increase in its affinity to both Glu-plasminogen and tissue plasminogen activator, suggesting causal relationships. The weak binding of urokinase was unaffected by fibrin degradation, indicating that effector function was solely exerted on the Glu-plasminogen moiety of urokinase-activated systems. Further degradation of fibrin decreased the stimulating effect on Glu-plasmin formation. This decrease occurred at an earlier stage of degradation with tissue plasminogen activator than with urokinase, indicating that greater integrity of the fibrin effector is necessary for its optimal interaction with the tissue plasminogen activator than with Glu-plasminogen. Concentrations of tranexamic acid that saturate low-affinity lysine-binding sites nearly completely dissociated the binding of Glu-plasminogen to degraded fibrin, but not to intact fibrin. In analogy with the binding of lysine analogues to these sites, the conformation of Glu-plasminogen may be altered by binding to degraded fibrin, thus giving rise to the increased activation rate.  相似文献   

19.
Plasminogen activator inhibitor-1 (PAI-1) accumulates within thrombi and forming whole blood clots. To explore this phenomenon at the molecular level, PAI-1 binding to fibrin was examined. The experiments were performed by adding 125I-PAI-1, which retains its complete tissue-type plasminogen (t-PA) inhibitory activity, to fibrin matrices formed in 2-cm2 tissue culture wells. Guanidine HCl-activated PAI-1 binding was reversible and was inhibited in the presence of excess, unlabeled PAI-1. Activated 125I-PAI-1 recognized 2 sites on fibrin: a very small number of high affinity sites (Kd less than 1 nM) and principally a large number of low affinity sites with an approximate Kd of 3.8 microM. Latent PAI-1 bound to fibrin at a site indistinguishable from the lower affinity site recognized by activated PAI-1. Fibrin, pretreated with activated PAI-1, was protected from t-PA-mediated plasmin degradation in a PAI-1 dose-responsive manner (IC50 = 12.3 nM). Clot protection correlated with partial occupancy of the low affinity PAI-1 binding site on fibrin and was due to the formation of sodium dodecyl sulfate-stable, PAI-1.t-PA complexes. Latent PAI-1 (27 nM) did not protect the fibrin from dissolution. The localization of PAI-1 to a thrombus by virtue of its fibrin binding potential could result in significant protection of the thrombus from the degradative effects of the fibrinolytic system.  相似文献   

20.
Human tissue-type plasminogen activator (t-PA) catalyses the conversion of inactive plasminogen into active plasmin, the main fibrinolytic enzyme. This process is confined to the fibrin surface by specific binding of t-PA to fibrin and stimulation of its activity by fibrin. Tissue-type plasminogen activator contains five domains designated finger, growth factor, kringle 1, kringle 2 and protease. The involvement of the domains in fibrin specificity was investigated with a set of variant proteins lacking one or more domains. Variant proteins were produced by expression in Chinese hamster ovary cells of plasmids containing part of the coding sequence for the activator. It was found that kringle 2 domain only is involved in stimulation of activity by fibrin. In the absence of plasminogen and at low concentration of fibrin, binding of t-PA is mainly due to the finger domain, while at high fibrin concentrations also kringle 2 is involved in fibrin binding. In the presence of plasminogen, fibrin binding of the kringle 2 region of t-PA also becomes important at low fibrin concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号