首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 730 毫秒
1.
Ginet N  Lavergne J 《Biochemistry》2001,40(6):1812-1823
The equilibrium and kinetic parameters for the binding of various inhibitors to the Q(B) pocket of the bacterial reaction center were investigated in chromatophores from Rhodobacter capsulatus and Rhodobacter sphaeroides. By monitoring the near-IR absorption changes specific to Q(A)(-) and Q(B)(-), we measured the fraction of inhibited centers in the dark and the kinetics and extent of inhibitor displacement after one flash due to the formation of the Q(A)Q(B)(-) state. The inhibitor release rate was much faster for triazines and o-phenanthroline (t(1/2) in the 50 ms to 1 s range) than for stigmatellin (t(1/2) approximately 20 s). For inhibitors with a rapid release rate, the fast phase of P(+) decay observed in the absence of secondary donor reflects the competition between P(+)Q(A)(-) recombination and inhibitor release: it is thus faster than the P(+)Q(A)(-) recombination, and its relative extent is smaller than the fraction of initially inhibited centers. At appropriate inhibitor concentrations, one can have almost total binding in the dark and almost total inhibitor displacement after one flash. Under such conditions, a pair of closely spaced flashes resets the two-electron gate in a single state (Q(A)Q(B)(-)), irrespective of the initial state. The apparent dissociation constant of terbutryn was significantly increased (by a factor of 4-7) in the presence of Q(A)(-), in agreement with the conclusion of Wraight and co-workers [Stein, R. R., et al. (1984) J. Cell. Biochem. 24, 243-259]. We suggest that this effect is essentially due to a tighter binding of ubiquinone in the Q(A)(-) state.  相似文献   

2.
Ginet N  Lavergne J 《Biochemistry》2000,39(51):16252-16262
The apparent equilibrium constant K'(2) for electron transfer between the primary (Q(A)) and secondary (Q(B)) quinone acceptors of the reaction center was measured in chromatophores of Rhodobacter capsulatus. In the presence of the oxidized primary donor P(+), we obtained a value of K'(2)(P(+)) approximately 100 at pH 7.2, based on the rates of recombination from P(+)Q(A-) and P(+)Q(B-). K'(2) was also measured in the presence of reduced P, from the damping of semiquinone oscillations during a series of single turnover flashes. A 5-fold smaller value, K'(2)(P) approximately 20, was found. Additional information on the interactions between the donor and acceptor sides was obtained by measuring the shift of the midpoint potential of P caused by the presence of Q(B-) or Q(A-)S (where S indicates the presence of the inhibitor stigmatellin). A stabilization of the oxidized state P(+) was observed in both instances, by 10 mV for Q(B-) and 30 mV for Q(A-)S. The larger stabilization of P(+)Q(A-)S with respect to P(+)Q(B-) does not account for the effect of P(+)/P on K'(2). Analysis of these results indicates that the interactions between P(+)/P and Q(A)/Q(A)(-) are markedly modified depending on the occupancy of the Q(B) pocket by ubiquinone or by stigmatellin. We propose that the large value of K'(2)(P(+)) results essentially from a conformational destabilization of the P(+)Q(A-) state, that is relieved when the proximal site of the Q(B) pocket is occupied by stigmatellin.  相似文献   

3.
The kinetics of charge recombination between the primary photoxidized donor (P(+)) and the secondary reduced quinone acceptor (Q(B)(-)) have been studied in reaction centers (RCs) from the purple photosynthetic bacterium Rhodobacter sphaeroides incorporated into lecithin vesicles containing large ubiquinone pools over the temperature range 275 K = (50 +/- 15) nm). Following these premises, we describe the kinetics of P(+)Q(B)(-) recombination with a truncated cumulant expansion and relate it to P(Q) and to the free energy changes for Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer (DeltaG(AB)(o)) and for quinone binding (DeltaG(bind)(o)) at Q(B). The model accounts well for the temperature and quinone dependence of the charge recombination kinetics, yielding DeltaG(AB)(o) = -7.67 +/- 0.05 kJ mol(-1) and DeltaG(bind)(o) = -14.6 +/- 0.6 kJ mol(-1) at 298 K.  相似文献   

4.
We report time-resolved optical measurements of the primary electron transfer reactions in Rhodobacter capsulatus reaction centers (RCs) having four mutations: Phe(L181) --> Tyr, Tyr(M208) --> Phe, Leu(M212) --> His, and Trp(M250) --> Val (denoted YFHV). Following direct excitation of the bacteriochlorophyll dimer (P) to its lowest excited singlet state P, electron transfer to the B-side bacteriopheophytin (H(B)) gives P(+)H(B)(-) in approximately 30% yield. When the secondary quinone (Q(B)) site is fully occupied, P(+)H(B)(-) decays with a time constant estimated to be in the range of 1.5-3 ns. In the presence of excess terbutryn, a competitive inhibitor of Q(B) binding, the observed lifetime of P(+)H(B)(-) is noticeably longer and is estimated to be in the range of 4-8 ns. On the basis of these values, the rate constant for P(+)H(B)(-) --> P(+)Q(B)(-) electron transfer is calculated to be between approximately (2 ns)(-)(1) and approximately (12 ns)(-)(1), making it at least an order of magnitude smaller than the rate constant of approximately (200 ps)(-)(1) for electron transfer between the corresponding A-side cofactors (P(+)H(A)(-) --> P(+)Q(A)(-)). Structural and energetic factors associated with electron transfer to Q(B) compared to Q(A) are discussed. Comparison of the P(+)H(B)(-) lifetimes in the presence and absence of terbutryn indicates that the ultimate (i.e., quantum) yield of P(+)Q(B)(-) formation relative to P is 10-25% in the YFHV RC.  相似文献   

5.
Quinones are naturally occurring isoprenoids that are widely exploited by photosynthetic reaction centers. Protein interactions modify the properties of quinones such that similar quinone species can perform diverse functions in reaction centers. Both type I and type II (oxygenic and nonoxygenic, respectively) reaction centers contain quinone cofactors that serve very different functions as the redox potential of similar quinones can operate at up to 800 mV lower reduction potential when present in type I reaction centers. However, the factors that determine quinone function in energy transduction remain unclear. It is thought that the location of the quinone cofactor, the geometry of its binding site, and the "smart" matrix effects from the surrounding protein environment greatly influence the functional properties of quinones. Photosystem II offers a unique system for the investigation of the factors that influence quinone function in energy transduction. It contains identical plastoquinones in the primary and secondary quinone acceptor sites, Q(A) and Q(B), which exhibit very different functional properties. This study is focused on elucidating the tuning and control of the primary semiquinone state, Q(A)(-), of photosystem II. We utilize high-resolution two-dimensional hyperfine sublevel correlation spectroscopy to directly probe the strength and orientation of the hydrogen bonds of the Q(A)(-) state with the surrounding protein environment of photosystem II. We observe two asymmetric hydrogen bonding interactions of reduced Q(A)(-) in which the strength of each hydrogen bond is affected by the relative nonplanarity of the bond. This study confirms the importance of hydrogen bonds in the redox tuning of the primary semiquinone state of photosystem II.  相似文献   

6.
In reaction center proteins of photosynthetic bacteria, the amplitude of proton uptake induced by the one-electron reduction of either of the two quinone electron acceptors (Q(A) and Q(B)) is an intrinsic observable of the electrostatic interactions associated with the redox function of the complex. We report here that, in Rhodobacter capsulatus, complete restoration of proton uptake (upon formation of Q(A)(-) and Q(B)(-)) to the level found in the wild type is observed in a mutant reaction center in which a tyrosine substitution in the Q(A) environment (Ala(M274) --> Tyr) is coupled with mutations of acidic residues near Q(B) (Glu(L212) --> Ala/Asp(L213) --> Ala) that initially cancel the proton uptake above pH 8. This result demonstrates that proton uptake occurs by strong cooperation between structural motifs, such as hydrogen-bonded networks, that span the 18 A distance between the two quinone acceptors.  相似文献   

7.
High-frequency electron paramagnetic resonance (HF EPR) techniques have been employed to look for localized light-induced conformational changes in the protein environments around the reduced secondary quinone acceptor (Q(B)(-)) in Rhodobacter sphaeroides and Blastochloris viridis RCs. The Q(A)(-) and Q(B)(-) radical species in Fe-removed/Zn-replaced protonated RCs substituted with deuterated quinones are distinguishable with pulsed D-band (130 GHz) EPR and provide native probes of both the low-temperature Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron-transfer event and the structure of trapped conformational substates. We report here the first spectroscopic evidence that cryogenically trapped, light-induced changes enable low-temperature Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer in the B. viridis RC and the first observation of an inactive, trapped P(+)Q(B)(-) state in both R. sphaeroides and B. viridis RCs that does not recombine at 20 K. The high resolution and orientational selectivity of HF electron-nuclear double resonance (ENDOR) allows us to directly probe protein environments around Q(B)(-) for distinct P(+)Q(B)(-) kinetic RC states by spectrally selecting specific nuclei in isotopically labeled samples. No structural differences in the protein structure near Q(B)(-) or reorientation (within 5 degrees ) of Q(B)(-) was observed with HF ENDOR spectra of two states of P(+)Q(B)(-): "active" and "inactive" states with regards to low-temperature electron transfer. These results reveal a remarkably enforced local protein environment for Q(B) in its reduced semiquinone state and suggest that the conformational change that controls reactivity resides beyond the Q(B) local environment.  相似文献   

8.
The redox midpoint potential (E (m)) of the primary quinone of bacterial reaction centers, Q(A), in native membranes (chromatophores) measured by redox potentiometry is reported to be pH dependent (-60 mV/pH) up to a highly distinctive pK ( a ) (9.8 in Rba. sphaeroides) for the reduced state. In contrast, the E (m) of Q(A) in isolated RCs of Rba. sphaeroides, although more variable, has been found to be essentially pH-independent by both redox potentiometry and by delayed fluorescence, which determines the free energy (DeltaG (P*A)) of the P(+)Q (A) (-) state relative to P*. Delayed fluorescence was used here to determine the free energy of P(+)Q (A) (-) in chromatophores. The emission intensity in chromatophores is two orders of magnitude greater than from isolated RCs largely due to the entropic effect of antenna pigments "drawing out" the excitation from the RC. The pH dependence of DeltaG (P*A) was almost identical to that of isolated RCs, in stark contrast with potentiometric redox titrations of Q(A). We considered that Q(A) might be reduced by disproportionation with QH(2) through the Q(B) site, so the titration actually reflects the quinone pool, giving the -60 mV/pH unit dependence expected for the Q/QH(2) couple. However, the parameters necessary to achieve a strong pH-dependence are not in good agreement with expected properties of Q(A) and Q(B). We also consider the possibility that the time scale of potentiometric titrations allows the reduced state (Q (A) (-) ) to relax to a different conformation that is accompanied by stoichiometric H(+) binding. Finally, we discuss the choice of parameters necessary for determining the free energy level of P(+)Q (A) (-) from delayed fluorescence emission from chromatophores of Rba. sphaeroides.  相似文献   

9.
The terminal electron acceptor of Photosystem II, PSII, is a linear complex consisting of a primary quinone, a non-heme iron(II), and a secondary quinone, Q(A)Fe(2+)Q(B). The complex is a sensitive site of PSII, where electron transfer is modulated by environmental factors and notably by bicarbonate. Earlier studies showed that NO and other small molecules (CN(-), F(-), carboxylate anions) bind reversibly on the non-heme iron in competition with bicarbonate. In the present study, we report on an unusual new mode of transient binding of NO, which is favored in the light-reduced state (Q(A)(-)Fe(2+)Q(B)) of the complex. The related observations are summarized as follows: (i) Incubation with NO at -30 degrees C, following light-induced charge separation, results in the evolution of a new EPR signal at g = 2.016. The signal correlates with the reduced state Q(A)(-)Fe(2+) of the iron-quinone complex. (ii) Cyanide, at low concentrations, converts the signal to a more rhombic form with g values at 2.027 (peak) and 1.976 (valley), while at high concentrations it inhibits formation of the signals. (iii) Electron spin-echo envelope modulation (ESEEM) experiments show the existence of two protein (14)N nuclei coupled to electron spin. These two nitrogens have been detected consistently in the environment of the semiquinone Q(A)(-) in a number of PSII preparations. (iv) NO does not directly contribute to the signals, as indicated by the absence of a detectable isotopic effect ((15)NO vs (14)NO) in cw EPR. (v) A third signal with g values (2.05, 2.03, 2.01) identical to those of an Fe(NO)(2)(imidazole) synthetic complex develops slowly in the dark, or faster following illumination. (vi) In comparison with the untreated Q(A)(-)Fe(2+) complex, the present signals not only are confined to a narrow spectral region but also saturate at low microwave power. At 11 K the g = 2.016 signal saturates with a P(1/2) of 110 microW and the g = 2.027/1.976 signal with a P(1/2) of 10 microW. (vii) The spectral shape and spin concentration of these signals is successfully reproduced, assuming a weak magnetic interaction (J values in the range 0.025-0.05 cm(-)(1)) between an iron-NO complex with total spin of (1)/(2) and the spin, (1)/(2), of the semiquinone, Q(A)(-). The different modes of binding of NO to the non-heme iron are examined in the context of a molecular model. An important aspect of the model is a trans influence of Q(A) reduction on the bicarbonate ligation to the iron, transmitted via H-bonding of Q(A) with an imidazole ligand to the iron.  相似文献   

10.
Nabedryk E  Paddock ML  Okamura MY  Breton J 《Biochemistry》2005,44(44):14519-14527
In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (Q(B)) site. Several nearby residues are important for both binding and redox chemistry involved in the light-induced conversion from Q(B) to quinol Q(B)H(2). Ser-L223 is one of the functionally important residues located near Q(B). To obtain information on the interaction between Ser-L223 and Q(B) and Q(B)(-), isotope-edited Q(B)(-)/Q(B) FTIR difference spectra were measured in a mutant RC in which Ser-L223 is replaced with Ala and compared to the native RC. The isotope-edited IR fingerprint spectra for the C=O [see text] and C=C [see text] modes of Q(B) (Q(B)(-)) in the mutant are essentially the same as those of the native RC. These findings indicate that highly equivalent interactions of Q(B) and Q(B)(-) with the protein occur in both native and mutant RCs. The simplest explanation of these results is that Ser-L223 is not hydrogen bonded to Q(B) or Q(B)(-) but presumably forms a hydrogen bond to a nearby acid group, preferentially Asp-L213. The rotation of the Ser OH proton from Asp-L213 to Q(B)(-) is expected to be an important step in the proton transfer to the reduced quinone. In addition, the reduced quinone remains firmly bound, indicating that other distinct hydrogen bonds are more important for stabilizing Q(B)(-). Implications on the design features of the Q(B) binding site are discussed.  相似文献   

11.
The antimycin-sensitive ubisemiquinone radical (QC) of the ubiquinol-cytochrome c oxidoreductase of submitochondrial particles and chromatophores of Rhodopseudomonas sphaeroides Ga has been studied by a combination of redox potentiometry and EPR spectroscopy. This g = 2.005 radical signal appears at physiological pH values and increases in intensity with increasing pH up to pH 7.6 in submitochondrial particles and pH 9.0 in R. sphaeroides after which its intensity remains unchanged. The Em7 (ubiquinone/quinol) of the signal, estimated from redox titration data is 80 mV for submitochondrial particles, and 150 mV in chromatophores. Each of these values is higher than that of the quinone pool by 20 mV in submitochondrial particles and 60 mV in R. sphaeroides. This indicates that the quinone at the binding site is out of equilibrium with the pool, and that binding site preferentially binds quinol over quinone. Analysis of the shapes of the semiquinone titration curves, taken together with the midpoint elevation, indicates a quinone-binding site: cytochrome c1 stoichiometry of 1:1 in both submitochondrial particles and chromatophores. At its maximal intensity, the semiquinone concentration at the binding site is 0.26 in submitochondrial particles (greater than pH 7.6) and 0.4 in chromatophores (greater than pH 9.0). In both systems, the midpoint of the ubiquinone/ubisemiquinone couple is constant as the pH is raised up to the pH of maximal semiquinone formation whereafter it becomes more negative at the rate of -60 mV/pH unit. The midpoint of the ubisemiquinone/quinol couple, on the other hand, varies by -120 mV/pH unit at pH values up to the transition pH, after which it, too, changes by -60 mV/pH unit. This seemingly anomalous behavior may be explained by invoking a protonated group at or near the quinone-binding site whose pK corresponds to the pH transition point in the quinone/semiquinone/quinol redox chemistry when the site is free or when quinone or quinol occupies the site. This pK is elevated to at least pH 9.0 in submitochondrial particles and 10.5 in R. sphaeroides when semiquinone is bound to the site.  相似文献   

12.
M S Graige  M L Paddock  G Feher  M Y Okamura 《Biochemistry》1999,38(35):11465-11473
A proton-activated electron transfer (PAET) mechanism, involving a protonated semiquinone intermediate state, had been proposed for the electron-transfer reaction k(2)AB [Q(A)(-)(*)Q(B)(-)(*) + H(+) <--> Q(A)(-)(*)(Q(B)H)(*) --> Q(A)(Q(B)H)(-)] in reaction centers (RCs) from Rhodobacter sphaeroides [Graige, M. S., Paddock, M. L., Bruce, M. L., Feher, G., and Okamura, M. Y. (1996) J. Am. Chem. Soc. 118, 9005-9016]. Confirmation of this mechanism by observing the protonated semiquinone (Q(B)H)(*) had not been possible, presumably because of its low pK(a). By replacing the native Q(10) in the Q(B) site with rhodoquinone (RQ), which has a higher pK(a), we were able to observe the (Q(B)H)(*) state. The pH dependence of the semiquinone optical spectrum gave a pK(a) = 7.3 +/- 0.2. At pH < pK(a), the observed rate for the reaction was constant and attributed to the intrinsic electron-transfer rate from Q(A)(-)(*) to the protonated semiquinone (i.e., k(2)AB = k(ET)(RQ) = 2 x 10(4) s(-)(1)). The rate decreased at pH > pK(a) as predicted by the PAET mechanism in which fast reversible proton transfer precedes rate-limiting electron transfer. Consequently, near pH 7, the proton-transfer rate k(H) > 10(4) s(-)(1). Applying the two step mechanism to RCs containing native Q(10) and taking into account the change in redox potential, we find reasonable values for the fraction of (Q(B)H)(*) congruent with 0.1% (consistent with a pK(a)(Q(10)) of approximately 4.5) and k(ET)(Q(10)) congruent with 10(6) s(-)(1). These results confirm the PAET mechanism in RCs with RQ and give strong support that this mechanism is active in RCs with Q(10) as well.  相似文献   

13.
Madeo J  Gunner MR 《Biochemistry》2005,44(33):10994-11004
Bacterial reaction centers (RCs) catalyze a series of electron-transfer reactions reducing a neutral quinone to a bound, anionic semiquinone. The dissociation constants and association rates of 13 tailless neutral and anionic benzo- and naphthoquinones for the Q(A) site were measured and compared. The K(d) values for these quinones range from 0.08 to 90 microM. For the eight neutral quinones, including duroquinone (DQ) and 2,3-dimethoxy-5-methyl-1,4-benzoquinone (UQ(0)), the quinone concentration and solvent viscosity dependence of the association rate indicate a second-order rate-determining step. The association rate constants (k(on)) range from 10(5) to 10(7) M(-)(1) s(-)(1). Association and dissociation rate constants were determined at pH values above the hydroxyl pK(a) for five hydroxyl naphthoquinones. These negatively charged compounds are competitive inhibitors for the Q(A) site. While the neutral quinones reach equilibrium in milliseconds, anionic hydroxyl quinones with similar K(d) values take minutes to bind or dissociate. These slow rates are independent of ionic strength, solvent viscosity, and quinone concentration, indicating a first-order rate-limiting step. The anionic semiquinone, formed by forward electron transfer at the Q(A) site, also dissociates slowly. It is not possible to measure the association rate of the unstable semiquinone. However, as the protein creates kinetic barriers for binding and releasing anionic hydroxyl quinones without greatly increasing the affinity relative to neutral quinones, it is suggested that the Q(A) site may do the same for anionic semiquinone. Thus, the slow semiquinone dissociation may not indicate significant thermodynamic stabilization of the reduced species in the Q(A) site.  相似文献   

14.
The influence of metal ion (Cd(2+), Zn(2+), Ni(2+)) binding on the electrogenic phases of proton transfer connected with reduction of quinone Q(B) in chromatophores from Rhodobacter sphaeroides was studied by time-resolved electric potential changes. In the presence of metals, the electrogenic transients associated with proton transfer on first and second flash at pH 8 were found to be slower by factors of 3-6. This is essentially the same effect of metal binding that was observed on optical transients in isolated reaction centers (RC), where the metal ion was shown to inhibit proton transfer [Paddock, M. L., Graige, M. S., Feher, G., and Okamura, M. Y. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 6183-6188]. The effect of metal binding on the kinetics in chromatophores is, therefore, similarly attributed to inhibition of proton uptake, which becomes rate-limiting. A striking observation was an increase in the amplitude of the electrogenic proton-uptake phase after the first flash with bound metal ion. We attribute this to a loss of internal proton rearrangement, requiring that the protons that stabilize Q(B)(-) come from solution. In mutant RCs, in which His-H126 and His-H128 are replaced with Ala, the apparent binding of Cd(2+) and Ni(2+) was decreased, showing that the binding site of these metal ions is the same as found in RC crystals [Axelrod, H. L., Abresch, E. C., Paddock, M. L., Okamura, M. Y., and Feher, G. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 1542-1547]. Therefore, the unique proton entry point near His-H126, His-H128, and Asp-M17 that was identified in isolated RCs is also the entry point in chromatophores.  相似文献   

15.
Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional asymmetry of the two cofactor branches.  相似文献   

16.
The generation of transmembrane electric potential difference (delta psi) in quinone acceptor complex of proteoliposomes containing core complexes of photosystem II from spinach was studied using for the measurements a direct electrometric technique. Besides the fast increase in the membrane potential associated with the electron transfer between the redox-active tyrosine 161 residue (Y(Z)) in D1 polypeptide and the primary quinone acceptor Q(A), an additional electrogenic phase with tau approximately 0.85 msec at pH 7.3 and the maximal relative amplitude of approximately 11% of the Y(Z)ox Q(A)- phase was observed after the second light flash. The sensitivity of this phase to diuron (an inhibitor of electron transfer between Q(A) and the secondary quinone acceptor Q(B)), the dependence of its amplitude on the light flash parity, and also a decrease in its rate constant with increase in pH indicated that it was due to dismutation of Q(A)- and Q(B)- with the subsequent protonation of a doubly reduced plastoquinone molecule: Q(A)- Q(B)- + 2H+ --> Q(A)Q(B)H2.  相似文献   

17.
The bacterial reaction center couples light-induced electron transfer to proton pumping across the membrane by reactions of a quinone molecule Q(B) that binds two electrons and two protons at the active site. This article reviews recent experimental work on the mechanism of the proton-coupled electron transfer and the pathways for proton transfer to the Q(B) site. The mechanism of the first electron transfer, k((1))(AB), Q(-)(A)Q(B)-->Q(A)Q(-)(B), was shown to be rate limited by conformational gating. The mechanism of the second electron transfer, k((2))(AB), was shown to involve rapid reversible proton transfer to the semiquinone followed by rate-limiting electron transfer, H(+)+Q(-)(A)Q(-)(B) ifQ(-)(A)Q(B)H-->Q(A)(Q(B)H)(-). The pathways for transfer of the first and second protons were elucidated by high-resolution X-ray crystallography as well as kinetic studies showing changes in the rate of proton transfer due to site directed mutations and metal ion binding.  相似文献   

18.
Gerencsér L  Maróti P 《Biochemistry》2006,45(17):5650-5662
Photosynthetic reaction centers produce and export oxidizing and reducing equivalents in expense of absorbed light energy. The formation of fully reduced quinone (quinol) requires a strict (1:1) stoichiometric ratio between the electrons and H(+) ions entering the protein. The steady-state rates of both transports were measured separately under continuous illumination in the reaction center from the photosynthetic bacterium Rhodobacter sphaeroides. The uptake of the first proton was retarded by different methods and made the rate-limiting reaction in the photocycle. As expected, the rate constant of the observed proton binding remained constant (7 s(-)(1)), but that of the cytochrome photooxidation did show a remarkably large increase from 14 to 136 s(-)(1) upon increase of the exciting light intensity up to 5 W/cm(2) (808 nm) at pH 8.4 in the presence of NiCl(2). This corresponds to about 20:1 (e(-):H(+)) stoichiometric ratio. The observed enhancement is linearly proportional to the light intensity and the rate constant of the proton uptake by the acceptor complex and shows saturation character with quinone availability. For interpretation of the acceleration of cytochrome turnover, an extended model of the photocycle is proposed. A fraction of photochemically trapped RC can undergo fast (>10(3) s(-)(1)) conformational change where the semiquinone loses its high binding affinity (the dissociation constant increases by more than 5 orders of magnitude) and dissociates from the Q(B) binding site of the protein with a high rate of 4000 s(-)(1). Concomitantly, superoxide is being produced. No H(+) ion is taken up, and no quinol is created by the photocycle which is operating in about 25% of the reaction centers at the highest light intensity (5500 s(-)(1)) and slowest proton uptake (3.5 s(-)(1)) used in our experiments. The possible physical background of the light-induced conformational change and the relationship between the energies of dissociation and redox changes of the quinone in the Q(B) binding sites are discussed.  相似文献   

19.
Previously, two binding sites for the secondary quinone Q(B) in the photosynthetic reaction center (RC) from Rhodopseudomonas viridis were identified by X-ray crystallography, a 'proximal' binding site close to the non-heme iron, and a 'distal' site, displaced by 4.2 A along the path of the isoprenoid tail [C.R.D. Lancaster and H. Michel, Structure 5 (1997) 1339-1359]. The quinone ring planes in the two sites differ by roughly a 180 degrees rotation around the isoprenoid tail. Here we present molecular dynamics simulations, which support the theory of a spontaneous transfer of Q(B) between the distal site and the proximal site. In contrast to earlier computational studies on RCs, the molecular dynamics simulations of Q(B) migration resulted in a proximal Q(B) binding pattern identical to that of the crystallographic findings. Also, we demonstrate that the preference towards the proximal Q(B) location is not necessarily attributed to reduction of Q(B) to the semiquinone, but already to the preceding reduction of the primary quinone Q(A) and resulting protonation changes in the protein. Energy mapping of the Q(B) binding pocket indicates that the quinone ring rotation required for completion of the transfer between the two sites is improbable at the distal or proximal binding sites due to high potential barriers, but may be possible at a newly identified position near the distal binding site.  相似文献   

20.
The redox midpoint potential (E(m)) of Q(A), the primary quinone of bacterial reaction centers, is substantially modulated by the protein environment. Quite subtle mutations in the Q(A) binding site, e.g., at residues M218, M252 and M265, cause significant increases in the equilibrium constant for electron transfer to Q(B), which indicate relative lowering of the E(m) of Q(A). However, reports of functional linkage between the Q(A) and Q(B) sites make it difficult to partition such effects between Q(A) and Q(B) from purely relative changes. We report here measurements on the yield of delayed fluorescence emission from the primary donor (P) accompanying the thermally activated charge recombination of P(+)Q(A)(-) to form the excited singlet state of the primary donor, P*. The results show that for mutations of the Q(A) site residues, Met(M218) and Ile(M265), essentially all the substantial thermodynamic effect is localized at Q(A), with no evidence for a significant effect of these residues on the properties of Q(B) or the mutual influence (linkage) of Q(A) and Q(B). We also report a significant lowering of the E(m) of Q(A) by the native lipid, cardiolipin, which brings the E(m) in isolated reaction centers more in line with that seen in native membrane vesicles (chromatophores). Possible origins of this effect are discussed in the context of the Q(A) binding site structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号