首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermodynamic properties of the semiquinone and its binding site in the ubiquinol-cytochrome c (c2) oxidoreductase of respiratory and photosynthetic systems
Authors:D E Robertson  R C Prince  J R Bowyer  K Matsuura  P L Dutton  T Ohnishi
Abstract:The antimycin-sensitive ubisemiquinone radical (QC) of the ubiquinol-cytochrome c oxidoreductase of submitochondrial particles and chromatophores of Rhodopseudomonas sphaeroides Ga has been studied by a combination of redox potentiometry and EPR spectroscopy. This g = 2.005 radical signal appears at physiological pH values and increases in intensity with increasing pH up to pH 7.6 in submitochondrial particles and pH 9.0 in R. sphaeroides after which its intensity remains unchanged. The Em7 (ubiquinone/quinol) of the signal, estimated from redox titration data is 80 mV for submitochondrial particles, and 150 mV in chromatophores. Each of these values is higher than that of the quinone pool by 20 mV in submitochondrial particles and 60 mV in R. sphaeroides. This indicates that the quinone at the binding site is out of equilibrium with the pool, and that binding site preferentially binds quinol over quinone. Analysis of the shapes of the semiquinone titration curves, taken together with the midpoint elevation, indicates a quinone-binding site: cytochrome c1 stoichiometry of 1:1 in both submitochondrial particles and chromatophores. At its maximal intensity, the semiquinone concentration at the binding site is 0.26 in submitochondrial particles (greater than pH 7.6) and 0.4 in chromatophores (greater than pH 9.0). In both systems, the midpoint of the ubiquinone/ubisemiquinone couple is constant as the pH is raised up to the pH of maximal semiquinone formation whereafter it becomes more negative at the rate of -60 mV/pH unit. The midpoint of the ubisemiquinone/quinol couple, on the other hand, varies by -120 mV/pH unit at pH values up to the transition pH, after which it, too, changes by -60 mV/pH unit. This seemingly anomalous behavior may be explained by invoking a protonated group at or near the quinone-binding site whose pK corresponds to the pH transition point in the quinone/semiquinone/quinol redox chemistry when the site is free or when quinone or quinol occupies the site. This pK is elevated to at least pH 9.0 in submitochondrial particles and 10.5 in R. sphaeroides when semiquinone is bound to the site.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号